1
|
Carioscia SA, Biddanda A, Starostik MR, Tang X, Hoffmann ER, Demko ZP, McCoy RC. Common variation in meiosis genes shapes human recombination phenotypes and aneuploidy risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.02.25325097. [PMID: 40321295 PMCID: PMC12047964 DOI: 10.1101/2025.04.02.25325097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The leading cause of human pregnancy loss is aneuploidy, often tracing to errors in chromosome segregation during female meiosis. While abnormal crossover recombination is known to confer risk for aneuploidy, limited data have hindered understanding of the potential shared genetic basis of these key molecular phenotypes. To address this gap, we performed retrospective analysis of preimplantation genetic testing data from 139,416 in vitro fertilized embryos from 22,850 sets of biological parents. By tracing transmission of haplotypes, we identified 3,656,198 crossovers, as well as 92,485 aneuploid chromosomes. Counts of crossovers were lower in aneuploid versus euploid embryos, consistent with their role in chromosome pairing and segregation. Our analyses further revealed that a common haplotype spanning the meiotic cohesin SMC1B is significantly associated with both crossover count and maternal meiotic aneuploidy, with evidence supporting a non-coding cis-regulatory mechanism. Transcriptome- and phenome-wide association tests also implicated variation in the synaptonemal complex component C14orf39 and crossover-regulating ubiquitin ligases CCNB1IP1 and RNF212 in meiotic aneuploidy risk. More broadly, recombination and aneuploidy possess a partially shared genetic basis that also overlaps with reproductive aging traits. Our findings highlight the dual role of recombination in generating genetic diversity, while ensuring meiotic fidelity.
Collapse
Affiliation(s)
| | - Arjun Biddanda
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Xiaona Tang
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Eva R. Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Harper JA, Brown GGB, Neale MJ. Spo11: from topoisomerase VI to meiotic recombination initiator. Biochem Soc Trans 2025; 53:BST20253019. [PMID: 40181639 DOI: 10.1042/bst20253019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Meiotic recombination is required to break up gene linkage and facilitate faithful chromosome segregation during gamete formation. By inducing DNA double-strand breaks, Spo11, a protein that is conserved in all meiotic organisms, initiates the process of recombination. Here, we chart the evolutionary history of Spo11 and compare the protein to its ancestors. Evolving from the A subunit of archaeal topoisomerase VI (Topo VI), a heterotetrameric type II topoisomerase, Spo11 appears to have evolved alongside meiosis and been present in the last eukaryotic common ancestor. There are many differences between Spo11 and TopVIA, particularly in regulation, despite similarities in structure and mechanism of action. Critical to its function as an inducer of recombination, Spo11 has an apparently amputated activity that, unlike topoisomerases, does not re-seal the DNA breaks it creates. We discuss how and why Spo11 has taken its path down the tree of life, considering its regulation and its roles compared with those of its progenitor Topo VI, in both meiotic and non-meiotic species. We find some commonality between different forms and orthologs of Spo11 in different species and touch upon how recent biochemical advances are beginning to finally unlock the molecular secrets hidden within this fundamental yet enigmatic protein.
Collapse
Affiliation(s)
- Jon A Harper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| | - George G B Brown
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| |
Collapse
|
3
|
Raghavan AR, Hochwagen A. Keeping it safe: control of meiotic chromosome breakage. Trends Genet 2025; 41:315-329. [PMID: 39672680 PMCID: PMC11981862 DOI: 10.1016/j.tig.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/15/2024]
Abstract
Meiotic cells introduce numerous programmed DNA double-strand breaks (DSBs) into their genome to stimulate crossover recombination. DSB numbers must be high enough to ensure each homologous chromosome pair receives the obligate crossover required for accurate meiotic chromosome segregation. However, every DSB also increases the risk of aberrant or incomplete DNA repair, and thus genome instability. To mitigate these risks, meiotic cells have evolved an intricate network of controls that modulates the timing, levels, and genomic location of meiotic DSBs. This Review summarizes our current understanding of these controls with a particular focus on the mechanisms that prevent meiotic DSB formation at the wrong time or place, thereby guarding the genome from potentially catastrophic meiotic errors.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
4
|
Raghavan AR, May K, Subramanian VV, Blitzblau HG, Patel NJ, Houseley J, Hochwagen A. Distinct chromatin regulators downmodulate meiotic axis formation and DNA break induction at chromosome ends. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640173. [PMID: 40093131 PMCID: PMC11908166 DOI: 10.1101/2025.02.27.640173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In many organisms, meiotic crossover recombination is suppressed near the extreme ends of chromosomes. Here, we identified two chromatin modifiers, the histone methyltransferase Dot1 and the Sir silencing complex, as regulators of this process in Saccharomyces cerevisiae. We show that the recombination-promoting axis proteins Red1 and Hop1, but not the axis-associated cohesin Rec8, are significantly reduced within 20 kb of telomeres compared to the chromosome interior. Dot1, which preferentially methylates histones in the chromosome interior, is required for this pattern by directing Red1 binding toward the chromosome interior. In parallel, the Sir complex suppresses the induction of meiotic DNA double-strand breaks (DSBs) at chromosome ends. Sir-dependent DSB suppression is independent of axis deposition and occurs in a chromosome end-specific manner that mirrors the spreading and transcriptional silencing activity of the complex, suggesting that the Sir complex suppresses DSB formation by limiting the openness of promoters, the preferred sites of meiotic DSB formation. We conclude that multiple chromatin-based mechanisms collaborate to achieve a robust reduction of meiotic recombination near chromosome ends.
Collapse
Affiliation(s)
| | - Kieron May
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Vijayalakshmi V Subramanian
- Department of Biology, New York University, New York, USA
- Department of Biology, IISER Tirupati, Tirupati, India
| | | | - Neem J Patel
- Department of Biology, New York University, New York, USA
| | | | | |
Collapse
|
5
|
Wedenoja S, Pihlajamäki M, Gissler M, Wedenoja J, Öhman H, Heinonen S, Kere J, Kääriäinen H, Tanner L. Infertility following trisomic pregnancies: A nationwide cohort study. Int J Gynaecol Obstet 2025; 168:326-332. [PMID: 39056516 PMCID: PMC11649879 DOI: 10.1002/ijgo.15828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To study whether gynecologic or reproductive disorders show association with trisomic conceptions. METHODS This nationwide cohort study utilized the Registry of Congenital Malformations to identify women who had a trisomic pregnancy (n = 5784), either with trisomy 13 (T13; n = 351), trisomy 18 (T18; n = 1065) or trisomy 21 (T21; n = 4369) from 1987 to 2018. We used the Finnish Maternity cohort to match the cases to population controls (n = 34 422) on the age, residence, and timing of pregnancy. These data were cross-linked to the ICD-10 diagnoses of the national Care Registry for Health Care data on specialized health care in Finland during 1996 to 2019. Both inflammatory (ICD-10 diagnoses: N70-N77) and noninflammatory disorders of the genital tract (N80-N98) were studied. Crude odds ratios (ORs) with 95% CIs were calculated for associations between diagnoses and trisomic conceptions. RESULTS The diagnosis of female infertility (N97) at any time was associated with trisomic conceptions (OR: 1.19, 95% CI: 1.08-1.32). In the subgroup analysis, this association was found for T18 (OR: 1.29, 95% CI: 1.03-1.61) and T21 (OR: 1.17, 95% CI: 1.04-1.32), but not for T13 (OR: 1.15, 95% CI: 0.75-1.72). When restricting the timing of the diagnosis of female infertility, an elevated OR was found only after the index pregnancy (OR: 1.81, 95% CI: 1.56-2.09). These increased odds for infertility after trisomic conceptions were observed both in women <35 years (T18 OR: 1.91, 95% CI: 1.21-3.00; T21 OR: 1.68, 95% CI: 1.31-2.14) and in women ≥35 years (T18 OR: 2.17, 95% CI: 1.40-3.33; T21 OR: 1.87; 95% CI: 1.47-2.39), but not after T13 conceptions. CONCLUSION Our observational data suggest a link between trisomic conceptions and subsequent diagnoses of infertility but do not demonstrate causality. These data implicate that partially similar mechanisms might predispose to trisomy and infertility, regardless of maternal age.
