1
|
Tye BK. Four decades of Eukaryotic DNA replication: From yeast genetics to high-resolution cryo-EM structures of the replisome. Proc Natl Acad Sci U S A 2024; 121:e2415231121. [PMID: 39365830 PMCID: PMC11494305 DOI: 10.1073/pnas.2415231121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024] Open
Abstract
I had my eyes set on DNA replication research when I took my first molecular biology course in graduate school. My election to the National Academy of Sciences came just when I was retiring from active research. It gives me an opportunity to reflect on my personal journey in eukaryotic DNA replication research, which started as a thought experiment and culminated in witnessing the determination of the cryoelectron microscopic structure of the yeast replisome in the act of transferring histone-encoded epigenetic information at the replication fork. I would like to dedicate this inaugural article to my talented trainees and valuable collaborators in gratitude for the joy they gave me in this journey. I also want to thank my mentors who instilled in me the purpose of science. I hope junior scientists will not be disheartened by the marathon nature of research, but mindful enough to integrate and pause for other equally fun and meaningful activities of life into the marathon.
Collapse
Affiliation(s)
- Bik-Kwoon Tye
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
2
|
Abstract
Each genomic locus in a eukaryotic cell has a distinct average time of replication during S phase that depends on the spatial and temporal pattern of replication initiation events. Replication timing can affect genomic integrity because late replication is associated with an increased mutation rate. For most eukaryotes, the features of the genome that specify the location and timing of initiation events are unknown. To investigate these features for the fission yeast, Schizosaccharomyces pombe, we developed an integrative model to analyze large single-molecule and global genomic datasets. The model provides an accurate description of the complex dynamics of S. pombe DNA replication at high resolution. We present evidence that there are many more potential initiation sites in the S. pombe genome than previously identified and that the distribution of these sites is primarily determined by two factors: the sequence preferences of the origin recognition complex (ORC), and the interference of transcription with the assembly or stability of prereplication complexes (pre-RCs). We suggest that in addition to directly interfering with initiation, transcription has driven the evolution of the binding properties of ORC in S. pombe and other eukaryotic species to target pre-RC assembly to regions of the genome that are less likely to be transcribed.
Collapse
|
3
|
Transcription-dependent regulation of replication dynamics modulates genome stability. Nat Struct Mol Biol 2018; 26:58-66. [PMID: 30598553 DOI: 10.1038/s41594-018-0170-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 11/16/2018] [Indexed: 01/17/2023]
Abstract
Common fragile sites (CFSs) are loci that are hypersensitive to replication stress and hotspots for chromosomal rearrangements in cancers. CFSs replicate late in S phase, are cell-type specific and nest in large genes. The relative impact of transcription-replication conflicts versus a low density in initiation events on fragility is currently debated. Here we addressed the relationships between transcription, replication, and instability by manipulating the transcription of endogenous large genes in chicken and human cells. We found that inducing low transcription with a weak promoter destabilized large genes, whereas stimulating their transcription with strong promoters alleviated instability. Notably, strong promoters triggered a switch to an earlier replication timing, supporting a model in which high transcription levels give cells more time to complete replication before mitosis. Transcription could therefore contribute to maintaining genome integrity, challenging the dominant view that it is exclusively a threat.
Collapse
|
4
|
Candelli T, Gros J, Libri D. Pervasive transcription fine-tunes replication origin activity. eLife 2018; 7:40802. [PMID: 30556807 PMCID: PMC6314782 DOI: 10.7554/elife.40802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase (RNAPII) transcription occurs pervasively, raising the important question of its functional impact on other DNA-associated processes, including replication. In budding yeast, replication originates from Autonomously Replicating Sequences (ARSs), generally located in intergenic regions. The influence of transcription on ARSs function has been studied for decades, but these earlier studies have neglected the role of non-annotated transcription. We studied the relationships between pervasive transcription and replication origin activity using high-resolution transcription maps. We show that ARSs alter the pervasive transcription landscape by pausing and terminating neighboring RNAPII transcription, thus limiting the occurrence of pervasive transcription within origins. We propose that quasi-symmetrical binding of the ORC complex to ARS borders and/or pre-RC formation are responsible for pausing and termination. We show that low, physiological levels of pervasive transcription impact the function of replication origins. Overall, our results have important implications for understanding the impact of genomic location on origin function.
Collapse
Affiliation(s)
- Tito Candelli
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Gros
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Domenico Libri
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
5
|
High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation. G3-GENES GENOMES GENETICS 2016; 6:993-1012. [PMID: 26865697 PMCID: PMC4825667 DOI: 10.1534/g3.116.027904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid partitioning and suggest underlying biological roles shared by such elements.
