1
|
Wang J, Yuan Y, Xie T, Zhang L, Xu H, Lin SC, Yang Y, Zhu D, Zhuang J. Optimal dose and type of exercise to improve motor symptoms in adults with Parkinson's disease: A network meta-analysis. J Sci Med Sport 2025; 28:282-291. [PMID: 39880702 DOI: 10.1016/j.jsams.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/05/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025]
Abstract
OBJECTIVES This study aimed to evaluate the dose-response relationship between different exercise types and the alleviation of motor symptoms in Parkinson's Disease patients. DESIGN A systematic review and network meta-analysis were conducted to compare the effects of 12 exercise types on motor symptoms in Parkinson's Disease patients using randomized controlled trials. METHODS A systematic search was conducted across PubMed, Medline, Embase, PsycINFO, Cochrane Library, and Web of Science until September 10, 2024. A total of 81 trials involving 4596 patients were included. Mean differences with 95 % credible intervals were calculated, and evidence quality was assessed using Confidence in Network Meta-Analysis. The Minimum Clinically Important Difference was used to assess clinical efficacy. RESULTS The optimal exercise dose for overall motor symptom improvement was 1300 MET-min/week (mean difference: -6.07, 95 % credible intervals: -8.10 to -4.01). Dance at 850 MET-min/week provided the greatest improvement (mean difference: -11.18, 95 % credible intervals: -16.01 to -6.22). Significant improvements were seen with doses as low as 60-100 MET-min/week for body weight support training, dance, resistance training, and sensory exercise. The Minimum Clinically Important Difference was achieved with doses exceeding 670 MET-min/week for overall exercise, and at lower doses for specific types: aerobic exercise (1100 MET-min/week), body weight support (420 MET-min/week), and dance (230 MET-min/week). CONCLUSIONS The optimal exercise dose for alleviating motor symptoms in Parkinson's Disease patients is 1300 MET-min/week, with dance being most effective at 850 MET-min/week. These findings provide evidence-based recommendations for Parkinson's Disease management.
Collapse
Affiliation(s)
- Junyu Wang
- Hunan University of Medicine, China; School of Exercise and Health, Shanghai University of Sport, China
| | - Yuan Yuan
- School of Physical Education, Kunsan National University, Republic of Korea
| | - Ting Xie
- Chengdu Xinqiao Primary School, China
| | - Ligong Zhang
- China Wushu School, Beijing Sport University, China
| | - Hong Xu
- Exercise Rehabilitation Research Institute, Sangmyung University, 03016, Republic of Korea
| | - Shu-Cheng Lin
- Department of Sport, Leisure and Health Management, Tainan University of Technology, Taiwan
| | - Yong Yang
- Laboratory of Kinesiology and Rehabilitation, School of Physical Education and Sport, Chaohu University, China.
| | - Dong Zhu
- Hunan University of Medicine, China.
| | - Jie Zhuang
- School of Exercise and Health, Shanghai University of Sport, China.
| |
Collapse
|
2
|
Weinrich M, Neto OP, Wang Y, Balthazor B, Kennedy DM. Bimanual coordination and neuromuscular synchronization in Parkinson's disease and healthy adults. Exp Brain Res 2025; 243:104. [PMID: 40167792 DOI: 10.1007/s00221-025-07061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that significantly impairs motor function, affecting over 1.5 million people in the U.S. PD is characterized by deficits in movement speed, force timing, and force modulation, particularly during coordinated upper limb actions. These impairments contribute to reduced functional independence and a diminished quality of life in individuals with PD. This study investigated the impact of PD on bimanual coordination, focusing on temporal accuracy, force production, and neuromuscular synchronization. The goal was to compare these parameters across individuals with PD, healthy older adults (HOA), and healthy young adults (HYA) during a stable force coordination task. Thirteen individuals with PD (median age [min-max] = 73 [60-83] years; 6 males), 13 HOAs median age [min-max] = 74 [60-84] years; 7 males), and 15 HYAs (median age [min-max] = 21 [18-23] years; 7 males) performed a 1:1 in-phase (0°) bimanual coordination task, requiring participants to rhythmically produce isometric forces with their left and right index fingers. Muscle activity from the First Dorsal Interosseus (FDI) muscles were recorded using electromyography (EMG). Each participant completed 21, 30-second trials. Temporal accuracy and stability were assessed using frequency ratio, absolute error (AE), and variability (VE) of relative phase. Force production was evaluated in terms of force harmonicity, force asymmetry, and peak force. Neuromuscular synchronization was analyzed using force-force and EMG-EMG coherence across different frequency bands. All groups achieved the target frequency ratio of 1.0, with no significant differences in AE or VE, suggesting comparable temporal accuracy and stability across groups. However, the PD group demonstrated significantly lower harmonicity, indicating less smooth force production, and greater force asymmetry compared to HOA and HYA groups. Reduced force-force coherence, especially in the 1-4 Hz and 4-8 Hz frequency bands, further highlighted challenges in bilateral force synchronization for the PD group. EMG-EMG coherence analysis revealed that the HYA group exhibited higher muscle activation synchronization, particularly in the alpha band, compared to the PD group. These findings suggest that while basic temporal coordination remains intact in PD, the disease impairs the smoothness and symmetry of force production, likely due to disrupted neural synchronization. The observed correlations between higher force coherence, greater harmonicity, and lower force asymmetry underscore the critical role of neural drive coherence in achieving smooth and symmetrical force production. However, it is important to consider the impact of medication state, since all participants were tested around their "ON" medication state. Understanding these impairments can inform the development of targeted interventions and rehabilitation strategies aimed at improving motor function and quality of life in individuals with PD.
