1
|
Pietras B. Pulse Shape and Voltage-Dependent Synchronization in Spiking Neuron Networks. Neural Comput 2024; 36:1476-1540. [PMID: 39028958 DOI: 10.1162/neco_a_01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 07/21/2024]
Abstract
Pulse-coupled spiking neural networks are a powerful tool to gain mechanistic insights into how neurons self-organize to produce coherent collective behavior. These networks use simple spiking neuron models, such as the θ-neuron or the quadratic integrate-and-fire (QIF) neuron, that replicate the essential features of real neural dynamics. Interactions between neurons are modeled with infinitely narrow pulses, or spikes, rather than the more complex dynamics of real synapses. To make these networks biologically more plausible, it has been proposed that they must also account for the finite width of the pulses, which can have a significant impact on the network dynamics. However, the derivation and interpretation of these pulses are contradictory, and the impact of the pulse shape on the network dynamics is largely unexplored. Here, I take a comprehensive approach to pulse coupling in networks of QIF and θ-neurons. I argue that narrow pulses activate voltage-dependent synaptic conductances and show how to implement them in QIF neurons such that their effect can last through the phase after the spike. Using an exact low-dimensional description for networks of globally coupled spiking neurons, I prove for instantaneous interactions that collective oscillations emerge due to an effective coupling through the mean voltage. I analyze the impact of the pulse shape by means of a family of smooth pulse functions with arbitrary finite width and symmetric or asymmetric shapes. For symmetric pulses, the resulting voltage coupling is not very effective in synchronizing neurons, but pulses that are slightly skewed to the phase after the spike readily generate collective oscillations. The results unveil a voltage-dependent spike synchronization mechanism at the heart of emergent collective behavior, which is facilitated by pulses of finite width and complementary to traditional synaptic transmission in spiking neuron networks.
Collapse
Affiliation(s)
- Bastian Pietras
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| |
Collapse
|
2
|
Waitzmann F, Wu YK, Gjorgjieva J. Top-down modulation in canonical cortical circuits with short-term plasticity. Proc Natl Acad Sci U S A 2024; 121:e2311040121. [PMID: 38593083 PMCID: PMC11032497 DOI: 10.1073/pnas.2311040121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/14/2024] [Indexed: 04/11/2024] Open
Abstract
Cortical dynamics and computations are strongly influenced by diverse GABAergic interneurons, including those expressing parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP). Together with excitatory (E) neurons, they form a canonical microcircuit and exhibit counterintuitive nonlinear phenomena. One instance of such phenomena is response reversal, whereby SST neurons show opposite responses to top-down modulation via VIP depending on the presence of bottom-up sensory input, indicating that the network may function in different regimes under different stimulation conditions. Combining analytical and computational approaches, we demonstrate that model networks with multiple interneuron subtypes and experimentally identified short-term plasticity mechanisms can implement response reversal. Surprisingly, despite not directly affecting SST and VIP activity, PV-to-E short-term depression has a decisive impact on SST response reversal. We show how response reversal relates to inhibition stabilization and the paradoxical effect in the presence of several short-term plasticity mechanisms demonstrating that response reversal coincides with a change in the indispensability of SST for network stabilization. In summary, our work suggests a role of short-term plasticity mechanisms in generating nonlinear phenomena in networks with multiple interneuron subtypes and makes several experimentally testable predictions.
Collapse
Affiliation(s)
- Felix Waitzmann
- School of Life Sciences, Technical University of Munich, 85354Freising, Germany
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, 60438Frankfurt, Germany
| | - Yue Kris Wu
- School of Life Sciences, Technical University of Munich, 85354Freising, Germany
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, 60438Frankfurt, Germany
| | - Julijana Gjorgjieva
- School of Life Sciences, Technical University of Munich, 85354Freising, Germany
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, 60438Frankfurt, Germany
| |
Collapse
|
3
|
Politi A, Torcini A. A robust balancing mechanism for spiking neural networks. CHAOS (WOODBURY, N.Y.) 2024; 34:041102. [PMID: 38639569 DOI: 10.1063/5.0199298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 04/20/2024]
Abstract
Dynamical balance of excitation and inhibition is usually invoked to explain the irregular low firing activity observed in the cortex. We propose a robust nonlinear balancing mechanism for a random network of spiking neurons, which works also in the absence of strong external currents. Biologically, the mechanism exploits the plasticity of excitatory-excitatory synapses induced by short-term depression. Mathematically, the nonlinear response of the synaptic activity is the key ingredient responsible for the emergence of a stable balanced regime. Our claim is supported by a simple self-consistent analysis accompanied by extensive simulations performed for increasing network sizes. The observed regime is essentially fluctuation driven and characterized by highly irregular spiking dynamics of all neurons.