Collapse
|
6
|
Gros J, Kumar C, Lynch G, Yadav T, Whitehouse I, Remus D. Post-licensing Specification of Eukaryotic Replication Origins by Facilitated Mcm2-7 Sliding along DNA. Mol Cell 2015; 60:797-807. [PMID: 26656162 DOI: 10.1016/j.molcel.2015.10.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/28/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022]
Abstract
Eukaryotic genomes are replicated from many origin sites that are licensed by the loading of the replicative DNA helicase, Mcm2-7. How eukaryotic origin positions are specified remains elusive. Here we show that, contrary to the bacterial paradigm, eukaryotic replication origins are not irrevocably defined by selection of the helicase loading site, but can shift in position after helicase loading. Using purified proteins we show that DNA translocases, including RNA polymerase, can push budding yeast Mcm2-7 double hexamers along DNA. Displaced Mcm2-7 double hexamers support DNA replication initiation distal to the loading site in vitro. Similarly, in yeast cells that are defective for transcription termination, collisions with RNA polymerase induce a redistribution of Mcm2-7 complexes along the chromosomes, resulting in a corresponding shift in DNA replication initiation sites. These results reveal a eukaryotic origin specification mechanism that departs from the classical replicon model, helping eukaryotic cells to negotiate transcription-replication conflict.
Collapse
Affiliation(s)
- Julien Gros
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA
| | - Charanya Kumar
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA
| | - Gerard Lynch
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA
| | - Tejas Yadav
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA; Weill-Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
7
|
Descorps-Declère S, Saguez C, Cournac A, Marbouty M, Rolland T, Ma L, Bouchier C, Moszer I, Dujon B, Koszul R, Richard GF. Genome-wide replication landscape of Candida glabrata. BMC Biol 2015; 13:69. [PMID: 26329162 PMCID: PMC4556013 DOI: 10.1186/s12915-015-0177-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/05/2015] [Indexed: 11/25/2022] Open
Abstract
Background The opportunistic pathogen Candida glabrata is a member of the Saccharomycetaceae yeasts. Like its close relative Saccharomyces cerevisiae, it underwent a whole-genome duplication followed by an extensive loss of genes. Its genome contains a large number of very long tandem repeats, called megasatellites. In order to determine the whole replication program of the C. glabrata genome and its general chromosomal organization, we used deep-sequencing and chromosome conformation capture experiments. Results We identified 253 replication fork origins, genome wide. Centromeres, HML and HMR loci, and most histone genes are replicated early, whereas natural chromosomal breakpoints are located in late-replicating regions. In addition, 275 autonomously replicating sequences (ARS) were identified during ARS-capture experiments, and their relative fitness was determined during growth competition. Analysis of ARSs allowed us to identify a 17-bp consensus, similar to the S. cerevisiae ARS consensus sequence but slightly more constrained. Megasatellites are not in close proximity to replication origins or termini. Using chromosome conformation capture, we also show that early origins tend to cluster whereas non-subtelomeric megasatellites do not cluster in the yeast nucleus. Conclusions Despite a shorter cell cycle, the C. glabrata replication program shares unexpected striking similarities to S. cerevisiae, in spite of their large evolutionary distance and the presence of highly repetitive large tandem repeats in C. glabrata. No correlation could be found between the replication program and megasatellites, suggesting that their formation and propagation might not be directly caused by replication fork initiation or termination. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0177-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphane Descorps-Declère
- Institut Pasteur, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), F-75015, Paris, France.
| | - Cyril Saguez
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, F-75015, Paris, France. .,CNRS, UMR3525, F-75015, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
| | - Axel Cournac
- CNRS, UMR3525, F-75015, Paris, France. .,Institut Pasteur, Groupe Régulation Spatiale des Génomes, Département Génomes & Génétique, F-75015, Paris, France.
| | - Martial Marbouty
- CNRS, UMR3525, F-75015, Paris, France. .,Institut Pasteur, Groupe Régulation Spatiale des Génomes, Département Génomes & Génétique, F-75015, Paris, France.
| | - Thomas Rolland
- Present address: Institut Pasteur, Unité de Génétique Humaine et Fonctions Cognitives, Département des Neurosciences, F-75015, Paris, France.
| | - Laurence Ma
- Institut Pasteur, Plate-forme Génomique, Département Génomes & Génétique, F-75015, Paris, France.
| | - Christiane Bouchier
- Institut Pasteur, Plate-forme Génomique, Département Génomes & Génétique, F-75015, Paris, France.
| | - Ivan Moszer
- Present address: Plate-forme Bio-informatique/Biostatistique, Institut de Neurosciences Translationnelles IHU-A-ICM, Hôpital Pitié-Salpêtrière, 47-83 bd de l'Hôpital, 75561, Paris, Cedex 13, France.
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, F-75015, Paris, France. .,CNRS, UMR3525, F-75015, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
| | - Romain Koszul
- CNRS, UMR3525, F-75015, Paris, France. .,Institut Pasteur, Groupe Régulation Spatiale des Génomes, Département Génomes & Génétique, F-75015, Paris, France.
| | - Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, F-75015, Paris, France. .,CNRS, UMR3525, F-75015, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
| |
Collapse
|
8
|
Liachko I, Dunham MJ. An autonomously replicating sequence for use in a wide range of budding yeasts. FEMS Yeast Res 2013; 14:364-7. [PMID: 24205893 DOI: 10.1111/1567-1364.12123] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/27/2022] Open
Abstract
The initiation of DNA replication at replication origins is essential for the duplication of genomes. In yeast, the autonomously replicating sequence (ARS) property of replication origins is necessary for the stable maintenance of episomal plasmids. However, because the sequence determinants of ARS function differ among yeast species, current ARS modules are limited for use to a subset of yeasts. Here, we describe a short ARS sequence that functions in at least 10 diverse species of budding yeast. These include, but are not limited to members of the Saccharomyces, Lachancea, Kluyveromyces, and Pichia (Komagataella) genera spanning over 500 million years of evolution. In addition to its wide species range, this ARS and an optimized derivative confer improved plasmid stability relative to other currently used ARS modules.
