1
|
Liu Z, Qiu WR, Liu Y, Yan H, Pei W, Zhu YH, Qiu J. A comprehensive review of computational methods for Protein-DNA binding site prediction. Anal Biochem 2025; 703:115862. [PMID: 40209920 DOI: 10.1016/j.ab.2025.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/20/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Accurately identifying protein-DNA binding sites is essential for understanding the molecular mechanisms underlying biological processes, which in turn facilitates advancements in drug discovery and design. While biochemical experiments provide the most accurate way to locate DNA-binding sites, they are generally time-consuming, resource-intensive, and expensive. There is a pressing need to develop computational methods that are both efficient and accurate for DNA-binding site prediction. This study thoroughly reviews and categorizes major computational approaches for predicting DNA-binding sites, including template detection, statistical machine learning, and deep learning-based methods. The 14 state-of-the-art DNA-binding site prediction models have been benchmarked on 136 non-redundant proteins, where the deep learning-based, especially pre-trained large language model-based, methods achieve superior performance over the other two categories. Applications of these DNA-binding site prediction methods are also involved.
Collapse
Affiliation(s)
- Zi Liu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Wang-Ren Qiu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yan Liu
- Department of Computer Science, Yangzhou University, 196 Huayang West Road, Yangzhou, 225100, China
| | - He Yan
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, 159 Longpanlu Road, Nanjing, 210037, China
| | - Wenyi Pei
- Geriatric Department, Shanghai Baoshan District Wusong Central Hospital, 101 Tongtai North Road, Shanghai, 200940, China.
| | - Yi-Heng Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China.
| | - Jing Qiu
- Information Department, The First Affiliated Hospital of Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Tahmid MT, Hasan AKMM, Bayzid MS. TransBind allows precise detection of DNA-binding proteins and residues using language models and deep learning. Commun Biol 2025; 8:568. [PMID: 40185915 PMCID: PMC11971327 DOI: 10.1038/s42003-025-07534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/13/2025] [Indexed: 04/07/2025] Open
Abstract
Identifying DNA-binding proteins and their binding residues is critical for understanding diverse biological processes, but conventional experimental approaches are slow and costly. Existing machine learning methods, while faster, often lack accuracy and struggle with data imbalance, relying heavily on evolutionary profiles like PSSMs and HMMs derived from multiple sequence alignments (MSAs). These dependencies make them unsuitable for orphan proteins or those that evolve rapidly. To address these challenges, we introduce TransBind, an alignment-free deep learning framework that predicts DNA-binding proteins and residues directly from a single primary sequence, eliminating the need for MSAs. By leveraging features from pre-trained protein language models, TransBind effectively handles the issue of data imbalance and achieves superior performance. Extensive evaluations using diverse experimental datasets and case studies demonstrate that TransBind significantly outperforms state-of-the-art methods in terms of both accuracy and computational efficiency. TransBind is available as a web server at https://trans-bind-web-server-frontend.vercel.app/ .
Collapse
Affiliation(s)
- Md Toki Tahmid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
| | - A K M Mehedi Hasan
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.
| |
Collapse
|
3
|
Shen Y, Jiang Z, Liu R. Dynamic integration of feature- and template-based methods improves the prediction of conformational B cell epitopes. Structure 2025; 33:798-807.e4. [PMID: 39938510 DOI: 10.1016/j.str.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/10/2024] [Accepted: 01/16/2025] [Indexed: 02/14/2025]
Abstract
The accurate prediction of conformational epitopes promotes our understanding of antigen-antibody interactions. All existing algorithms depend on a feature-based strategy, which limits their performance. A template-based strategy can provide complementary information, and the interplay between these two strategies could improve the prediction of epitopes. Here, we present DynaBCE, a dynamic ensemble algorithm to effectively identify conformational B cell epitopes (BCEs). Using novel handcrafted structural descriptors and embeddings from protein language models, we developed machine learning and deep learning modules based on boosting algorithms and geometric graph neural networks, respectively. Furthermore, we built a template module by leveraging known structural template information and transformer-based algorithms to capture binding signatures. Finally, we integrated the three modules using a dynamic weighting approach to maximize the strength of each module for different samples. DynaBCE achieved promising results for both native and predicted structures and outperformed previous methods as demonstrated in various evaluation scenarios.