Collapse
Affiliation(s)
- Antonio Politi
- Institute for Complex Systems and Mathematical Biology and Department of Physics, Aberdeen AB24 3UE, United Kingdom
- CNR-Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Alessandro Torcini
- CNR-Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS UMR 8089, 95302 Cergy-Pontoise cedex, France
- INFN Sezione di Firenze, Via Sansone 1 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Lefebvre J, Hutt A. Induced synchronization by endogenous noise modulation in finite-size random neural networks: A stochastic mean-field study. CHAOS (WOODBURY, N.Y.) 2023; 33:123110. [PMID: 38055720 DOI: 10.1063/5.0167771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Event-related synchronization and desynchronization (ERS/ERD) are well-known features found experimentally in brain signals during cognitive tasks. Their understanding promises to have much better insights into neural information processes in cognition. Under the hypothesis that neural information affects the endogenous neural noise level in populations, we propose to employ a stochastic mean-field model to explain ERS/ERD in the γ-frequency range. The work extends previous mean-field studies by deriving novel effects from finite network size. Moreover, numerical simulations of ERS/ERD and their analytical explanation by the mean-field model suggest several endogenous noise modulation schemes, which may modulate the system's synchronization.
Collapse
Affiliation(s)
- J Lefebvre
- Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - A Hutt
- ICube, MLMS, University of Strasbourg, MIMESIS Team, Inria Nancy-Grand Est, 67000 Strasbourg, France
| |
Collapse
|
5
|
Yamamoto H, Spitzner FP, Takemuro T, Buendía V, Murota H, Morante C, Konno T, Sato S, Hirano-Iwata A, Levina A, Priesemann V, Muñoz MA, Zierenberg J, Soriano J. Modular architecture facilitates noise-driven control of synchrony in neuronal networks. SCIENCE ADVANCES 2023; 9:eade1755. [PMID: 37624893 PMCID: PMC10456864 DOI: 10.1126/sciadv.ade1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
High-level information processing in the mammalian cortex requires both segregated processing in specialized circuits and integration across multiple circuits. One possible way to implement these seemingly opposing demands is by flexibly switching between states with different levels of synchrony. However, the mechanisms behind the control of complex synchronization patterns in neuronal networks remain elusive. Here, we use precision neuroengineering to manipulate and stimulate networks of cortical neurons in vitro, in combination with an in silico model of spiking neurons and a mesoscopic model of stochastically coupled modules to show that (i) a modular architecture enhances the sensitivity of the network to noise delivered as external asynchronous stimulation and that (ii) the persistent depletion of synaptic resources in stimulated neurons is the underlying mechanism for this effect. Together, our results demonstrate that the inherent dynamical state in structured networks of excitable units is determined by both its modular architecture and the properties of the external inputs.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - F. Paul Spitzner
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Taiki Takemuro
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Victor Buendía
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada, Spain
| | - Hakuba Murota
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Carla Morante
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Tomohiro Konno
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shigeo Sato
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - Anna Levina
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Miguel A. Muñoz
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| | | | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| |
Collapse
|
6
|
Klinshov VV, Smelov PS, Kirillov SY. Constructive role of shot noise in the collective dynamics of neural networks. CHAOS (WOODBURY, N.Y.) 2023; 33:2894498. [PMID: 37276575 DOI: 10.1063/5.0147409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Finite-size effects may significantly influence the collective dynamics of large populations of neurons. Recently, we have shown that in globally coupled networks these effects can be interpreted as additional common noise term, the so-called shot noise, to the macroscopic dynamics unfolding in the thermodynamic limit. Here, we continue to explore the role of the shot noise in the collective dynamics of globally coupled neural networks. Namely, we study the noise-induced switching between different macroscopic regimes. We show that shot noise can turn attractors of the infinitely large network into metastable states whose lifetimes smoothly depend on the system parameters. A surprising effect is that the shot noise modifies the region where a certain macroscopic regime exists compared to the thermodynamic limit. This may be interpreted as a constructive role of the shot noise since a certain macroscopic state appears in a parameter region where it does not exist in an infinite network.
Collapse
Affiliation(s)
- V V Klinshov
- Institute of Applied Physics of the Russian Academy of Sciences, Ulyanova Street 46, 603950 Nizhny Novgorod, Russia
- National Research University Higher School of Economics, 25/12 Bol'shaya Pecherskaya Street, Nizhny Novgorod 603155, Russia
| | - P S Smelov
- Institute of Applied Physics of the Russian Academy of Sciences, Ulyanova Street 46, 603950 Nizhny Novgorod, Russia
| | - S Yu Kirillov
- Institute of Applied Physics of the Russian Academy of Sciences, Ulyanova Street 46, 603950 Nizhny Novgorod, Russia
| |
Collapse
|