Collapse
Affiliation(s)
- Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
9
|
Hoggard T, Shor E, Müller CA, Nieduszynski CA, Fox CA. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet 2013; 9:e1003798. [PMID: 24068963 PMCID: PMC3772097 DOI: 10.1371/journal.pgen.1003798] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/30/2013] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. Cell division requires the duplication of chromosomes, protein-DNA complexes harboring genetic information. Specific chromosomal positions, origins, initiate this duplication. Multiple origins are required for accurate, efficient duplication—an insufficient number leads to mistakes in the genetic material and pathologies such as cancer. Origins are chosen when the origin recognition complex (ORC) binds to them. The molecular interactions controlling this binding remain unclear. Understanding these interactions will lead to new ways to control cell division, which could aid in treatments of disease. Experiments were performed in the eukaryotic microbe budding yeast to define the types of molecular interactions ORC uses to bind origins. Yeasts are useful for these studies because chromosome duplication and structure are well conserved from yeast to humans. While ORC-DNA interactions were important, interactions between ORC and chromosomal proteins played a role. In addition, different origins relied on different types of molecular interactions with ORC. Finally, ORC-protein interactions but not ORC-DNA interactions were associated with enhanced origin function during chromosome-duplication, revealing an unanticipated link between the types of molecular interactions ORC uses to select an origin and the ultimate function of that origin. These results have implications for interfering with ORC-origin interactions to control cell division.
Collapse
Affiliation(s)
- Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erika Shor
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Carolin A. Müller
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
| | - Conrad A. Nieduszynski
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
- * E-mail: (CAN); (CAF)
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CAN); (CAF)
| |
Collapse
|
10
|
Liachko I, Youngblood RA, Keich U, Dunham MJ. High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast. Genome Res 2012; 23:698-704. [PMID: 23241746 PMCID: PMC3613586 DOI: 10.1101/gr.144659.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
DNA replication origins are necessary for the duplication of genomes. In addition, plasmid-based expression systems require DNA replication origins to maintain plasmids efficiently. The yeast autonomously replicating sequence (ARS) assay has been a valuable tool in dissecting replication origin structure and function. However, the dearth of information on origins in diverse yeasts limits the availability of efficient replication origin modules to only a handful of species and restricts our understanding of origin function and evolution. To enable rapid study of origins, we have developed a sequencing-based suite of methods for comprehensively mapping and characterizing ARSs within a yeast genome. Our approach finely maps genomic inserts capable of supporting plasmid replication and uses massively parallel deep mutational scanning to define molecular determinants of ARS function with single-nucleotide resolution. In addition to providing unprecedented detail into origin structure, our data have allowed us to design short, synthetic DNA sequences that retain maximal ARS function. These methods can be readily applied to understand and modulate ARS function in diverse systems.
Collapse
Affiliation(s)
- Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA
| | | | | | | |
Collapse
|
11
|
Liachko I, Tanaka E, Cox K, Chung SCC, Yang L, Seher A, Hallas L, Cha E, Kang G, Pace H, Barrow J, Inada M, Tye BK, Keich U. Novel features of ARS selection in budding yeast Lachancea kluyveri. BMC Genomics 2011; 12:633. [PMID: 22204614 PMCID: PMC3306766 DOI: 10.1186/1471-2164-12-633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The characterization of DNA replication origins in yeast has shed much light on the mechanisms of initiation of DNA replication. However, very little is known about the evolution of origins or the evolution of mechanisms through which origins are recognized by the initiation machinery. This lack of understanding is largely due to the vast evolutionary distances between model organisms in which origins have been examined. RESULTS In this study we have isolated and characterized autonomously replicating sequences (ARSs) in Lachancea kluyveri - a pre-whole genome duplication (WGD) budding yeast. Through a combination of experimental work and rigorous computational analysis, we show that L. kluyveri ARSs require a sequence that is similar but much longer than the ARS Consensus Sequence well defined in Saccharomyces cerevisiae. Moreover, compared with S. cerevisiae and K. lactis, the replication licensing machinery in L. kluyveri seems more tolerant to variations in the ARS sequence composition. It is able to initiate replication from almost all S. cerevisiae ARSs tested and most Kluyveromyces lactis ARSs. In contrast, only about half of the L. kluyveri ARSs function in S. cerevisiae and less than 10% function in K. lactis. CONCLUSIONS Our findings demonstrate a replication initiation system with novel features and underscore the functional diversity within the budding yeasts. Furthermore, we have developed new approaches for analyzing biologically functional DNA sequences with ill-defined motifs.
