1
|
Yang W, Du Q, Zhou X, Wu C, Bao J. PDFll: Predictors of Disorder and Function of Proteins from the Language of Life. J Comput Biol 2025; 32:143-155. [PMID: 39246251 DOI: 10.1089/cmb.2024.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
The identification of intrinsically disordered proteins and their functional roles is largely dependent on the performance of computational predictors, necessitating a high standard of accuracy in these tools. In this context, we introduce a novel series of computational predictors, termed PDFll (Predictors of Disorder and Function of proteins from the Language of Life), which are designed to offer precise predictions of protein disorder and associated functional roles based on protein sequences. PDFll is developed through a two-step process. Initially, it leverages large-scale protein language models (pLMs), trained on an extensive dataset comprising billions of protein sequences. Subsequently, the embeddings derived from pLMs are integrated into streamlined, yet sophisticated, deep-learning models to generate predictions. These predictions notably surpass the performance of existing state-of-the-art predictors, particularly those that forecast disorder and function without utilizing evolutionary information.
Collapse
Affiliation(s)
- Wanyi Yang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Qingsong Du
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Xunyu Zhou
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuanfang Wu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinku Bao
- College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Wang W, Shuai Y, Yang Q, Zhang F, Zeng M, Li M. A comprehensive computational benchmark for evaluating deep learning-based protein function prediction approaches. Brief Bioinform 2024; 25:bbae050. [PMID: 38388682 PMCID: PMC10883809 DOI: 10.1093/bib/bbae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Proteins play an important role in life activities and are the basic units for performing functions. Accurately annotating functions to proteins is crucial for understanding the intricate mechanisms of life and developing effective treatments for complex diseases. Traditional biological experiments struggle to keep pace with the growing number of known proteins. With the development of high-throughput sequencing technology, a wide variety of biological data provides the possibility to accurately predict protein functions by computational methods. Consequently, many computational methods have been proposed. Due to the diversity of application scenarios, it is necessary to conduct a comprehensive evaluation of these computational methods to determine the suitability of each algorithm for specific cases. In this study, we present a comprehensive benchmark, BeProf, to process data and evaluate representative computational methods. We first collect the latest datasets and analyze the data characteristics. Then, we investigate and summarize 17 state-of-the-art computational methods. Finally, we propose a novel comprehensive evaluation metric, design eight application scenarios and evaluate the performance of existing methods on these scenarios. Based on the evaluation, we provide practical recommendations for different scenarios, enabling users to select the most suitable method for their specific needs. All of these servers can be obtained from https://csuligroup.com/BEPROF and https://github.com/CSUBioGroup/BEPROF.
Collapse
Affiliation(s)
- Wenkang Wang
- School of Computer Science and Engineering, Central South University, 932 South Lushan Road, Yuelu District, Changsha 410083, China
| | - Yunyan Shuai
- School of Computer Science and Engineering, Central South University, 932 South Lushan Road, Yuelu District, Changsha 410083, China
| | - Qiurong Yang
- School of Computer Science and Engineering, Central South University, 932 South Lushan Road, Yuelu District, Changsha 410083, China
| | - Fuhao Zhang
- School of Computer Science and Engineering, Central South University, 932 South Lushan Road, Yuelu District, Changsha 410083, China
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, 932 South Lushan Road, Yuelu District, Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, 932 South Lushan Road, Yuelu District, Changsha 410083, China
| |
Collapse
|
3
|