Collapse
Affiliation(s)
- Satu Wedenoja
- Information BrokersFinnish Institute for Health and WelfareHelsinkiFinland
- Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Stem Cells and Metabolism Research ProgramUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterHelsinkiFinland
| | - Mika Pihlajamäki
- Information BrokersFinnish Institute for Health and WelfareHelsinkiFinland
| | - Mika Gissler
- Information BrokersFinnish Institute for Health and WelfareHelsinkiFinland
- Research Center for Child PsychiatryUniversity of TurkuTurkuFinland
- Region StockholmAcademic Primary Health Care CenterStockholmSweden
- Karolinska InstitutetDepartment of Molecular Medicine and SurgeryStockholmSweden
| | - Juho Wedenoja
- Department of OphthalmologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Hanna Öhman
- Biobank Borealis of Northern FinlandOulu University HospitalOuluFinland
- Faculty of MedicineUniversity of OuluOuluFinland
| | - Seppo Heinonen
- Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Juha Kere
- Stem Cells and Metabolism Research ProgramUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterHelsinkiFinland
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Helena Kääriäinen
- Genomics and Biomarkers UnitNational Institute for Health and WelfareHelsinkiFinland
| | - Laura Tanner
- Department of Clinical GeneticsHelsinki University HospitalHelsinkiFinland
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
6
|
Khurana S, Khalifa AR, Rezallah NN, Lozanoff S, Abdelkarim AZ. Craniofacial and Airway Morphology in Down Syndrome: A Cone Beam Computed Tomography Case Series Evaluation. J Clin Med 2024; 13:3908. [PMID: 38999474 PMCID: PMC11242842 DOI: 10.3390/jcm13133908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Down syndrome (DS) is a genetic condition characterized by an extra copy of chromosome 21, resulting in various physical and cognitive features. This study aimed to comprehensively analyze the dental and craniofacial morphology of individuals with DS using Cone Beam Computed Tomography (CBCT). Methods: Six individuals with DS, comprising five males and one female aged 17 to 35 years, underwent CBCT scanning. Radiographic assessments included dentition, occlusion, paranasal sinuses, airway, skull bones, and suture calcification. Linear and angular cephalometric measurements were performed, and airway analysis was conducted using Dolphin 3D imaging software v.11. Results: The study revealed prognathic maxilla in five patients, prognathic mandible in four, and bimaxillary protrusion in two. Dental findings included microdontia, enamel hypoplasia, and congenitally missing teeth, with maxillary and mandibular third molars most commonly absent. Sinus abnormalities, delayed suture closure, and cervical spine anomalies were also observed. Conclusion: These findings contribute to a deeper understanding of DS-related craniofacial characteristics and emphasize the importance of considering these morphometric features in clinical management strategies for individuals with DS. This study's limited sample size underscores the significance of radiographic assessment in planning interventions such as cosmetic reconstructions, prosthetic rehabilitation, or orthodontic treatment for individuals with DS.
Collapse
Affiliation(s)
- Sonam Khurana
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, NYU College of Dentistry, New York, NY 10010, USA;
| | - Ayman R. Khalifa
- Department of Community Dentistry, College of Dentistry, Gulf Medical University, Ajman 4181, United Arab Emirates;
| | - Nader N. Rezallah
- Division of Oral and Maxillofacial Radiology, College of Dentistry, City University Ajman, Ajman P.O. Box 18484, United Arab Emirates;
| | - Scott Lozanoff
- Department of Anatomy, Biochemistry & Physiology, University of Hawaii School of Medicine, Honolulu, HI 96813, USA;
| | - Ahmed Z. Abdelkarim
- Division of Oral and Maxillofacial Radiology, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Izbassarova A, Zholdybayeva A, Kadrzhanova G, Kashikova K, Izbassarova A, Petrova N, Tolybekova A. A 12-year Life History of a Girl with Profound Intellectual Disability and Leukoencephalopathy: A Rare Clinical Presentation of X Chromosome Pentasomy. Med J Islam Repub Iran 2024; 38:40. [PMID: 38978794 PMCID: PMC11230594 DOI: 10.47176/mjiri.38.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 07/10/2024] Open
Abstract
This paper presents a unique 12-year case analysis of a girl with Penta-X syndrome, a chromosomal abnormality characterized by five X chromosomes instead of the normal two in healthy women. Pentasomy of X is a genetic, but not a hereditary disease affecting only women. Our patient demonstrated delayed mental, speech, and motor development along with physical anomalies such as craniofacial deformities, and eye pathology and was diagnosed with pentasomy of the X chromosome at the age of 3 after a cytogenetic examination. She developed epileptic seizures at the age of nine. Magnetic resonance imaging(MRI) revealed leukoencephalopathy with ventriculomegaly. The peculiarity of this observation is that the polysomy 49, XXXXX detected in the patient is characterized by a typical phenotypic presentation combined with demyelinating leukoencephalopathy, which has not been a typical feature of the disorder.
Collapse
Affiliation(s)
| | | | | | - Khadisha Kashikova
- Caspian University, International School of Medicine, Almaty, Kazakhstan
| | | | - Natalya Petrova
- Caspian University, International School of Medicine, Almaty, Kazakhstan
| | | |
Collapse
|
8
|
Ariad D, Madjunkova S, Madjunkov M, Chen S, Abramov R, Librach C, McCoy RC. Aberrant landscapes of maternal meiotic crossovers contribute to aneuploidies in human embryos. Genome Res 2024; 34:70-84. [PMID: 38071472 PMCID: PMC10903951 DOI: 10.1101/gr.278168.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Meiotic recombination is crucial for human genetic diversity and chromosome segregation accuracy. Understanding its variation across individuals and the processes by which it goes awry are long-standing goals in human genetics. Current approaches for inferring recombination landscapes rely either on population genetic patterns of linkage disequilibrium (LD)-capturing a time-averaged view-or on direct detection of crossovers in gametes or multigeneration pedigrees, which limits data set scale and availability. Here, we introduce an approach for inferring sex-specific recombination landscapes using data from preimplantation genetic testing for aneuploidy (PGT-A). This method relies on low-coverage (<0.05×) whole-genome sequencing of in vitro fertilized (IVF) embryo biopsies. To overcome the data sparsity, our method exploits its inherent relatedness structure, knowledge of haplotypes from external population reference panels, and the frequent occurrence of monosomies in embryos, whereby the remaining chromosome is phased by default. Extensive simulations show our method's high accuracy, even at coverages as low as 0.02×. Applying this method to PGT-A data from 18,967 embryos, we mapped 70,660 recombination events with ∼150 kbp resolution, replicating established sex-specific recombination patterns. We observed a reduced total length of the female genetic map in trisomies compared with disomies, as well as chromosome-specific alterations in crossover distributions. Based on haplotype configurations in pericentromeric regions, our data indicate chromosome-specific propensities for different mechanisms of meiotic error. Our results provide a comprehensive view of the role of aberrant meiotic recombination in the origins of human aneuploidies and offer a versatile tool for mapping crossovers in low-coverage sequencing data from multiple siblings.