Collapse
Affiliation(s)
- Ivan Liachko
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bryant JA, Aves SJ. Initiation of DNA replication: functional and evolutionary aspects. ANNALS OF BOTANY 2011; 107:1119-26. [PMID: 21508040 PMCID: PMC3091809 DOI: 10.1093/aob/mcr075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND The initiation of DNA replication is a very important and highly regulated step in the cell division cycle. It is of interest to compare different groups of eukaryotic organisms (a) to identify the essential molecular events that occur in all eukaryotes, (b) to start to identify higher-level regulatory mechanisms that are specific to particular groups and (c) to gain insights into the evolution of initiation mechanisms. SCOPE This review features a wide-ranging literature survey covering replication origins, origin recognition and usage, modification of origin usage (especially in response to plant hormones), assembly of the pre-replication complex, loading of the replisome, genomics, and the likely origin of these mechanisms and proteins in Archaea. CONCLUSIONS In all eukaryotes, chromatin is organized for DNA replication as multiple replicons. In each replicon, replication is initiated at an origin. With the exception of those in budding yeast, replication origins, including the only one to be isolated so far from a plant, do not appear to embody a specific sequence; rather, they are AT-rich, with short tracts of locally bent DNA. The proteins involved in initiation are remarkably similar across the range of eukaryotes. Nevertheless, their activity may be modified by plant-specific mechanisms, including regulation by plant hormones. The molecular features of initiation are seen in a much simpler form in the Archaea. In particular, where eukaryotes possess a number of closely related proteins that form 'hetero-complexes' (such as the origin recognition complex and the MCM complex), archaeans typically possess one type of protein (e.g. one MCM) that forms a homo-complex. This suggests that several eukaryotic initiation proteins have evolved from archaeal ancestors by gene duplication and divergence.
Collapse
Affiliation(s)
- John A Bryant
- Biosciences, College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Exeter, UK.
| | | |
Collapse
|
13
|
Chatre L, Ricchetti M. Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae. PLoS One 2011; 6:e17235. [PMID: 21408151 PMCID: PMC3050842 DOI: 10.1371/journal.pone.0017235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/26/2011] [Indexed: 11/18/2022] Open
Abstract
The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.
Collapse
Affiliation(s)
- Laurent Chatre
- Departement d'Immunologie, Institut Pasteur, Paris, France
- Unité de Génétique Moléculaire des Levures, Institut Pasteur, Paris, France
| | - Miria Ricchetti
- Departement d'Immunologie, Institut Pasteur, Paris, France
- Unité de Génétique Moléculaire des Levures, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
14
|
Lõoke M, Reimand J, Sedman T, Sedman J, Järvinen L, Värv S, Peil K, Kristjuhan K, Vilo J, Kristjuhan A. Relicensing of transcriptionally inactivated replication origins in budding yeast. J Biol Chem 2010; 285:40004-11. [PMID: 20962350 PMCID: PMC3000982 DOI: 10.1074/jbc.m110.148924] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA replication origins are licensed in early G1 phase of the cell cycle where the origin recognition complex (ORC) recruits the minichromosome maintenance (MCM) helicase to origins. These pre-replicative complexes (pre-RCs) remain inactive until replication is initiated in the S phase. However, transcriptional activity in the regions of origins can eliminate their functionality by displacing the components of pre-RC from DNA. We analyzed genome-wide data of mRNA and cryptic unstable transcripts in the context of locations of replication origins in yeast genome and found that at least one-third of the origins are transcribed and therefore might be inactivated by transcription. When investigating the fate of transcriptionally inactivated origins, we found that replication origins were repetitively licensed in G1 to reestablish their functionality after transcription. We propose that reloading of pre-RC components in G1 might be utilized for the maintenance of sufficient number of competent origins for efficient initiation of DNA replication in S phase.
Collapse
Affiliation(s)
- Marko Lõoke
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Müller P, Park S, Shor E, Huebert DJ, Warren CL, Ansari AZ, Weinreich M, Eaton ML, MacAlpine DM, Fox CA. The conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA replication origins within chromatin. Genes Dev 2010; 24:1418-33. [PMID: 20595233 PMCID: PMC2895200 DOI: 10.1101/gad.1906410] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/11/2010] [Indexed: 12/15/2022]
Abstract
The origin recognition complex (ORC) binds to the specific positions on chromosomes that serve as DNA replication origins. Although ORC is conserved from yeast to humans, the DNA sequence elements that specify ORC binding are not. In particular, metazoan ORC shows no obvious DNA sequence specificity, whereas yeast ORC binds to a specific DNA sequence within all yeast origins. Thus, whereas chromatin must play an important role in metazoan ORC's ability to recognize origins, it is unclear whether chromatin plays a role in yeast ORC's recognition of origins. This study focused on the role of the conserved N-terminal bromo-adjacent homology domain of yeast Orc1 (Orc1BAH). Recent studies indicate that BAH domains are chromatin-binding modules. We show that the Orc1BAH domain was necessary for ORC's stable association with yeast chromosomes, and was physiologically relevant to DNA replication in vivo. This replication role was separable from the Orc1BAH domain's previously defined role in transcriptional silencing. Genome-wide analyses of ORC binding in ORC1 and orc1bahDelta cells revealed that the Orc1BAH domain contributed to ORC's association with most yeast origins, including a class of origins highly dependent on the Orc1BAH domain for ORC association (orc1bahDelta-sensitive origins). Orc1bahDelta-sensitive origins required the Orc1BAH domain for normal activity on chromosomes and plasmids, and were associated with a distinct local nucleosome structure. These data provide molecular insights into how the Orc1BAH domain contributes to ORC's selection of replication origins, as well as new tools for examining conserved mechanisms governing ORC's selection of origins within eukaryotic chromosomes.