Pang Y, Liu B. DisoFLAG: accurate prediction of protein intrinsic disorder and its functions using graph-based interaction protein language model. BMC Biol 2024; 22:3. [PMID: 38166858 PMCID: PMC10762911 DOI: 10.1186/s12915-023-01803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Intrinsically disordered proteins and regions (IDPs/IDRs) are functionally important proteins and regions that exist as highly dynamic conformations under natural physiological conditions. IDPs/IDRs exhibit a broad range of molecular functions, and their functions involve binding interactions with partners and remaining native structural flexibility. The rapid increase in the number of proteins in sequence databases and the diversity of disordered functions challenge existing computational methods for predicting protein intrinsic disorder and disordered functions. A disordered region interacts with different partners to perform multiple functions, and these disordered functions exhibit different dependencies and correlations. In this study, we introduce DisoFLAG, a computational method that leverages a graph-based interaction protein language model (GiPLM) for jointly predicting disorder and its multiple potential functions. GiPLM integrates protein semantic information based on pre-trained protein language models into graph-based interaction units to enhance the correlation of the semantic representation of multiple disordered functions. The DisoFLAG predictor takes amino acid sequences as the only inputs and provides predictions of intrinsic disorder and six disordered functions for proteins, including protein-binding, DNA-binding, RNA-binding, ion-binding, lipid-binding, and flexible linker. We evaluated the predictive performance of DisoFLAG following the Critical Assessment of protein Intrinsic Disorder (CAID) experiments, and the results demonstrated that DisoFLAG offers accurate and comprehensive predictions of disordered functions, extending the current coverage of computationally predicted disordered function categories. The standalone package and web server of DisoFLAG have been established to provide accurate prediction tools for intrinsic disorders and their associated functions.
Collapse
Affiliation(s)
- Yihe Pang
- School of Computer Science and Technology, Beijing Institute of Technology, No. 5, South Zhongguancun Street, Beijing, Haidian District, 100081, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, No. 5, South Zhongguancun Street, Beijing, Haidian District, 100081, China.
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, No. 5, South Zhongguancun Street, Beijing, Haidian District, 100081, China.
| |
Collapse
|
4
|
Pang Y, Liu B. IDP-LM: Prediction of protein intrinsic disorder and disorder functions based on language models. PLoS Comput Biol 2023; 19:e1011657. [PMID: 37992088 DOI: 10.1371/journal.pcbi.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 12/06/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) are a class of functionally important proteins and regions that lack stable three-dimensional structures under the native physiologic conditions. They participate in critical biological processes and thus are associated with the pathogenesis of many severe human diseases. Identifying the IDPs/IDRs and their functions will be helpful for a comprehensive understanding of protein structures and functions, and inform studies of rational drug design. Over the past decades, the exponential growth in the number of proteins with sequence information has deepened the gap between uncharacterized and annotated disordered sequences. Protein language models have recently demonstrated their powerful abilities to capture complex structural and functional information from the enormous quantity of unlabelled protein sequences, providing opportunities to apply protein language models to uncover the intrinsic disorders and their biological properties from the amino acid sequences. In this study, we proposed a computational predictor called IDP-LM for predicting intrinsic disorder and disorder functions by leveraging the pre-trained protein language models. IDP-LM takes the embeddings extracted from three pre-trained protein language models as the exclusive inputs, including ProtBERT, ProtT5 and a disorder specific language model (IDP-BERT). The ablation analysis shown that the IDP-BERT provided fine-grained feature representations of disorder, and the combination of three language models is the key to the performance improvement of IDP-LM. The evaluation results on independent test datasets demonstrated that the IDP-LM provided high-quality prediction results for intrinsic disorder and four common disordered functions.