Collapse
Affiliation(s)
- Daniel Ariad
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Svetlana Madjunkova
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Siwei Chen
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
| | - Rina Abramov
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
| | - Clifford Librach
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5G 1E2, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
9
|
Ariad D, Madjunkova S, Madjunkov M, Chen S, Abramov R, Librach C, McCoy RC. Aberrant landscapes of maternal meiotic crossovers contribute to aneuploidies in human embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543910. [PMID: 37333422 PMCID: PMC10274764 DOI: 10.1101/2023.06.07.543910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Meiotic recombination is crucial for human genetic diversity and chromosome segregation accuracy. Understanding its variation across individuals and the processes by which it goes awry are long-standing goals in human genetics. Current approaches for inferring recombination landscapes either rely on population genetic patterns of linkage disequilibrium (LD)-capturing a time-averaged view-or direct detection of crossovers in gametes or multi-generation pedigrees, which limits dataset scale and availability. Here, we introduce an approach for inferring sex-specific recombination landscapes using data from preimplantation genetic testing for aneuploidy (PGT-A). This method relies on low-coverage (<0.05×) whole-genome sequencing of in vitro fertilized (IVF) embryo biopsies. To overcome the data sparsity, our method exploits its inherent relatedness structure, knowledge of haplotypes from external population reference panels, as well as the frequent occurrence of monosomies in embryos, whereby the remaining chromosome is phased by default. Extensive simulations demonstrate our method's high accuracy, even at coverages as low as 0.02×. Applying this method to PGT-A data from 18,967 embryos, we mapped 70,660 recombination events with ~150 kbp resolution, replicating established sex-specific recombination patterns. We observed a reduced total length of the female genetic map in trisomies compared to disomies, as well as chromosome-specific alterations in crossover distributions. Based on haplotype configurations in pericentromeric regions, our data indicate chromosome-specific propensities for different mechanisms of meiotic error. Our results provide a comprehensive view of the role of aberrant meiotic recombination in the origins of human aneuploidies and offer a versatile tool for mapping crossovers in low-coverage sequencing data from multiple siblings.
Collapse
Affiliation(s)
- Daniel Ariad
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Svetlana Madjunkova
- CReATe Fertility Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Siwei Chen
- CReATe Fertility Centre, Toronto, Canada
| | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Chan Y, Xu W, Feng Y, Zhang Y, Li S, Geng Z, Liu Z, Zhao Q, Zhang J, Zhu B. Association of TP53 rs1042522 G > C, MDM2 rs2279744 T > G, and miR-34b/c rs4938723 T > C polymorphisms with aneuploidy pregnancy susceptibility. BMC Pregnancy Childbirth 2023; 23:624. [PMID: 37648962 PMCID: PMC10469955 DOI: 10.1186/s12884-023-05945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Aneuploidy pregnancy is a severe major birth defect and causes about 50% spontaneous miscarriages with unknown etiology. To date, only a few epidemiological studies with small sample sizes have investigated the risk factors for aneuploidy pregnancy. TP53, MDM2, and miR-34b/c genes are implicated in tumorigenesis with aneuploidy, yet the function of their polymorphisms in aneuploidy pregnancy susceptibility needs to be clarified. OBJECTIVE To elucidate the association of TP53 rs1042522 G > C, MDM2 rs2279744 309 T > G, and miR-34b/c rs4938723 T > C specific polymorphisms with aneuploidy pregnancy. METHODS In the retrospective case-control study, 330 aneuploidies pregnancy women and 813 normal pregnancy controls were recruited between January 2018 and April 2022 at the First People's Hospital of Yunnan Province, Kunming, China. Three functional polymorphisms, the TP53 rs1042522 G > C (Arg72Pro), MDM2 rs2279744 309 T > G, and miR-34b/c rs4938723 T > C, were genotyped using the snapshot method. RESULTS The frequency distribution of three genotypic variants was not different between case and control pregnant women and was similar to with Hardy-Weinberg Equilibrium (HWE). However, in the younger subgroup (less than 35 years old), a significant difference was detected in allele and recessive model (p = 0.01). In the advanced age subgroup (more than or equal to 35 years old), G of MDM2 rs2279744 T > G revealed a significantly higher frequency in cases than controls (p = 0.045), and miR-34b/c rs4938723 T > C revealed a significant difference under the dominant model (p = 0.03), but no significant differences were observed in other models and in both younger and older subgroup (p > 0.05, respectively). These results suggest that individual polymorphisms were not associated with aneuploidy pregnancy, combined with age, they may serve as a risk factor for aneuploidy pregnancy. CONCLUSION Combination of TP53 rs1042522 G > C, MDM2 rs2279744 T > G, and miR-34b/c rs4938723 T > C polymorphisms with maternal age may be related to aneuploidy pregnancy susceptibility. These findings might elaborate on the genetic etiology of aneuploidy pregnancy.
Collapse
Affiliation(s)
- Ying Chan
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, 650032, China
- Medical Faculty & Affiliated Hospital, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Weiming Xu
- Medical Faculty & Affiliated Hospital, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Yan Feng
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, 650032, China
| | - Yan Zhang
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, 650032, China
| | - Suyun Li
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, 650032, China
| | - Zibiao Geng
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, 650032, China
| | - Zhijiao Liu
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, 650032, China
| | - Qingfen Zhao
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, 650032, China
| | - Jinman Zhang
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, 650032, China
- Medical Faculty & Affiliated Hospital, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Baosheng Zhu
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, 650032, China.
- Medical Faculty & Affiliated Hospital, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China.
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China.
| |
Collapse
|
11
|
Fosu K, Quarshie JT, Sarpong KAN, Aikins AR. Inverse Comorbidity between Down Syndrome and Solid Tumors: Insights from In Silico Analyses of Down Syndrome Critical Region Genes. Genes (Basel) 2023; 14:800. [PMID: 37107558 PMCID: PMC10137705 DOI: 10.3390/genes14040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
An inverse comorbidity has been observed between Down syndrome (DS) and solid tumors such as breast and lung cancers, and it is posited that the overexpression of genes within the Down Syndrome Critical Region (DSCR) of human chromosome 21 may account for this phenomenon. By analyzing publicly available DS mouse model transcriptomics data, we aimed to identify DSCR genes that may protect against human breast and lung cancers. Gene expression analyses with GEPIA2 and UALCAN showed that DSCR genes ETS2 and RCAN1 are significantly downregulated in breast and lung cancers, and their expression levels are higher in triple-negative compared to luminal and HER2-positive breast cancers. KM Plotter showed that low levels of ETS2 and RCAN1 are associated with poor survival outcomes in breast and lung cancers. Correlation analyses using OncoDB revealed that both genes are positively correlated in breast and lung cancers, suggesting that they are co-expressed and perhaps have complementary functions. Functional enrichment analyses using LinkedOmics also demonstrated that ETS2 and RCAN1 expression correlates with T-cell receptor signaling, regulation of immunological synapses, TGF-β signaling, EGFR signaling, IFN-γ signaling, TNF signaling, angiogenesis, and the p53 pathway. Altogether, ETS2 and RCAN1 may be essential for the development of breast and lung cancers. Experimental validation of their biological functions may further unravel their roles in DS and breast and lung cancers.