Collapse
Affiliation(s)
- Philipp Müller
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sookhee Park
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Erika Shor
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dana J. Huebert
- Program in Cellular and Molecular Biology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Christopher L. Warren
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael Weinreich
- Laboratory for Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Matthew L. Eaton
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David M. MacAlpine
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Program in Cellular and Molecular Biology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
16
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 377] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
17
|
Liachko I, Bhaskar A, Lee C, Chung SCC, Tye BK, Keich U. A comprehensive genome-wide map of autonomously replicating sequences in a naive genome. PLoS Genet 2010; 6:e1000946. [PMID: 20485513 PMCID: PMC2869322 DOI: 10.1371/journal.pgen.1000946] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 04/09/2010] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins. The machinery that initiates DNA synthesis is highly conserved, but the sites where the replication initiation proteins bind have diverged significantly. Functional comparative genomics is an obvious approach to study the evolution of replication origins. However, to date, the Saccharomyces cerevisiae replication origin map is the only genome map available. Using an iterative approach that combines computational prediction and functional validation, we have generated a high-resolution genome-wide map of DNA replication origins in Kluyveromyces lactis. Unlike other yeasts or metazoans, K. lactis autonomously replicating sequences (KlARSs) contain a 50 bp consensus motif suggestive of a dimeric structure. This motif is necessary and largely sufficient for initiation and was used to dependably identify 145 of the up to 156 non-repetitive intergenic ARSs projected for the K. lactis genome. Though similar in genome sizes, K. lactis has half as many ARSs as its distant relative S. cerevisiae. Comparative genomic analysis shows that ARSs in K. lactis and S. cerevisiae preferentially localize to non-syntenic intergenic regions, linking ARSs with loci of accelerated evolutionary change.
Collapse
Affiliation(s)
- Ivan Liachko
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Anand Bhaskar
- Department of Computer Science, Cornell University, Ithaca, New York, United States of America
| | - Chanmi Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Shau Chee Claire Chung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Bik-Kwoon Tye
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Uri Keich
- School of Mathematics and Statistics F07, University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
de Moura APS, Retkute R, Hawkins M, Nieduszynski CA. Mathematical modelling of whole chromosome replication. Nucleic Acids Res 2010; 38:5623-33. [PMID: 20457753 PMCID: PMC2943597 DOI: 10.1093/nar/gkq343] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
All chromosomes must be completely replicated prior to cell division, a requirement that demands the activation of a sufficient number of appropriately distributed DNA replication origins. Here we investigate how the activity of multiple origins on each chromosome is coordinated to ensure successful replication. We present a stochastic model for whole chromosome replication where the dynamics are based upon the parameters of individual origins. Using this model we demonstrate that mean replication time at any given chromosome position is determined collectively by the parameters of all origins. Combining parameter estimation with extensive simulations we show that there is a range of model parameters consistent with mean replication data, emphasising the need for caution in interpreting such data. In contrast, the replicated-fraction at time points through S phase contains more information than mean replication time data and allowed us to use our model to uniquely estimate many origin parameters. These estimated parameters enable us to make a number of predictions that showed agreement with independent experimental data, confirming that our model has predictive power. In summary, we demonstrate that a stochastic model can recapitulate experimental observations, including those that might be interpreted as deterministic such as ordered origin activation times.
