1
|
Zhou L, Guess M, Kim KR, Yeo WH. Skin-interfacing wearable biosensors for smart health monitoring of infants and neonates. COMMUNICATIONS MATERIALS 2024; 5:72. [PMID: 38737724 PMCID: PMC11081930 DOI: 10.1038/s43246-024-00511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Health monitoring of infant patients in intensive care can be especially strenuous for both the patient and their caregiver, as testing setups involve a tangle of electrodes, probes, and catheters that keep the patient bedridden. This has typically involved expensive and imposing machines, to track physiological metrics such as heart rate, respiration rate, temperature, blood oxygen saturation, blood pressure, and ion concentrations. However, in the past couple of decades, research advancements have propelled a world of soft, wearable, and non-invasive systems to supersede current practices. This paper summarizes the latest advancements in neonatal wearable systems and the different approaches to each branch of physiological monitoring, with an emphasis on smart skin-interfaced wearables. Weaknesses and shortfalls are also addressed, with some guidelines provided to help drive the further research needed.
Collapse
Affiliation(s)
- Lauren Zhou
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Matthew Guess
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Ka Ram Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
2
|
Islam B, McElwain NL, Li J, Davila MI, Hu Y, Hu K, Bodway JM, Dhekne A, Roy Choudhury R, Hasegawa-Johnson M. Preliminary Technical Validation of LittleBeats™: A Multimodal Sensing Platform to Capture Cardiac Physiology, Motion, and Vocalizations. SENSORS (BASEL, SWITZERLAND) 2024; 24:901. [PMID: 38339617 PMCID: PMC10857055 DOI: 10.3390/s24030901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Across five studies, we present the preliminary technical validation of an infant-wearable platform, LittleBeats™, that integrates electrocardiogram (ECG), inertial measurement unit (IMU), and audio sensors. Each sensor modality is validated against data from gold-standard equipment using established algorithms and laboratory tasks. Interbeat interval (IBI) data obtained from the LittleBeats™ ECG sensor indicate acceptable mean absolute percent error rates for both adults (Study 1, N = 16) and infants (Study 2, N = 5) across low- and high-challenge sessions and expected patterns of change in respiratory sinus arrythmia (RSA). For automated activity recognition (upright vs. walk vs. glide vs. squat) using accelerometer data from the LittleBeats™ IMU (Study 3, N = 12 adults), performance was good to excellent, with smartphone (industry standard) data outperforming LittleBeats™ by less than 4 percentage points. Speech emotion recognition (Study 4, N = 8 adults) applied to LittleBeats™ versus smartphone audio data indicated a comparable performance, with no significant difference in error rates. On an automatic speech recognition task (Study 5, N = 12 adults), the best performing algorithm yielded relatively low word error rates, although LittleBeats™ (4.16%) versus smartphone (2.73%) error rates were somewhat higher. Together, these validation studies indicate that LittleBeats™ sensors yield a data quality that is largely comparable to those obtained from gold-standard devices and established protocols used in prior research.
Collapse
Affiliation(s)
- Bashima Islam
- Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Nancy L. McElwain
- Department of Human Development and Family Studies, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (Y.H.); (K.H.); (J.M.B.)
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jialu Li
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.L.); (R.R.C.)
| | - Maria I. Davila
- Research Triangle Institute, Research Triangle Park, NC 27709, USA;
| | - Yannan Hu
- Department of Human Development and Family Studies, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (Y.H.); (K.H.); (J.M.B.)
| | - Kexin Hu
- Department of Human Development and Family Studies, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (Y.H.); (K.H.); (J.M.B.)
| | - Jordan M. Bodway
- Department of Human Development and Family Studies, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (Y.H.); (K.H.); (J.M.B.)
| | - Ashutosh Dhekne
- School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Romit Roy Choudhury
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.L.); (R.R.C.)
| | - Mark Hasegawa-Johnson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.L.); (R.R.C.)
| |
Collapse
|