Collapse
Affiliation(s)
- Kwadwo Fosu
- Department of Biochemistry Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Legon, Accra P.O. Box LG 54, Ghana
| | - Jude Tetteh Quarshie
- Department of Biochemistry Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Kwabena Amofa Nketia Sarpong
- Department of Biochemistry Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Legon, Accra P.O. Box LG 54, Ghana
| | - Anastasia Rosebud Aikins
- Department of Biochemistry Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Legon, Accra P.O. Box LG 54, Ghana
| |
Collapse
|
12
|
Genetic aetiology of Down syndrome birth: novel variants of maternal DNMT3B and RFC1 genes increase risk of meiosis II nondisjunction in the oocyte. Mol Genet Genomics 2023; 298:293-313. [PMID: 36447056 DOI: 10.1007/s00438-022-01981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
The aim of the present work was to explore the intriguing association of maternal folate regulator gene polymorphisms and mutations with the incidence of chromosome 21 nondisjunction and Down syndrome birth. We tested polymorphisms/mutations of DNMT3B and RFC1 genes for their association with meiotic errors in oocyte among the 1215 Down syndrome child-bearing women and 900 controls. We observed that 23 out of 31 variants of DNMT3B and RFC1 exhibited an association with meiosis II nondisjunction in maternal age-independent manner. Additionally, we have reported 17 novel mutations and 1 novel polymorphic variant that are unique to the Indian Bengali speaking cohort and increased odds in favour of meiosis II nondisjunction. We hypothesize that the risk variants and mutations of DNMT3B and RFC1 genes may cause reduction in two or more recombination events and also cause peri-centromeric single exchange that increases the risk of nondisjunction at any age of women. In silico analyses predicted the probable damages of the transcripts or proteins from the respective genes owing to the said polymorphisms. These findings from the largest population sample tested ever revealed that mutations/polymorphisms of the genes DNMT3B and RFC1 impair recombination that leads to chromosome 21 nondisjunction in the oocyte at meiosis II stage and bring us a significant step closer towards understanding the aetiology of chromosome 21 nondisjunction and birth of a child with Down syndrome to women at any age.
Collapse
|
13
|
Vicic A, Stipoljev F. Susceptibility to chromosome instability and occurrence of the regular form of Down syndrome in young couples. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503511. [PMID: 36031329 DOI: 10.1016/j.mrgentox.2022.503511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Although the risk of pregnancy with Down syndrome (DS) increases with age, conceptions with trisomy 21 can occur in mothers aged 35 or less. The micronucleus test on peripheral blood lymphocytes is a well-recognized method for studying chromosomal instability. The aim of this study was to evaluate the application of the micronucleus assay and fluorescence in situ hybridization (FISH) for estimation of chromosome instability and occurrence of trisomy 21 in young parents having pregnancy or a child with the regular form of Down syndrome. The study included 54 parents (27 couples) who had previous pregnancy with trisomy 21 at age 35 or less. The control group consisted of 30 couples with two healthy children and no previous spontaneous abortions. Parents with trisomy 21 pregnancy had significantly higher frequencies of micronuclei in binucleated cells. There was no statistically significant difference between the study and control groups in the frequencies of micronuclei in mononuclear cells, nuclear buds, or nucleoplasmic bridges. FISH analysis showed higher percentages of micronuclei containing whole chromosomes as well as statistically significant higher numbers of micronuclei containing chromosome 21 in the peripheral blood of DS parents. There was no statistically significant difference between the two groups in the responses of peripheral blood lymphocytes to treatment with the mutagen mitomycin C. Our results suggest that young parents with a history of the regular form of Down syndrome have a higher susceptibility to chromosome nondisjunction in peripheral blood lymphocytes. The micronucleus assay showed high specificity, but moderate sensitivity, for risk assessment of trisomy 21 pregnancy.
Collapse
Affiliation(s)
- Ana Vicic
- Cytogenetic Laboratory, Department of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Sveti Duh 64, HR-10000 Zagreb, Croatia; University of Applied Health Sciences, Mlinarska cesta 38, HR-10000 Zagreb, Croatia.
| | - Feodora Stipoljev
- Cytogenetic Laboratory, Department of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Sveti Duh 64, HR-10000 Zagreb, Croatia; Faculty of Medicine, University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| |
Collapse
|
14
|
Pettie N, Llopart A, Comeron JM. Meiotic, genomic and evolutionary properties of crossover distribution in Drosophila yakuba. PLoS Genet 2022; 18:e1010087. [PMID: 35320272 PMCID: PMC8979470 DOI: 10.1371/journal.pgen.1010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/04/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.
Collapse
Affiliation(s)
- Nikale Pettie
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Llopart
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
15
|
Halder P, Pal U, Ganguly A, Ghosh P, Ray A, Sarkar S, Ghosh S. Understanding etiology of chromosome 21 nondisjunction from gene × environment models. Sci Rep 2021; 11:22390. [PMID: 34789805 PMCID: PMC8599692 DOI: 10.1038/s41598-021-01672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Maternal risk factors and their interactions with each other that associate chromosome 21 nondisjunction are intriguing and need incisive study to be resolved. We determined recombination profile of nondisjoined chromosome 21 and maternal genotypes for four selected polymorphic variants from the folate regulators genes stratifying the women according to the origin of segregation error and age at conception. We conducted association study for genotype and maternal addiction to smokeless chewing tobacco, usually chopped tobacco leaves or paste of tobacco leaves with the incidence of Down syndrome birth. Additionally, we designed various logistic regression models to explore the effects of maternal genotype, maternal habit of smokeless chewing tobacco, maternal age at conception and all possible interactions among them on chromosome 21 nondisjunction. We found folate regulator gene mutations are associated with maternal meiosis II error. Regression models revealed smokeless chewing tobacco and folate polymorphic/mutant risk genotype interact with each other to increase the risk of reduced and single peri-centromeric recombination events on chromosome 21 that nondisjoined at meiosis II in the oocytes and the effect is maternal age independent. We inferred maternal folate polymorphic/mutant risk genotypes and habit of smokeless chewing tobacco interact with each other and increase the risk of meiosis II error in oocytes in maternal age-independent manner.