Collapse
Affiliation(s)
- Alessandro P S de Moura
- Department of Physics, University of Aberdeen, Aberdeen AB24 3UE and School of Biology, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
19
|
|
20
|
Shor E, Warren CL, Tietjen J, Hou Z, Müller U, Alborelli I, Gohard FH, Yemm AI, Borisov L, Broach JR, Weinreich M, Nieduszynski CA, Ansari AZ, Fox CA. The origin recognition complex interacts with a subset of metabolic genes tightly linked to origins of replication. PLoS Genet 2009; 5:e1000755. [PMID: 19997491 PMCID: PMC2778871 DOI: 10.1371/journal.pgen.1000755] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 11/06/2009] [Indexed: 11/18/2022] Open
Abstract
The origin recognition complex (ORC) marks chromosomal sites as replication origins and is essential for replication initiation. In yeast, ORC also binds to DNA elements called silencers, where its primary function is to recruit silent information regulator (SIR) proteins to establish transcriptional silencing. Indeed, silencers function poorly as chromosomal origins. Several genetic, molecular, and biochemical studies of HMR-E have led to a model proposing that when ORC becomes limiting in the cell (such as in the orc2-1 mutant) only sites that bind ORC tightly (such as HMR-E) remain fully occupied by ORC, while lower affinity sites, including many origins, lose ORC occupancy. Since HMR-E possessed a unique non-replication function, we reasoned that other tight sites might reveal novel functions for ORC on chromosomes. Therefore, we comprehensively determined ORC “affinity” genome-wide by performing an ORC ChIP–on–chip in ORC2 and orc2-1 strains. Here we describe a novel group of orc2-1–resistant ORC–interacting chromosomal sites (ORF–ORC sites) that did not function as replication origins or silencers. Instead, ORF–ORC sites were comprised of protein-coding regions of highly transcribed metabolic genes. In contrast to the ORC–silencer paradigm, transcriptional activation promoted ORC association with these genes. Remarkably, ORF–ORC genes were enriched in proximity to origins of replication and, in several instances, were transcriptionally regulated by these origins. Taken together, these results suggest a surprising connection among ORC, replication origins, and cellular metabolism. Chromosomes must be replicated prior to cell division. The process of duplication of each eukaryotic chromosome starts at discrete sites called origins of replication. An evolutionarily conserved Origin Recognition Complex (ORC) binds origins and helps make them replication-competent. ORC also binds another class of chromosomal sites that primarily function not as origins but as “silencers.” Silencers serve as starting points for the formation of silent chromatin, a special structure that represses local gene transcription in a promoter-independent fashion. One yeast silencer studied in great detail was found to bind ORC in vitro and in vivo with high affinity (“tightly”). On the other hand, several replication origins were found to bind ORC with lower affinity (“loosely”). We performed a genome-wide comparison of ORC affinity and found a novel class of high-affinity ORC–binding sites. Surprisingly, this class consisted neither of origins nor of silencers but of highly expressed genes involved in various metabolic processes. Transcriptional activation helped target ORC to these sites. These genes were frequently found near origins of replication, and in several instances their transcription was affected by deletion of the nearby origin. These results may shed light on a new molecular mechanism connecting nutrient status and cell division.
Collapse
Affiliation(s)
- Erika Shor
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christopher L. Warren
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Joshua Tietjen
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Zhonggang Hou
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ulrika Müller
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ilaria Alborelli
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Florence H. Gohard
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Adrian I. Yemm
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Lev Borisov
- Department of Mathematics, College of Letters and Science, University of Wisconsin, Madison, Wisconsin, United States of America
| | - James R. Broach
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Michael Weinreich
- Laboratory of Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Conrad A. Nieduszynski
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Aseem Z. Ansari
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
- The Genome Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
Functional coordination between DNA replication helicases and DNA polymerases at replication forks, achieved through physical linkages, has been demonstrated in prokaryotes but not in eukaryotes. In Saccharomyces cerevisiae, we showed that mutations that compromise the activity of the MCM helicase enhance the physical stability of DNA polymerase alpha in the absence of their presumed linker, Mcm10. Mcm10 is an essential DNA replication protein implicated in the stable assembly of the replisome by virtue of its interaction with the MCM2-7 helicase and Polalpha. Dominant mcm2 suppressors of mcm10 mutants restore viability by restoring the stability of Polalpha without restoring the stability of Mcm10, in a Mec1-dependent manner. In this process, the single-stranded DNA accumulation observed in the mcm10 mutant is suppressed. The activities of key checkpoint regulators known to be important for replication fork stabilization contribute to the efficiency of suppression. These results suggest that Mcm10 plays two important roles as a linker of the MCM helicase and Polalpha at the elongating replication fork--first, to coordinate the activities of these two molecular motors, and second, to ensure their physical stability and the integrity of the replication fork.
Collapse
|
22
|
Omberg L, Meyerson JR, Kobayashi K, Drury LS, Diffley JFX, Alter O. Global effects of DNA replication and DNA replication origin activity on eukaryotic gene expression. Mol Syst Biol 2009; 5:312. [PMID: 19888207 PMCID: PMC2779084 DOI: 10.1038/msb.2009.70] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 08/19/2009] [Indexed: 11/09/2022] Open
Abstract
This report provides a global view of how gene expression is affected by DNA replication. We analyzed synchronized cultures of Saccharomyces cerevisiae under conditions that prevent DNA replication initiation without delaying cell cycle progression. We use a higher-order singular value decomposition to integrate the global mRNA expression measured in the multiple time courses, detect and remove experimental artifacts and identify significant combinations of patterns of expression variation across the genes, time points and conditions. We find that, first, approximately 88% of the global mRNA expression is independent of DNA replication. Second, the requirement of DNA replication for efficient histone gene expression is independent of conditions that elicit DNA damage checkpoint responses. Third, origin licensing decreases the expression of genes with origins near their 3' ends, revealing that downstream origins can regulate the expression of upstream genes. This confirms previous predictions from mathematical modeling of a global causal coordination between DNA replication origin activity and mRNA expression, and shows that mathematical modeling of DNA microarray data can be used to correctly predict previously unknown biological modes of regulation.