Collapse
Affiliation(s)
- Madison Weinrich
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Osmar P Neto
- Department of Kinesiology, California State University, San Marcos, CA, USA
- Department of Biomedical Engineering, Anhembi Morumbi University, São Paulo, SP, Brazil
| | - Yiyu Wang
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Brock Balthazor
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Deanna M Kennedy
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843-4243, USA.
| |
Collapse
|
3
|
Tekin S, Bolat M, Atasever A, Bolat İ, Çinar B, Shadidizaji A, Dağ Y, Şengül E, Yildirim S, Hacimuftuoglu A, Warda M. Mechanistic insights into the P-coumaric acid protection against bisphenol A-induced hepatotoxicity in in vivo and in silico models. Sci Rep 2025; 15:11023. [PMID: 40164713 PMCID: PMC11958805 DOI: 10.1038/s41598-025-87099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/16/2025] [Indexed: 04/02/2025] Open
Abstract
Bisphenol A (BPA), commonly found in plastic containers and epoxy resins used for food products, presents substantial health risks, particularly in relation to hepatic toxicity. This study investigates BPA-induced liver damage and explores the mechanistic dose-dependent protective effects of P-coumaric acid (PCA). 50 male rats were divided into control, BPA-treated, BPA + PCA50, BPA + PCA100, and PCA100 groups. BPA exposure for 14 days induced oxidative stress, evidenced by elevated malondialdehyde levels and decreased activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Higher doses of PCA effectively mitigated these effects by restoring redox balance and enhancing antioxidant enzyme activities. Additionally, BPA disrupted inflammation and apoptosis pathways, inhibiting anti-inflammatory markers and interfering with the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway. PCA exhibited dose-dependent protection against these disruptions. Computational analyses revealed that BPA inhibits cyclooxygenase-1 through stable hydrogen bonding with threonine at position 322. PCA's dual protective effect was confirmed by attenuating inflammatory pathways, including TNF-α inhibition and suppression of the Kelch-like ECH-associated protein 1 (KEAP1) and Nrf2 signaling pathway. Histopathological assessments confirmed that PCA alleviated significant hepatic damage induced by BPA. Immunohistochemical and immunofluorescence analyses further supported PCA's protective role against BPA-induced apoptosis and cellular hepatotoxicity. These findings underscore PCA's protective potential against BPA-induced hepatotoxicity and highlight novel mechanistic interactions that warrant further investigation in applied nutritional biochemistry.