Collapse
Affiliation(s)
- Yueyue Shen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zheng Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Rong Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| |
Collapse
|
4
|
Erckert K, Birkeneder F, Rost B. bindNode24: Competitive binding residue prediction with 60 % smaller model. Comput Struct Biotechnol J 2025; 27:1060-1066. [PMID: 40165821 PMCID: PMC11957672 DOI: 10.1016/j.csbj.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Many proteins function through ligand binding. Yet, reliable experimental binding data remains limited. Recent advances predict binding residues from sequences using protein Language Model embeddings. The AlphaFold Protein Structure Database, which has reliable 3D structure predictions from AlphaFold2, opens the way for graph neural networks that predict binding residues. Here, we introduce bindNode24, a new method using Graph Neural Networks to predict whether a residue binds to any of three ligand classes: small molecules, metal ions, and nucleic macromolecules. Compared to state-of-the-art, this approach reduces the number of free parameters by almost 60 % at similar performance. Our findings also suggest that secondary and tertiary structure features from AlphaFold2 are easy to integrate into protein function prediction tasks that previously solely relied on protein Language Model embeddings.
Collapse
Affiliation(s)
- Kyra Erckert
- TUM School of Computation, Information and Technology, Bioinformatics & Computational Biology - i12, Boltzmannstr. 3, Garching, Munich 85748, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltzmannstr. 11, Garching 85748, Germany
| | - Franz Birkeneder
- TUM School of Computation, Information and Technology, Bioinformatics & Computational Biology - i12, Boltzmannstr. 3, Garching, Munich 85748, Germany
| | - Burkhard Rost
- TUM School of Computation, Information and Technology, Bioinformatics & Computational Biology - i12, Boltzmannstr. 3, Garching, Munich 85748, Germany
- Institute for Advanced Study (TUM-IAS), Lichtenbergstr. 2a, Garching, Munich 85748, Germany
- Germany & TUM School of Life Sciences Weihenstephan (TUM-WZW), Alte Akademie 8, Freising, Germany
| |
Collapse
|
5
|
Huang YX, Liu R. Improved prediction of post-translational modification crosstalk within proteins using DeepPCT. Bioinformatics 2024; 40:btae675. [PMID: 39570595 PMCID: PMC11645436 DOI: 10.1093/bioinformatics/btae675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
MOTIVATION Post-translational modification (PTM) crosstalk events play critical roles in biological processes. Several machine learning methods have been developed to identify PTM crosstalk within proteins, but the accuracy is still far from satisfactory. Recent breakthroughs in deep learning and protein structure prediction could provide a potential solution to this issue. RESULTS We proposed DeepPCT, a deep learning algorithm to identify PTM crosstalk using AlphaFold2-based structures. In this algorithm, one deep learning classifier was constructed for sequence-based prediction by combining the residue and residue pair embeddings with cross-attention techniques, while the other classifier was established for structure-based prediction by integrating the structural embedding and a graph neural network. Meanwhile, a machine learning classifier was developed using novel structural descriptors and a random forest model to complement the structural deep learning classifier. By integrating the three classifiers, DeepPCT outperformed existing algorithms in different evaluation scenarios and showed better generalizability on new data owing to its less distance dependency. AVAILABILITY AND IMPLEMENTATION Datasets, codes, and models of DeepPCT are freely accessible at https://github.com/hzau-liulab/DeepPCT/.