Collapse
Affiliation(s)
- Pinku Halder
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Upamanyu Pal
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Agnish Ganguly
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Papiya Ghosh
- Department of Zoology, Bijoy Krishna Girls' College (Affiliated to University of Calcutta), Howrah, West Bengal, India
| | - Anirban Ray
- Department of Zoology, Bangabasi Morning College (Affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Sumantra Sarkar
- Department of Paediatric Medicine, Diamond Harbour Government Medical College and Hospital, Diamond Harbour, West Bengal, India
| | - Sujay Ghosh
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
16
|
Breuss MW, Yang X, Gleeson JG. Sperm mosaicism: implications for genomic diversity and disease. Trends Genet 2021; 37:890-902. [PMID: 34158173 PMCID: PMC9484299 DOI: 10.1016/j.tig.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
While sperm mosaicism has few consequences for men, the offspring and future generations are unwitting recipients of gonadal cell mutations, often yielding severe disease. Recent studies, fueled by emergent technologies, show that sperm mosaicism is a common source of de novo mutations (DNMs) that underlie severe pediatric disease as well as human genetic diversity. Sperm mosaicism can be divided into three types: Type I arises during sperm meiosis and is non-age dependent; Type II arises in spermatogonia and increases as men age; and Type III arises during paternal embryogenesis, spreads throughout the body, and contributes stably to sperm throughout life. Where Types I and II confer little risk of recurrence, Type III may confer identifiable risk to future offspring. These mutations are likely to be the single largest contributor to human genetic diversity. New sequencing approaches may leverage this framework to evaluate and reduce disease risk for future generations.
Collapse
Affiliation(s)
- Martin W Breuss
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiaoxu Yang
- Rady Children's Institute for Genomic Medicine, Department of Neurosciences, University of California, San Diego, CA, USA
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, Department of Neurosciences, University of California, San Diego, CA, USA.
| |
Collapse
|
17
|
Copy Number Changes and Allele Distribution Patterns of Chromosome 21 in B Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13184597. [PMID: 34572826 PMCID: PMC8465600 DOI: 10.3390/cancers13184597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023] Open
Abstract
Chromosome 21 is the most affected chromosome in childhood acute lymphoblastic leukemia. Many of its numerical and structural abnormalities define diagnostically and clinically important subgroups. To obtain an overview about their types and their approximate genetic subgroup-specific incidence and distribution, we performed cytogenetic, FISH and array analyses in a total of 578 ALL patients (including 26 with a constitutional trisomy 21). The latter is the preferred method to assess genome-wide large and fine-scale copy number abnormalities (CNA) together with their corresponding allele distribution patterns. We identified a total of 258 cases (49%) with chromosome 21-associated CNA, a number that is perhaps lower-than-expected because ETV6-RUNX1-positive cases (11%) were significantly underrepresented in this array-analyzed cohort. Our most interesting observations relate to hyperdiploid leukemias with tetra- and pentasomies of chromosome 21 that develop in constitutionally trisomic patients. Utilizing comparative short tandem repeat analyses, we were able to prove that switches in the array-derived allele patterns are in fact meiotic recombination sites, which only become evident in patients with inborn trisomies that result from a meiosis 1 error. The detailed analysis of such cases may eventually provide important clues about the respective maldistribution mechanisms and the operative relevance of chromosome 21-specific regions in hyperdiploid leukemias.
Collapse
|
18
|
López Rivera JJ, Zapata Arizabaleta M, Castañeda Soler DP, Carrillo YD, Gualdron López O, Forero-Castro M. Prenatal cytogenetic diagnosis: results obtained in the specialized laboratory of Clínica Universitaria Colombia from 2013 to 2019. J Matern Fetal Neonatal Med 2021; 35:7430-7437. [PMID: 34470138 DOI: 10.1080/14767058.2021.1949450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Prenatal cytogenetic evaluation is a key tool for identifying alterations in pregnant women with high risk for fetal chromosomal abnormalities (CA). In Colombia, there are not large-scale reports about the prevalence and pattern of CA in prenatal cytogenetic analysis. METHOD A descriptive study was performed from registers of prenatal cytogenetic analysis on amniotic fluid (AF), chorionic villus biopsy (CVS), and fetal blood (FB) samples sent to the specialized laboratory of the Clínica Universitaria Colombia between 2013 and 2019. RESULTS The prevalence of CA was 20.9%. The trisomies 21, 18, 13, and monosomy X were the most frequent aneuploidies, and the derivative chromosomes were the most frequent structural abnormalities. Although the rate of CA was higher in women over the age of 35 years old; monosomy X, unbalanced rearrangements, and microduplications were associated with the group of women under the age of 35 (p < .05). Trisomies 21 and 18 were the most common aneuploidies identified by FISH and were found to be altered in 52% of the aCGH studies. Ultrasonographic markers associated with CA were the most frequent clinical indication. CONCLUSION In Colombia, the invasive prenatal cytogenetic analysis continues being an important diagnostic tool available for pregnant women with high risk for fetal CA.
Collapse
Affiliation(s)
- Juan Javier López Rivera
- Specialized Laboratory. Clinica Universitaria Colombia. Research Group in Anatomical and Clinical Pathology (INPAC), Bogotá, Colombia
| | - Mónica Zapata Arizabaleta
- Specialized Laboratory. Clinica Universitaria Colombia. Research Group in Anatomical and Clinical Pathology (INPAC), Bogotá, Colombia
| | - Deisy Paola Castañeda Soler
- Science Faculty. Universidad Pedagógica y Tecnológica de Colombia, Grupo de Investigación en Ciencias Biomédicas UPTC (GICBUPTC), Tunja, Colombia
| | - Yina Duley Carrillo
- Specialized Laboratory. Clinica Universitaria Colombia. Research Group in Anatomical and Clinical Pathology (INPAC), Bogotá, Colombia
| | - Orlando Gualdron López
- Specialized Laboratory. Clinica Universitaria Colombia. Research Group in Anatomical and Clinical Pathology (INPAC), Bogotá, Colombia
| | - Maribel Forero-Castro
- Science Faculty. Universidad Pedagógica y Tecnológica de Colombia, Grupo de Investigación en Ciencias Biomédicas UPTC (GICBUPTC), Tunja, Colombia
| |
Collapse
|
19
|
Beverley R, Snook ML, Brieño-Enríquez MA. Meiotic Cohesin and Variants Associated With Human Reproductive Aging and Disease. Front Cell Dev Biol 2021; 9:710033. [PMID: 34409039 PMCID: PMC8365356 DOI: 10.3389/fcell.2021.710033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Successful human reproduction relies on the well-orchestrated development of competent gametes through the process of meiosis. The loading of cohesin, a multi-protein complex, is a key event in the initiation of mammalian meiosis. Establishment of sister chromatid cohesion via cohesin rings is essential for ensuring homologous recombination-mediated DNA repair and future proper chromosome segregation. Cohesin proteins loaded during female fetal life are not replenished over time, and therefore are a potential etiology of age-related aneuploidy in oocytes resulting in decreased fecundity and increased infertility and miscarriage rates with advancing maternal age. Herein, we provide a brief overview of meiotic cohesin and summarize the human genetic studies which have identified genetic variants of cohesin proteins and the associated reproductive phenotypes including primary ovarian insufficiency, trisomy in offspring, and non-obstructive azoospermia. The association of cohesion defects with cancer predisposition and potential impact on aging are also described. Expansion of genetic testing within clinical medicine, with a focus on cohesin protein-related genes, may provide additional insight to previously unknown etiologies of disorders contributing to gamete exhaustion in females, and infertility and reproductive aging in both men and women.