Collapse
Affiliation(s)
- Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Aslıhan Atasever
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Çinar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Azizeh Shadidizaji
- Department of Plant Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Yusuf Dağ
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Emin Şengül
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Chen Y, Wang S, Zhang X, Yang Q, Hua M, Li Y, Qin W, Liu F, Liang M. Functional Connectivity-Based Searchlight Multivariate Pattern Analysis for Discriminating Schizophrenia Patients and Predicting Clinical Variables. Schizophr Bull 2024; 51:108-119. [PMID: 38819252 PMCID: PMC11661961 DOI: 10.1093/schbul/sbae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND Schizophrenia, a multifaceted psychiatric disorder characterized by functional dysconnectivity, poses significant challenges in clinical practice. This study explores the potential of functional connectivity (FC)-based searchlight multivariate pattern analysis (CBS-MVPA) to discriminate between schizophrenia patients and healthy controls while also predicting clinical variables. STUDY DESIGN We enrolled 112 schizophrenia patients and 119 demographically matched healthy controls. Resting-state functional magnetic resonance imaging data were collected, and whole-brain FC subnetworks were constructed. Additionally, clinical assessments and cognitive evaluations yielded a dataset comprising 36 clinical variables. Finally, CBS-MVPA was utilized to identify subnetworks capable of effectively distinguishing between the patient and control groups and predicting clinical scores. STUDY RESULTS The CBS-MVPA approach identified 63 brain subnetworks exhibiting significantly high classification accuracies, ranging from 62.2% to 75.6%, in distinguishing individuals with schizophrenia from healthy controls. Among them, 5 specific subnetworks centered on the dorsolateral superior frontal gyrus, orbital part of inferior frontal gyrus, superior occipital gyrus, hippocampus, and parahippocampal gyrus showed predictive capabilities for clinical variables within the schizophrenia cohort. CONCLUSION This study highlights the potential of CBS-MVPA as a valuable tool for localizing the information related to schizophrenia in terms of brain network abnormalities and capturing the relationship between these abnormalities and clinical variables, and thus, deepens our understanding of the neurological mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Yayuan Chen
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Sijia Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xi Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Qingqing Yang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minghui Hua
- Department of Radiology, Chest Hospital, Tianjin University, Tianjin, China
| | - Yifan Li
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Wen Qin
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Zainaee S, Archer B, Scherer R, Bingman V, Ghasemi M. Revealing Goal-Directed Neural Control of the Pharyngeal Phase of Swallowing. Dysphagia 2024:10.1007/s00455-024-10758-3. [PMID: 39387924 DOI: 10.1007/s00455-024-10758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Swallowing is considered a three-phase mechanism involving the oral, pharyngeal, and esophageal phases. The pharyngeal phase relies on highly coordinated movements in the pharynx and larynx to move food through the aerodigestive crossing. While the brainstem has been identified as the primary control center for the pharyngeal phase of swallowing, existing evidence suggests that the higher brain regions can contribute to controlling the pharyngeal phase of swallowing to match the motor response to the current context and task at hand. This suggests that the pharyngeal phase of swallowing cannot be exclusively reflexive or voluntary but can be regulated by the two neural controlling systems, goal-directed and non-goal-directed. This capability allows the pharyngeal phase of swallowing to adjust appropriately based on cognitive input, learned knowledge, and predictions. This paper reviews existing evidence and accordingly develops a novel perspective to explain these capabilities of the pharyngeal phase of swallowing. This paper aims (1) to integrate and comprehend the neurophysiological mechanisms involved in the pharyngeal phase of swallowing, (2) to explore the reflexive (non-goal-directed) and voluntary (goal-directed) neural systems of controlling the pharyngeal phase of swallowing, (3) to provide a clinical translation regarding the pathologies of these two systems, and (4) to highlight the existing gaps in this area that require attention in future research. This paper, in particular, aims to explore the complex neurophysiology of the pharyngeal phase of swallowing, as its breakdown can lead to serious consequences such as aspiration pneumonia or death.
Collapse
Affiliation(s)
- Shahryar Zainaee
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA.
| | - Brent Archer
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| | - Ronald Scherer
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| | - Verner Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Mehran Ghasemi
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
6
|
Lanir-Azaria S, Chishinski R, Tauman R, Nir Y, Giladi N. Sleep improves accuracy, but not speed, of generalized motor learning in young and older adults and in individuals with Parkinson's disease. Front Behav Neurosci 2024; 18:1466696. [PMID: 39390986 PMCID: PMC11464313 DOI: 10.3389/fnbeh.2024.1466696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
An essential aspect of motor learning is generalizing procedural knowledge to facilitate skill acquisition across diverse conditions. Here, we examined the development of generalized motor learning during initial practice-dependent learning, and how distinct components of learning are consolidated over longer timescales during wakefulness or sleep. In the first experiment, a group of young healthy volunteers engaged in a novel motor sequence task over 36 h in a two-arm experimental design (either morning-evening-morning, or evening-morning-evening) aimed at controlling for circadian confounders. The findings unveiled an immediate, rapid generalization of sequential learning, accompanied by an additional long-timescale performance gain. Sleep modulated accuracy, but not speed, above and beyond equivalent wake intervals. To further elucidate the role of sleep across ages and under neurodegenerative disorders, a second experiment utilized the same task in a group of early-stage, drug-naïve individuals with Parkinson's disease and in healthy individuals of comparable age. Participants with Parkinson's disease exhibited comparable performance to their healthy age-matched group with the exception of reduced performance in recalling motor sequences, revealing a disease-related cognitive shortfall. In line with the results found in young subjects, both groups exhibited improved accuracy, but not speed, following a night of sleep. This result emphasizes the role of sleep in skill acquisition and provides a potential framework for deeper investigation of the intricate relationship between sleep, aging, Parkinson's disease, and motor learning.