Collapse
Affiliation(s)
- Larsson Omberg
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
23
|
A model for the spatiotemporal organization of DNA replication in Saccharomyces cerevisiae. Mol Genet Genomics 2009; 282:25-35. [PMID: 19306105 PMCID: PMC2695552 DOI: 10.1007/s00438-009-0443-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 03/04/2009] [Indexed: 11/24/2022]
Abstract
DNA replication in eukaryotes is considered to proceed according to a precise program in which each chromosomal region is duplicated in a defined temporal order. However, recent studies reveal an intrinsic temporal disorder in the replication of yeast chromosome VI. Here we provide a model of the chromosomal duplication to study the temporal sequence of origin activation in budding yeast. The model comprises four parameters that influence the DNA replication system: the lengths of the chromosomes, the explicit chromosomal positions for all replication origins as well as their distinct initiation times and the replication fork migration rate. The designed model is able to reproduce the available experimental data in form of replication profiles. The dynamics of DNA replication was monitored during simulations of wild type and randomly perturbed replication conditions. Severe loss of origin function showed only little influence on the replication dynamics, so systematic deletions of origins (or loss of efficiency) were simulated to provide predictions to be tested experimentally. The simulations provide new insights into the complex system of DNA replication, showing that the system is robust to perturbation, and giving hints about the influence of a possible disordered firing.
Collapse
|
24
|
Abstract
The connection between DNA replication and heterochromatic silencing in yeast has been a topic of investigation for >20 years. While early studies showed that silencing requires passage through S phase and implicated several DNA replication factors in silencing, later works showed that silent chromatin could form without DNA replication. In this study we show that members of the replicative helicase (Mcm3 and Mcm7) play a role in silencing and physically interact with the essential silencing factor, Sir2, even in the absence of DNA replication. Another replication factor, Mcm10, mediates the interaction between these replication and silencing proteins via a short C-terminal domain. Mutations in this region of Mcm10 disrupt the interaction between Sir2 and several of the Mcm2-7 proteins. While such mutations caused silencing defects, they did not cause DNA replication defects or affect the association of Sir2 with chromatin. Our findings suggest that Mcm10 is required for the coupling of the replication and silencing machineries to silence chromatin in a context outside of DNA replication beyond the recruitment and spreading of Sir2 on chromatin.
Collapse
|
25
|
Keich U, Gao H, Garretson JS, Bhaskar A, Liachko I, Donato J, Tye BK. Computational detection of significant variation in binding affinity across two sets of sequences with application to the analysis of replication origins in yeast. BMC Bioinformatics 2008; 9:372. [PMID: 18786274 PMCID: PMC2566582 DOI: 10.1186/1471-2105-9-372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 09/12/2008] [Indexed: 11/17/2022] Open
Abstract
Background In analyzing the stability of DNA replication origins in Saccharomyces cerevisiae we faced the question whether one set of sequences is significantly enriched in the number and/or the quality of the matches of a particular position weight matrix relative to another set. Results We present SADMAMA, a computational solution to a address this problem. SADMAMA implements two types of statistical tests to answer this question: one type is based on simplified models, while the other relies on bootstrapping, and as such might be preferable to users who are averse to such models. The bootstrap approach incorporates a novel "site-protected" resampling procedure which solves a problem we identify with naive resampling. Conclusion SADMAMA's utility is demonstrated here by offering a plausible explanation to the differential ARS activity observed in our previous mcm1-1 mutant experiments [1], by suggesting the relevance of multiple weak ACS matches to efficient replication origin function in Saccharomyces cerevisiae, and by suggesting an explanation to the observed negative effect FKH2 has on chromatin silencing [2]. SADMAMA is available for download from .
Collapse
Affiliation(s)
- Uri Keich
- Department of Computer Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies. Proc Natl Acad Sci U S A 2007; 104:18371-6. [PMID: 18003902 DOI: 10.1073/pnas.0709146104] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe the use of a higher-order singular value decomposition (HOSVD) in transforming a data tensor of genes x "x-settings," that is, different settings of the experimental variable x x "y-settings," which tabulates DNA microarray data from different studies, to a "core tensor" of "eigenarrays" x "x-eigengenes" x "y-eigengenes." Reformulating this multilinear HOSVD such that it decomposes the data tensor into a linear superposition of all outer products of an eigenarray, an x- and a y-eigengene, that is, rank-1 "subtensors," we define the significance of each subtensor in terms of the fraction of the overall information in the data tensor that it captures. We illustrate this HOSVD with an integration of genome-scale mRNA expression data from three yeast cell cycle time courses, two of which are under exposure to either hydrogen peroxide or menadione. We find that significant subtensors represent independent biological programs or experimental phenomena. The picture that emerges suggests that the conserved genes YKU70, MRE11, AIF1, and ZWF1, and the processes of retrotransposition, apoptosis, and the oxidative pentose phosphate pathway that these genes are involved in, may play significant, yet previously unrecognized, roles in the differential effects of hydrogen peroxide and menadione on cell cycle progression. A genome-scale correlation between DNA replication initiation and RNA transcription, which is equivalent to a recently discovered correlation and might be due to a previously unknown mechanism of regulation, is independently uncovered.