Collapse
Affiliation(s)
- Rachel Beverley
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meredith L Snook
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Miguel Angel Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
20
|
The effect of Telomere Lengthening on Genetic Diseases. JOURNAL OF CONTEMPORARY MEDICINE 2021. [DOI: 10.16899/jcm.756562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Pal U, Halder P, Ray A, Sarkar S, Datta S, Ghosh P, Ghosh S. The etiology of Down syndrome: Maternal MCM9 polymorphisms increase risk of reduced recombination and nondisjunction of chromosome 21 during meiosis I within oocyte. PLoS Genet 2021; 17:e1009462. [PMID: 33750944 PMCID: PMC8021012 DOI: 10.1371/journal.pgen.1009462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
Altered patterns of recombination on 21q have long been associated with the nondisjunction chromosome 21 within oocytes and the increased risk of having a child with Down syndrome. Unfortunately the genetic etiology of these altered patterns of recombination have yet to be elucidated. We for the first time genotyped the gene MCM9, a candidate gene for recombination regulation and DNA repair in mothers with or without children with Down syndrome. In our approach, we identified the location of recombination on the maternal chromosome 21 using short tandem repeat markers, then stratified our population by the origin of meiotic error and age at conception. We observed that twenty-five out of forty-one single nucleotide polymorphic sites within MCM9 exhibited an association with meiosis I error (N = 700), but not with meiosis II error (N = 125). This association was maternal age-independent. Several variants exhibited aprotective association with MI error, some were neutral. Maternal age stratified characterization of cases revealed that MCM9 risk variants were associated with an increased chance of reduced recombination on 21q within oocytes. The spatial distribution of single observed recombination events revealed no significant change in the location of recombination among women harbouring MCM9 risk, protective, or neutral variant. Additionally, we identified a total of six novel polymorphic variants and two novel alleles that were either risk imparting or protective against meiosis I nondisjunction. In silico analyses using five different programs suggest the risk variants either cause a change in protein function or may alter the splicing pattern of transcripts and disrupt the proportion of different isoforms of MCM9 products within oocytes. These observations bring us a significant step closer to understanding the molecular basis of recombination errors in chromosome 21 nondisjunction within oocytes that leads to birth of child with Down syndrome. We studied MCM9 variations in the genome of women with a Down syndrome child by stratifying the women based on MCM9 genotypes, meiotic error group, and their age of conception. We identified polymorphisms are associated with reduced recombination and nondisjunction of chromosome 21 at the meiosis I stage of oogenesis in a maternal age-independent manner. But these variants do not affect the position of chiasma formation. In Silico analyses revealed the presence of MCM9 variants that may cause alteration in protein function due to amino acid substitution. We also identified splice variants in MCM9. We hypothesize that the polymorphisms in MCM9 predispose women to experience reduced recombination on chromosome 21 in oocytes at meiosis I, which ultimately leads to the birth of a child with Down syndrome.
Collapse
Affiliation(s)
- Upamanyu Pal
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath Palit Siksha Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
| | - Pinku Halder
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath Palit Siksha Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
| | - Anirban Ray
- Department of Zoology, Bangabasi Morning College (affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Sumantra Sarkar
- Department of Paediatric Medicine, Institute of Post Graduate Medical Education and Research (IPGMER), Bhowanipore, Kolkata, West Bengal, India
- Department of Paediatric Medicine, Diamond Harbour Government Medical College & Hospital, Diamond Harbour, West Bengal, India
| | - Supratim Datta
- Department of Paediatric Medicine, Institute of Post Graduate Medical Education and Research (IPGMER), Bhowanipore, Kolkata, West Bengal, India
| | - Papiya Ghosh
- Department of Zoology, Bijoykrishna Girls’ College (Affiliated to University of Calcutta), Howrah, West Bengal, India
| | - Sujay Ghosh
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath Palit Siksha Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
22
|
Chernus JM, Sherman SL, Feingold E. Analyses stratified by maternal age and recombination further characterize genes associated with maternal nondisjunction of chromosome 21. Prenat Diagn 2021; 41:591-609. [PMID: 33596328 DOI: 10.1002/pd.5919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/17/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE In our previous work, we performed the first genome-wide association study to find genetic risk factors for maternal nondisjunction of chromosome 21. The objective of the current work was to perform stratified analyses of the same dataset to further elucidate potential mechanisms of genetic risk factors. METHODS We focused on loci that were statistically significantly associated with maternal nondisjunction based on this same dataset in our previous study and performed stratified association analyses in seven subgroups defined by age and meiotic recombination profile. In each analysis, we contrasted a different subgroup of mothers with the same set of fathers, the mothers serving as cases (phenotype: meiotic nondisjunction of chromosome 21) and the fathers as controls. RESULTS Our stratified analyses identified several genes whose patterns of association are consistent with generalized effects across groups, as well as other genes that are consistent with specific effects in certain groups. CONCLUSIONS While our results are epidemiological in nature and cannot conclusively prove mechanisms, we identified a number of patterns that are consistent with specific mechanisms. In many cases those mechanisms are strongly supported by available literature on the associated genes.
Collapse
Affiliation(s)
- Jonathan M Chernus
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Duchon A, Del Mar Muniz Moreno M, Martin Lorenzo S, Silva de Souza MP, Chevalier C, Nalesso V, Meziane H, Loureiro de Sousa P, Noblet V, Armspach JP, Brault V, Herault Y. Multi-influential genetic interactions alter behaviour and cognition through six main biological cascades in Down syndrome mouse models. Hum Mol Genet 2021; 30:771-788. [PMID: 33693642 PMCID: PMC8161522 DOI: 10.1093/hmg/ddab012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is the most common genetic form of intellectual disability caused by the presence of an additional copy of human chromosome 21 (Hsa21). To provide novel insights into genotype–phenotype correlations, we used standardized behavioural tests, magnetic resonance imaging and hippocampal gene expression to screen several DS mouse models for the mouse chromosome 16 region homologous to Hsa21. First, we unravelled several genetic interactions between different regions of chromosome 16 and how they contribute significantly to altering the outcome of the phenotypes in brain cognition, function and structure. Then, in-depth analysis of misregulated expressed genes involved in synaptic dysfunction highlighted six biological cascades centred around DYRK1A, GSK3β, NPY, SNARE, RHOA and NPAS4. Finally, we provide a novel vision of the existing altered gene–gene crosstalk and molecular mechanisms targeting specific hubs in DS models that should become central to better understanding of DS and improving the development of therapies.
Collapse
Affiliation(s)
- Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Maria Del Mar Muniz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Sandra Martin Lorenzo
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Marcia Priscilla Silva de Souza
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Claire Chevalier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Valérie Nalesso
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), CELPHEDIA, PHENOMIN, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | | | - Vincent Noblet
- Université de Strasbourg, CNRS UMR 7357, ICube, FMTS, 67000 Strasbourg, France
| | - Jean-Paul Armspach
- Université de Strasbourg, CNRS UMR 7357, ICube, FMTS, 67000 Strasbourg, France
| | - Veronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France.,Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), CELPHEDIA, PHENOMIN, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
24
|
Hassold TJ, Hunt PA. Missed connections: recombination and human aneuploidy. Prenat Diagn 2021; 41:584-590. [PMID: 33484483 DOI: 10.1002/pd.5910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
The physical exchange of DNA between homologs, crossing-over, is essential to orchestrate the unique, reductional first meiotic division (MI). In females, the events of meiotic recombination that serve to tether homologs and facilitate their disjunction at MI occur during fetal development, preceding the MI division by several decades in our species. Data from studies in humans and mice demonstrate that placement of recombination sites during fetal development influences the likelihood of an MI nondisjunction event that results in the production of an aneuploid egg. Here we briefly summarize what we know about the relationship between aneuploidy and meiotic recombination and important considerations for the future of human assisted reproduction.