Collapse
Affiliation(s)
- Yihe Pang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Shao J, Zhang Q, Yan K, Liu B. PreHom-PCLM: protein remote homology detection by combing motifs and protein cubic language model. Brief Bioinform 2023; 24:bbad347. [PMID: 37833837 DOI: 10.1093/bib/bbad347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Protein remote homology detection is essential for structure prediction, function prediction, disease mechanism understanding, etc. The remote homology relationship depends on multiple protein properties, such as structural information and local sequence patterns. Previous studies have shown the challenges for predicting remote homology relationship by protein features at sequence level (e.g. position-specific score matrix). Protein motifs have been used in structure and function analysis due to their unique sequence patterns and implied structural information. Therefore, designing a usable architecture to fuse multiple protein properties based on motifs is urgently needed to improve protein remote homology detection performance. To make full use of the characteristics of motifs, we employed the language model called the protein cubic language model (PCLM). It combines multiple properties by constructing a motif-based neural network. Based on the PCLM, we proposed a predictor called PreHom-PCLM by extracting and fusing multiple motif features for protein remote homology detection. PreHom-PCLM outperforms the other state-of-the-art methods on the test set and independent test set. Experimental results further prove the effectiveness of multiple features fused by PreHom-PCLM for remote homology detection. Furthermore, the protein features derived from the PreHom-PCLM show strong discriminative power for proteins from different structural classes in the high-dimensional space. Availability and Implementation: http://bliulab.net/PreHom-PCLM.
Collapse
Affiliation(s)
- Jiangyi Shao
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Qi Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Zhang L, Bai T, Wu H. sgRNA-2wPSM: Identify sgRNAs on-target activity by combining two-window-based position specific mismatch and synthetic minority oversampling technique. Comput Biol Med 2023; 155:106489. [PMID: 36841059 DOI: 10.1016/j.compbiomed.2022.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
MOTIVATION sgRNAs on-target activity prediction is a critical step in the CRISPR-Cas9 system. Due to its importance to RNA function research and genome editing application, some computational methods were introduced, treating it as a binary classification task or a regression task. Among these methods, sgRNA-PSM is a state-of-the-art method. In this work, we improved this method by proposing a new feature extraction method called two-window-based PSM, which divides the DNA sequences into two non-overlapping segments so as to extract different patterns in the two different segments. The two-window-based PSM were fed into Support Vector Machines (SVMs), and a new method called sgRNA-2wPSM was proposed. Furthermore, a new oversampling method called SCORE-SVM-SMOTE was proposed to solve the imbalanced training set problem based on the SVM-SMOTE algorithm. Results on the benchmark datasets indicated that sgRNA-2wPSM is superior to other methods.
Collapse
Affiliation(s)
- Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China.
| | - Tao Bai
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China; School of Mathematics & Computer Science, Yanan University, Shanxi, 716000, China.
| | - Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
7
|
Shi H, Wu C, Bai T, Chen J, Li Y, Wu H. Identify essential genes based on clustering based synthetic minority oversampling technique. Comput Biol Med 2023; 153:106523. [PMID: 36652869 DOI: 10.1016/j.compbiomed.2022.106523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Prediction of essential genes in a life organism is one of the central tasks in synthetic biology. Computational predictors are desired because experimental data is often unavailable. Recently, some sequence-based predictors have been constructed to identify essential genes. However, their predictive performance should be further improved. One key problem is how to effectively extract the sequence-based features, which are able to discriminate the essential genes. Another problem is the imbalanced training set. The amount of essential genes in human cell lines is lower than that of non-essential genes. Therefore, predictors trained with such imbalanced training set tend to identify an unseen sequence as a non-essential gene. Here, a new over-sampling strategy was proposed called Clustering based Synthetic Minority Oversampling Technique (CSMOTE) to overcome the imbalanced data issue. Combining CSMOTE with the Z curve, the global features, and Support Vector Machines, a new protocol called iEsGene-CSMOTE was proposed to identify essential genes. The rigorous jackknife cross validation results indicated that iEsGene-CSMOTE is better than the other competing methods. The proposed method outperformed λ-interval Z curve by 35.48% and 11.25% in terms of Sn and BACC, respectively.
Collapse
Affiliation(s)
- Hua Shi
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| | - Chenjin Wu
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| | - Tao Bai
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China; School of Mathematics & Computer Science, Yanan University, Shanxi, 716000, China.
| | - Jiahai Chen
- Xiamen Sankuai Online Technology Co., Ltd, Xiamen, China.
| | - Yan Li
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| | - Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|