Collapse
|
27
|
Aladjem MI. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 2007; 8:588-600. [PMID: 17621316 DOI: 10.1038/nrg2143] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replication in eukaryotes initiates from discrete genomic regions according to a strict, often tissue-specific temporal programme. However, the locations of initiation events within initiation regions vary, show sequence disparity and are affected by interactions with distal elements. Increasing evidence suggests that specification of replication sites and the timing of replication are dynamic processes that are regulated by tissue-specific and developmental cues, and are responsive to epigenetic modifications. Dynamic specification of replication patterns might serve to prevent or resolve possible spatial and/or temporal conflicts between replication, transcription and chromatin assembly, and facilitate subtle or extensive changes of gene expression during differentiation and development.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Building 37, Room 5056, 37 Convent Drive, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
28
|
Norais C, Hawkins M, Hartman AL, Eisen JA, Myllykallio H, Allers T. Genetic and physical mapping of DNA replication origins in Haloferax volcanii. PLoS Genet 2007; 3:e77. [PMID: 17511521 PMCID: PMC1868953 DOI: 10.1371/journal.pgen.0030077] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 03/05/2007] [Indexed: 11/18/2022] Open
Abstract
The halophilic archaeon Haloferax volcanii has a multireplicon genome, consisting of a main chromosome, three secondary chromosomes, and a plasmid. Genes for the initiator protein Cdc6/Orc1, which are commonly located adjacent to archaeal origins of DNA replication, are found on all replicons except plasmid pHV2. However, prediction of DNA replication origins in H. volcanii is complicated by the fact that this species has no less than 14 cdc6/orc1 genes. We have used a combination of genetic, biochemical, and bioinformatic approaches to map DNA replication origins in H. volcanii. Five autonomously replicating sequences were found adjacent to cdc6/orc1 genes and replication initiation point mapping was used to confirm that these sequences function as bidirectional DNA replication origins in vivo. Pulsed field gel analyses revealed that cdc6/orc1-associated replication origins are distributed not only on the main chromosome (2.9 Mb) but also on pHV1 (86 kb), pHV3 (442 kb), and pHV4 (690 kb) replicons. Gene inactivation studies indicate that linkage of the initiator gene to the origin is not required for replication initiation, and genetic tests with autonomously replicating plasmids suggest that the origin located on pHV1 and pHV4 may be dominant to the principal chromosomal origin. The replication origins we have identified appear to show a functional hierarchy or differential usage, which might reflect the different replication requirements of their respective chromosomes. We propose that duplication of H. volcanii replication origins was a prerequisite for the multireplicon structure of this genome, and that this might provide a means for chromosome-specific replication control under certain growth conditions. Our observations also suggest that H. volcanii is an ideal organism for studying how replication of four replicons is regulated in the context of the archaeal cell cycle.
Collapse
Affiliation(s)
- Cédric Norais
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
- CNRS, UMR8621, Orsay, France
| | - Michelle Hawkins
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
| | - Amber L Hartman
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jonathan A Eisen
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Hannu Myllykallio
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
- CNRS, UMR8621, Orsay, France
- * To whom correspondence should be addressed. E-mail: (HM); (TA)
| | - Thorsten Allers
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
- * To whom correspondence should be addressed. E-mail: (HM); (TA)
| |
Collapse
|
29
|
van Vugt JJFA, Ranes M, Campsteijn C, Logie C. The ins and outs of ATP-dependent chromatin remodeling in budding yeast: biophysical and proteomic perspectives. ACTA ACUST UNITED AC 2007; 1769:153-71. [PMID: 17395283 DOI: 10.1016/j.bbaexp.2007.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/22/2007] [Accepted: 01/29/2007] [Indexed: 11/30/2022]
Abstract
ATP-dependent chromatin remodeling is performed by multi-subunit protein complexes. Over the last years, the identity of these factors has been unveiled in yeast and many parallels have been drawn with animal and plant systems, indicating that sophisticated chromatin transactions evolved prior to their divergence. Here we review current knowledge pertaining to the molecular mode of action of ATP-dependent chromatin remodeling, from single molecule studies to genome-wide genetic and proteomic studies. We focus on the budding yeast versions of SWI/SNF, RSC, DDM1, ISWI, CHD1, INO80 and SWR1.
Collapse
Affiliation(s)
- Joke J F A van Vugt
- Department of Molecular Biology, NCMLS, Radboud University, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
30
|
Alter O. Discovery of principles of nature from mathematical modeling of DNA microarray data. Proc Natl Acad Sci U S A 2006; 103:16063-4. [PMID: 17060616 PMCID: PMC1637536 DOI: 10.1073/pnas.0607650103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Orly Alter
- Department of Biomedical Engineering, Institute for Cellular and Molecular Biology and Institute for Computational Engineering and Sciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|