Collapse
Affiliation(s)
- Terry J Hassold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, USA
| | - Patricia A Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, USA
| |
Collapse
|
25
|
Hassold T, Maylor-Hagen H, Wood A, Gruhn J, Hoffmann E, Broman KW, Hunt P. Failure to recombine is a common feature of human oogenesis. Am J Hum Genet 2021; 108:16-24. [PMID: 33306948 PMCID: PMC7820622 DOI: 10.1016/j.ajhg.2020.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Failure of homologous chromosomes to recombine is arguably the most important cause of human meiotic nondisjunction, having been linked to numerous autosomal and sex chromosome trisomies of maternal origin. However, almost all information on these "exchangeless" homologs has come from genetic mapping studies of trisomic conceptuses, so the incidence of this defect and its impact on gametogenesis are not clear. If oocytes containing exchangeless homologs are selected against during meiosis, the incidence may be much higher in developing germ cells than in zygotes. To address this, we initiated studies of exchangeless chromosomes in fetal ovarian samples from elective terminations of pregnancy. In total, we examined more than 7,000 oocytes from 160 tissue samples, scoring for the number of foci per cell of the crossover-associated protein MLH1. We identified a surprisingly high level of recombination failure, with more than 7% of oocytes containing at least one chromosome pair that lacked an MLH1 focus. Detailed analyses indicate striking chromosome-specific differences, with a preponderance of MLH1-less homologs involving chromosomes 21 or 22. Further, the effect was linked to the overall level of recombination in the cell, with the presence of one or two exchangeless chromosomes in a cell associated with a 10%-20% reduction in the total number of crossovers. This suggests individuals with lower rates of meiotic recombination are at an increased risk of producing aneuploid offspring.
Collapse
Affiliation(s)
- Terry Hassold
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| | - Heather Maylor-Hagen
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Anna Wood
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Jennifer Gruhn
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, NK 2200, Denmark
| | - Eva Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, NK 2200, Denmark
| | - Karl W Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53706, USA
| | - Patricia Hunt
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
26
|
Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 785:108320. [PMID: 32800274 DOI: 10.1016/j.mrrev.2020.108320] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022]
Abstract
It is well established that maternal age is associated with a rapid decline in the production of healthy and high-quality oocytes resulting in reduced fertility in women older than 35 years of age. In particular, chromosome segregation errors during meiotic divisions are increasingly common and lead to the production of oocytes with an incorrect number of chromosomes, a condition known as aneuploidy. When an aneuploid oocyte is fertilized by a sperm it gives rise to an aneuploid embryo that, except in rare situations, will result in a spontaneous abortion. As females advance in age, they are at higher risk of infertility, miscarriage, or having a pregnancy affected by congenital birth defects such as Down syndrome (trisomy 21), Edwards syndrome (trisomy 18), and Turner syndrome (monosomy X). Here, we review the potential molecular mechanisms associated with increased chromosome segregation errors during meiosis as a function of maternal age. Our review shows that multiple exogenous and endogenous factors contribute to the age-related increase in oocyte aneuploidy. Specifically, the weight of evidence indicates that recombination failure, cohesin deterioration, spindle assembly checkpoint (SAC) disregulation, abnormalities in post-translational modification of histones and tubulin, and mitochondrial dysfunction are the leading causes of oocyte aneuploidy associated with maternal aging. There is also growing evidence that dietary and other bioactive interventions may mitigate the effect of maternal aging on oocyte quality and oocyte aneuploidy, thereby improving fertility outcomes. Maternal age is a major concern for aneuploidy and genetic disorders in the offspring in the context of an increasing proportion of mothers having children at increasingly older ages. A better understanding of the mechanisms associated with maternal aging leading to aneuploidy and of intervention strategies that may mitigate these detrimental effects and reduce its occurrence are essential for preventing abnormal reproductive outcomes in the human population.
Collapse
Affiliation(s)
- Myy Mikwar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada
| | - Amanda J MacFarlane
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada
| | - Francesco Marchetti
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Mechanistic Studies Division, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
27
|
Hassan NM, Buldt AK, Shields N, Landorf KB, Menz HB, Munteanu SE. Reproducibility of foot dimensions measured from 3-dimensional foot scans in children and adolescents with Down syndrome. J Foot Ankle Res 2020; 13:31. [PMID: 32498702 PMCID: PMC7271427 DOI: 10.1186/s13047-020-00403-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Children and adolescents with Down syndrome have a distinctive foot shape (such as wide and flat feet) that often leads to difficulty with footwear fitting. 3-dimensional (3D) scanning can accurately measure the foot dimensions of individuals with Down syndrome, which may assist shoe fit. However, the reproducibility of measuring foot dimensions using 3D scans in children and adolescents with Down syndrome is unknown. The aim of this study was to determine the intra- and inter-rater reproducibility of measuring foot dimensions of children and adolescents with Down syndrome using 3D scanning. METHODS 3D foot scans of 30 participants with Down syndrome aged 5 to 17 years were obtained using the FotoScan 3D scanner. Foot dimensions assessed were foot length, ball of foot length, outside ball of foot length, diagonal foot width, horizontal foot width, heel width, ball girth, instep girth, first and fifth toe height, and instep height. Additionally, the Wesjflog Index and forefoot shape were determined. Measurements were completed by two raters independently on two separate occasions, 2 weeks apart. Intra- and inter-rater reliability were assessed using intra-class correlation coefficients (ICCs) and Gwet's AC1 statistics with 95% confidence intervals. Agreement was determined by calculating limits of agreement (LOA) and percentage agreement. RESULTS Eighteen participants were female and 12 were male (mean age 10.6 [3.9] years). Intra-rater reproducibility (ICCs ranged from 0.74 to 0.99, 95% LOA from - 13.7 mm to 16.3 mm) and inter-rater reproducibility (ICCs ranging from 0.73 to 0.99, 95% LOA from - 18.8 mm to 12.7 mm) was good to excellent, although some measurements (ball of foot length, outside ball of foot length, heel width and girth measurements) displayed wider LOAs indicating relatively poorer agreement. Forefoot shape displayed substantial to almost perfect reliability (Gwet's AC1 0.68 to 0.85) and percentage agreement ranged from 73 to 87%, indicating acceptable agreement. CONCLUSIONS The measurement of specific foot dimensions of children and adolescents with Down syndrome using 3D scans is reproducible. Findings of this study may be used to support future research measuring specific foot dimensions of children and adolescents with Down syndrome using 3D foot scans.