Collapse
Affiliation(s)
- Yu-Xiang Huang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Rong Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
6
|
Zhao Y, He S, Xing Y, Li M, Cao Y, Wang X, Zhao D, Bo X. A Point Cloud Graph Neural Network for Protein-Ligand Binding Site Prediction. Int J Mol Sci 2024; 25:9280. [PMID: 39273227 PMCID: PMC11394757 DOI: 10.3390/ijms25179280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Predicting protein-ligand binding sites is an integral part of structural biology and drug design. A comprehensive understanding of these binding sites is essential for advancing drug innovation, elucidating mechanisms of biological function, and exploring the nature of disease. However, accurately identifying protein-ligand binding sites remains a challenging task. To address this, we propose PGpocket, a geometric deep learning-based framework to improve protein-ligand binding site prediction. Initially, the protein surface is converted into a point cloud, and then the geometric and chemical properties of each point are calculated. Subsequently, the point cloud graph is constructed based on the inter-point distances, and the point cloud graph neural network (GNN) is applied to extract and analyze the protein surface information to predict potential binding sites. PGpocket is trained on the scPDB dataset, and its performance is verified on two independent test sets, Coach420 and HOLO4K. The results show that PGpocket achieves a 58% success rate on the Coach420 dataset and a 56% success rate on the HOLO4K dataset. These results surpass competing algorithms, demonstrating PGpocket's advancement and practicality for protein-ligand binding site prediction.
Collapse
Affiliation(s)
- Yanpeng Zhao
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Song He
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Yuting Xing
- Defense Innovation Institute, Beijing 100071, China
| | - Mengfan Li
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Yang Cao
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xuanze Wang
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Dongsheng Zhao
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
7
|
Wang B, Li W. Advances in the Application of Protein Language Modeling for Nucleic Acid Protein Binding Site Prediction. Genes (Basel) 2024; 15:1090. [PMID: 39202449 PMCID: PMC11353971 DOI: 10.3390/genes15081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Protein and nucleic acid binding site prediction is a critical computational task that benefits a wide range of biological processes. Previous studies have shown that feature selection holds particular significance for this prediction task, making the generation of more discriminative features a key area of interest for many researchers. Recent progress has shown the power of protein language models in handling protein sequences, in leveraging the strengths of attention networks, and in successful applications to tasks such as protein structure prediction. This naturally raises the question of the applicability of protein language models in predicting protein and nucleic acid binding sites. Various approaches have explored this potential. This paper first describes the development of protein language models. Then, a systematic review of the latest methods for predicting protein and nucleic acid binding sites is conducted by covering benchmark sets, feature generation methods, performance comparisons, and feature ablation studies. These comparisons demonstrate the importance of protein language models for the prediction task. Finally, the paper discusses the challenges of protein and nucleic acid binding site prediction and proposes possible research directions and future trends. The purpose of this survey is to furnish researchers with actionable suggestions for comprehending the methodologies used in predicting protein-nucleic acid binding sites, fostering the creation of protein-centric language models, and tackling real-world obstacles encountered in this field.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China;
| |
Collapse
|
8
|
Zuo Y, Chen H, Yang L, Chen R, Zhang X, Deng Z. Research progress on prediction of RNA-protein binding sites in the past five years. Anal Biochem 2024; 691:115535. [PMID: 38643894 DOI: 10.1016/j.ab.2024.115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Accurately predicting RNA-protein binding sites is essential to gain a deeper comprehension of the protein-RNA interactions and their regulatory mechanisms, which are fundamental in gene expression and regulation. However, conventional biological approaches to detect these sites are often costly and time-consuming. In contrast, computational methods for predicting RNA protein binding sites are both cost-effective and expeditious. This review synthesizes already existing computational methods, summarizing commonly used databases for predicting RNA protein binding sites. In addition, applications and innovations of computational methods using traditional machine learning and deep learning for RNA protein binding site prediction during 2018-2023 are presented. These methods cover a wide range of aspects such as effective database utilization, feature selection and encoding, innovative classification algorithms, and evaluation strategies. Exploring the limitations of existing computational methods, this paper delves into the potential directions for future development. DeepRKE, RDense, and DeepDW all employ convolutional neural networks and long and short-term memory networks to construct prediction models, yet their algorithm design and feature encoding differ, resulting in diverse prediction performances.