Collapse
Affiliation(s)
- Saar Lanir-Azaria
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | | | - Riva Tauman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Yuval Nir
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Nir Giladi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Gambosi B, Jamal Sheiban F, Biasizzo M, Antonietti A, D'angelo E, Mazzoni A, Pedrocchi A. A Model with Dopamine Depletion in Basal Ganglia and Cerebellum Predicts Changes in Thalamocortical Beta Oscillations. Int J Neural Syst 2024; 34:2450045. [PMID: 38886870 DOI: 10.1142/s012906572450045x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Parkinsonism is presented as a motor syndrome characterized by rigidity, tremors, and bradykinesia, with Parkinson's disease (PD) being the predominant cause. The discovery that those motor symptoms result from the death of dopaminergic cells in the substantia nigra led to focus most of parkinsonism research on the basal ganglia (BG). However, recent findings point to an active involvement of the cerebellum in this motor syndrome. Here, we have developed a multiscale computational model of the rodent brain's BG-cerebellar network. Simulations showed that a direct effect of dopamine depletion on the cerebellum must be taken into account to reproduce the alterations of neural activity in parkinsonism, particularly the increased beta oscillations widely reported in PD patients. Moreover, dopamine depletion indirectly impacted spike-time-dependent plasticity at the parallel fiber-Purkinje cell synapses, degrading associative motor learning as observed in parkinsonism. Overall, these results suggest a relevant involvement of cerebellum in parkinsonism associative motor symptoms.
Collapse
Affiliation(s)
- Benedetta Gambosi
- NearLab, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Francesco Jamal Sheiban
- NearLab, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Marco Biasizzo
- Department of Excellence in Robotics & AI Scuola Superiore Sant'Anna, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Information Engineering (DIE), University of Pisa, Pisa, Italy
| | - Alberto Antonietti
- NearLab, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Egidio D'angelo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Alberto Mazzoni
- Department of Excellence in Robotics & AI Scuola Superiore Sant'Anna, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| |
Collapse
|
8
|
Zhou T, Ye Y, Zhu Q, Vann W, Du J. Neural dynamics of delayed feedback in robot teleoperation: insights from fNIRS analysis. Front Hum Neurosci 2024; 18:1338453. [PMID: 38952645 PMCID: PMC11215083 DOI: 10.3389/fnhum.2024.1338453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction As robot teleoperation increasingly becomes integral in executing tasks in distant, hazardous, or inaccessible environments, operational delays remain a significant obstacle. These delays, inherent in signal transmission and processing, adversely affect operator performance, particularly in tasks requiring precision and timeliness. While current research has made strides in mitigating these delays through advanced control strategies and training methods, a crucial gap persists in understanding the neurofunctional impacts of these delays and the efficacy of countermeasures from a cognitive perspective. Methods This study addresses the gap by leveraging functional Near-Infrared Spectroscopy (fNIRS) to examine the neurofunctional implications of simulated haptic feedback on cognitive activity and motor coordination under delayed conditions. In a human-subject experiment (N = 41), sensory feedback was manipulated to observe its influences on various brain regions of interest (ROIs) during teleoperation tasks. The fNIRS data provided a detailed assessment of cerebral activity, particularly in ROIs implicated in time perception and the execution of precise movements. Results Our results reveal that the anchoring condition, which provided immediate simulated haptic feedback with a delayed visual cue, significantly optimized neural functions related to time perception and motor coordination. This condition also improved motor performance compared to the asynchronous condition, where visual and haptic feedback were misaligned. Discussion These findings provide empirical evidence about the neurofunctional basis of the enhanced motor performance with simulated synthetic force feedback in the presence of teleoperation delays. The study highlights the potential for immediate haptic feedback to mitigate the adverse effects of operational delays, thereby improving the efficacy of teleoperation in critical applications.
Collapse
Affiliation(s)
- Tianyu Zhou
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| | - Yang Ye
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| | - Qi Zhu
- Communications Technology Laboratory, Public Safety Communications Research Division, Advanced Communications Research Group, National Institute of Standards and Technology, Boulder, CO, United States
| | - William Vann
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| | - Jing Du
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Boerwinkle VL, Sussman BL, de Lima Xavier L, Wyckoff SN, Reuther W, Kruer MC, Arhin M, Fine JM. Motor network dynamic resting state fMRI connectivity of neurotypical children in regions affected by cerebral palsy. Front Hum Neurosci 2024; 18:1339324. [PMID: 38835646 PMCID: PMC11148452 DOI: 10.3389/fnhum.2024.1339324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Background Normative childhood motor network resting-state fMRI effective connectivity is undefined, yet necessary for translatable dynamic resting-state-network-informed evaluation in pediatric cerebral palsy. Methods Cross-spectral dynamic causal modeling of resting-state-fMRI was investigated in 50 neurotypically developing 5- to 13-year-old children. Fully connected six-node network models per hemisphere included primary motor cortex, striatum, subthalamic nucleus, globus pallidus internus, thalamus, and contralateral cerebellum. Parametric Empirical Bayes with exhaustive Bayesian model reduction and Bayesian modeling averaging informed the model; Purdue Pegboard Test scores of hand motor behavior were the covariate at the group level to determine the effective-connectivity-functional behavior relationship. Results Although both hemispheres exhibited similar effective connectivity of motor cortico-basal ganglia-cerebellar networks, magnitudes were slightly greater on the right, except for left-sided connections of the striatum which were more numerous and of opposite polarity. Inter-nodal motor network effective connectivity remained consistent and robust across subjects. Age had a greater impact on connections to the contralateral cerebellum, bilaterally. Motor behavior, however, affected different connections in each hemisphere, exerting a more prominent effect on the left modulatory connections to the subthalamic nucleus, contralateral cerebellum, primary motor cortex, and thalamus. Discussion This study revealed a consistent pattern of directed resting-state effective connectivity in healthy children aged 5-13 years within the motor network, encompassing cortical, subcortical, and cerebellar regions, correlated with motor skill proficiency. Both hemispheres exhibited similar effective connectivity within motor cortico-basal ganglia-cerebellar networks reflecting inter-nodal signal direction predicted by other modalities, mainly differing from task-dependent studies due to network differences at rest. Notably, age-related changes were more pronounced in connections to the contralateral cerebellum. Conversely, motor behavior distinctly impacted connections in each hemisphere, emphasizing its role in modulating left sided connections to the subthalamic nucleus, contralateral cerebellum, primary motor cortex, and thalamus. Motor network effective connectivity was correlated with motor behavior, validating its physiological significance. This study is the first to evaluate a normative effective connectivity model for the pediatric motor network using resting-state functional MRI correlating with behavior and serves as a foundation for identifying abnormal findings and optimizing targeted interventions like deep brain stimulation, potentially influencing future therapeutic approaches for children with movement disorders.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Pediatric Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Bethany L Sussman
- Division of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Division of Neonatology, Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Laura de Lima Xavier
- Division of Pediatric Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah N Wyckoff
- Division of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Brainbox Inc., Baltimore, MD, United States
| | - William Reuther
- Division of Pediatric Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael C Kruer
- Division of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - Martin Arhin
- Division of Pediatric Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Justin M Fine
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Wang J, Li Y, Yang GY, Jin K. Age-Related Dysfunction in Balance: A Comprehensive Review of Causes, Consequences, and Interventions. Aging Dis 2024; 16:714-737. [PMID: 38607735 PMCID: PMC11964428 DOI: 10.14336/ad.2024.0124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/24/2024] [Indexed: 04/14/2024] Open
Abstract
This review delves into the multifaceted aspects of age-related balance changes, highlighting their prevalence, underlying causes, and the impact they have on the elderly population. Central to this discussion is the exploration of various physiological changes that occur with aging, such as alterations in the vestibular, visual, proprioceptive systems, and musculoskeletal degeneration. We examine the role of neurological disorders, cognitive decline, and medication side effects in exacerbating balance issues. The review underscores the significance of early detection and effective intervention strategies in mitigating the risks associated with balance problems, such as falls and reduced mobility. It discusses the effectiveness of diverse intervention strategies, including exercise programs, rehabilitation techniques, and technological advancements like virtual reality, wearable devices, and telemedicine. Additionally, the review stresses the importance of a holistic approach in managing balance disorders, encompassing medication review, addressing comorbidities, and environmental modifications. The paper also presents future research directions, emphasizing the need for a deeper understanding of the complex mechanisms underlying balance changes with aging and the potential of emerging technologies and interdisciplinary approaches in enhancing assessment and intervention methods. This comprehensive review aims to provide valuable insights for healthcare providers, researchers, and policymakers in developing targeted strategies to improve the quality of life and ensure the well-being of the aging population.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
11
|
Baladron J, Vitay J, Fietzek T, Hamker FH. Correction: The contribution of the basal ganglia and cerebellum to motor learning: A neuro-computational approach. PLoS Comput Biol 2023; 19:e1011243. [PMID: 37347775 DOI: 10.1371/journal.pcbi.1011243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pcbi.1011024.].
Collapse
|