Collapse
Affiliation(s)
- Yun Zuo
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China
| | - Huixian Chen
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China
| | - Lele Yang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China
| | - Ruoyan Chen
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China
| | - Xiaoyao Zhang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China
| | - Zhaohong Deng
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China.
| |
Collapse
|
9
|
Xia Y, Pan X, Shen HB. A comprehensive survey on protein-ligand binding site prediction. Curr Opin Struct Biol 2024; 86:102793. [PMID: 38447285 DOI: 10.1016/j.sbi.2024.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Protein-ligand binding site prediction is critical for protein function annotation and drug discovery. Biological experiments are time-consuming and require significant equipment, materials, and labor resources. Developing accurate and efficient computational methods for protein-ligand interaction prediction is essential. Here, we summarize the key challenges associated with ligand binding site (LBS) prediction and introduce recently published methods from their input features, computational algorithms, and ligand types. Furthermore, we investigate the specificity of allosteric site identification as a particular LBS type. Finally, we discuss the prospective directions for machine learning-based LBS prediction in the near future.
Collapse
Affiliation(s)
- Ying Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.
| |
Collapse
|
10
|
Zheng M, Sun G, Li X, Fan Y. EGPDI: identifying protein-DNA binding sites based on multi-view graph embedding fusion. Brief Bioinform 2024; 25:bbae330. [PMID: 38975896 PMCID: PMC11229037 DOI: 10.1093/bib/bbae330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
Mechanisms of protein-DNA interactions are involved in a wide range of biological activities and processes. Accurately identifying binding sites between proteins and DNA is crucial for analyzing genetic material, exploring protein functions, and designing novel drugs. In recent years, several computational methods have been proposed as alternatives to time-consuming and expensive traditional experiments. However, accurately predicting protein-DNA binding sites still remains a challenge. Existing computational methods often rely on handcrafted features and a single-model architecture, leaving room for improvement. We propose a novel computational method, called EGPDI, based on multi-view graph embedding fusion. This approach involves the integration of Equivariant Graph Neural Networks (EGNN) and Graph Convolutional Networks II (GCNII), independently configured to profoundly mine the global and local node embedding representations. An advanced gated multi-head attention mechanism is subsequently employed to capture the attention weights of the dual embedding representations, thereby facilitating the integration of node features. Besides, extra node features from protein language models are introduced to provide more structural information. To our knowledge, this is the first time that multi-view graph embedding fusion has been applied to the task of protein-DNA binding site prediction. The results of five-fold cross-validation and independent testing demonstrate that EGPDI outperforms state-of-the-art methods. Further comparative experiments and case studies also verify the superiority and generalization ability of EGPDI.
Collapse
Affiliation(s)
- Mengxin Zheng
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Guicong Sun
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xueping Li
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yongxian Fan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
11
|
Zhu YH, Liu Z, Liu Y, Ji Z, Yu DJ. ULDNA: integrating unsupervised multi-source language models with LSTM-attention network for high-accuracy protein-DNA binding site prediction. Brief Bioinform 2024; 25:bbae040. [PMID: 38349057 PMCID: PMC10939370 DOI: 10.1093/bib/bbae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Efficient and accurate recognition of protein-DNA interactions is vital for understanding the molecular mechanisms of related biological processes and further guiding drug discovery. Although the current experimental protocols are the most precise way to determine protein-DNA binding sites, they tend to be labor-intensive and time-consuming. There is an immediate need to design efficient computational approaches for predicting DNA-binding sites. Here, we proposed ULDNA, a new deep-learning model, to deduce DNA-binding sites from protein sequences. This model leverages an LSTM-attention architecture, embedded with three unsupervised language models that are pre-trained on large-scale sequences from multiple database sources. To prove its effectiveness, ULDNA was tested on 229 protein chains with experimental annotation of DNA-binding sites. Results from computational experiments revealed that ULDNA significantly improves the accuracy of DNA-binding site prediction in comparison with 17 state-of-the-art methods. In-depth data analyses showed that the major strength of ULDNA stems from employing three transformer language models. Specifically, these language models capture complementary feature embeddings with evolution diversity, in which the complex DNA-binding patterns are buried. Meanwhile, the specially crafted LSTM-attention network effectively decodes evolution diversity-based embeddings as DNA-binding results at the residue level. Our findings demonstrated a new pipeline for predicting DNA-binding sites on a large scale with high accuracy from protein sequence alone.
Collapse
Affiliation(s)
- Yi-Heng Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Zi Liu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Liu
- School of Information Engineering, Yangzhou University, Yangzhou 225000, China
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|