Collapse
Affiliation(s)
- Nirmeen M Hassan
- Discipline of Podiatry, School of Allied Health, Human Services and Sport, La Trobe University, Victoria, 3086, Australia. .,Living with Disability Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Victoria, 3086, Australia.
| | - Andrew K Buldt
- Discipline of Podiatry, School of Allied Health, Human Services and Sport, La Trobe University, Victoria, 3086, Australia.,La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, Victoria, 3086, Australia
| | - Nora Shields
- Living with Disability Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Victoria, 3086, Australia.,La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, Victoria, 3086, Australia.,Discipline of Physiotherapy, School of Allied Health, Human Services and Sport, La Trobe University, Victoria, 3086, Australia
| | - Karl B Landorf
- Discipline of Podiatry, School of Allied Health, Human Services and Sport, La Trobe University, Victoria, 3086, Australia.,Living with Disability Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Victoria, 3086, Australia.,La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, Victoria, 3086, Australia
| | - Hylton B Menz
- Discipline of Podiatry, School of Allied Health, Human Services and Sport, La Trobe University, Victoria, 3086, Australia.,La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, Victoria, 3086, Australia
| | - Shannon E Munteanu
- Discipline of Podiatry, School of Allied Health, Human Services and Sport, La Trobe University, Victoria, 3086, Australia.,La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, Victoria, 3086, Australia
| |
Collapse
|
28
|
Xu X, Zhang X, Han J, Adamu Y, Zhang B. Potential Increased Risk of Trisomy 18 Observed After a Fertilizer Warehouse Fire in Brazos County and TX. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072561. [PMID: 32276490 PMCID: PMC7177937 DOI: 10.3390/ijerph17072561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/05/2022]
Abstract
Background: In this paper, we aimed to investigate the potential impacts of a fire accident in a fertilizer warehouse on chromosomal anomalies, including Trisomy 21 (T21) and Trisomy (T18) among pregnancies in Brazos County, Texas. We conducted an observational study in Brazos County, TX, with all patients of T18 and T21 cases in the live births in Brazos County between 2005–2014. The prevalence of T18 and T21 before, during, and after the accident in Brazos County were calculated and compared. The Standardized Morbidity Ratio (SMR) was applied to compare the prevalence of T18 and T21 in Brazos County to the statewide prevalence in Texas after adjusting for maternal race and age. Compared with statewide risk, the risk of T18 during the impacted years in Brazos county was found to be significantly higher (SMR = 5.0, 95% Confidence Interval(CI): 2.19–9.89), while there was no significant difference before (SMR = 0.77, 0.13–2.54) and after the accident (SMR = 0.71, 0.12–2.36). However, the prevalence of T21 during the impacted years was not significantly different from those before or after the accident. This study conclusively suggests that this fertilizer fire may be related to the increased prevalence of T18 in Brazos County, though the findings warrant further investigation.
Collapse
Affiliation(s)
- Xiaohui Xu
- Correspondence: ; Tel.: +979-436-9500; Fax: 979-458-1877
| | | | | | | | | |
Collapse
|
29
|
Antonarakis SE, Skotko BG, Rafii MS, Strydom A, Pape SE, Bianchi DW, Sherman SL, Reeves RH. Down syndrome. Nat Rev Dis Primers 2020; 6:9. [PMID: 32029743 PMCID: PMC8428796 DOI: 10.1038/s41572-019-0143-7] [Citation(s) in RCA: 463] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Trisomy 21, the presence of a supernumerary chromosome 21, results in a collection of clinical features commonly known as Down syndrome (DS). DS is among the most genetically complex of the conditions that are compatible with human survival post-term, and the most frequent survivable autosomal aneuploidy. Mouse models of DS, involving trisomy of all or part of human chromosome 21 or orthologous mouse genomic regions, are providing valuable insights into the contribution of triplicated genes or groups of genes to the many clinical manifestations in DS. This endeavour is challenging, as there are >200 protein-coding genes on chromosome 21 and they can have direct and indirect effects on homeostasis in cells, tissues, organs and systems. Although this complexity poses formidable challenges to understanding the underlying molecular basis for each of the many clinical features of DS, it also provides opportunities for improving understanding of genetic mechanisms underlying the development and function of many cell types, tissues, organs and systems. Since the first description of trisomy 21, we have learned much about intellectual disability and genetic risk factors for congenital heart disease. The lower occurrence of solid tumours in individuals with DS supports the identification of chromosome 21 genes that protect against cancer when overexpressed. The universal occurrence of the histopathology of Alzheimer disease and the high prevalence of dementia in DS are providing insights into the pathology and treatment of Alzheimer disease. Clinical trials to ameliorate intellectual disability in DS signal a new era in which therapeutic interventions based on knowledge of the molecular pathophysiology of DS can now be explored; these efforts provide reasonable hope for the future.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
| | - Brian G Skotko
- Down Syndrome Program, Division of Medical Genetics, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael S Rafii
- Keck School of Medicine of University of Southern California, California, CA, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sarah E Pape
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Diana W Bianchi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
The association between maternal occupation and down syndrome: A report from the national Down syndrome project. Int J Hyg Environ Health 2020; 223:207-213. [DOI: 10.1016/j.ijheh.2019.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 01/13/2023]
|
31
|
A candidate gene analysis and GWAS for genes associated with maternal nondisjunction of chromosome 21. PLoS Genet 2019; 15:e1008414. [PMID: 31830031 PMCID: PMC6932832 DOI: 10.1371/journal.pgen.1008414] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/26/2019] [Accepted: 09/11/2019] [Indexed: 01/21/2023] Open
Abstract
Human nondisjunction errors in oocytes are the leading cause of pregnancy loss, and for pregnancies that continue to term, the leading cause of intellectual disabilities and birth defects. For the first time, we have conducted a candidate gene and genome-wide association study to identify genes associated with maternal nondisjunction of chromosome 21 as a first step to understand predisposing factors. A total of 2,186 study participants were genotyped on the HumanOmniExpressExome-8v1-2 array. These participants included 749 live birth offspring with standard trisomy 21 and 1,437 parents. Genotypes from the parents and child were then used to identify mothers with nondisjunction errors derived in the oocyte and to establish the type of error (meiosis I or meiosis II). We performed a unique set of subgroup comparisons designed to leverage our previous work suggesting that the etiologies of meiosis I and meiosis II nondisjunction differ for trisomy 21. For the candidate gene analysis, we selected genes associated with chromosome dynamics early in meiosis and genes associated with human global recombination counts. Several candidate genes showed strong associations with maternal nondisjunction of chromosome 21, demonstrating that genetic variants associated with normal variation in meiotic processes can be risk factors for nondisjunction. The genome-wide analysis also suggested several new potentially associated loci, although follow-up studies using independent samples are required. Approximately one of every 700 babies is born with trisomy 21—an extra copy of chromosome 21. Trisomy 21 is caused by the failure of chromosomes to segregate properly during meiosis, generally in the mother. Past studies have defined altered patterns of recombination along nondisjoined chromosomes as risk factors for human nondisjunction and model systems have clearly shown that specific genes involved recombination and other early meiotic processes play a role in the fidelity of chromosome segregation. However, no genome-wide genetic study (GWAS) has ever been conducted using maternal human nondisjunction as the disease phenotype. This study takes the first step to understand predisposing factors. We used chromosome 21 genotypes from the parents and child to identify mothers with nondisjunction errors derived in the oocyte and to establish the type of error (meiosis I or meiosis II). We then conducted a unique set of subgroup comparisons designed to leverage our previous work that shows that the etiologies of meiosis I and meiosis II nondisjunction differ for trisomy 21. Both the candidate gene study and the GWAS provide evidence that meiotic-specific structures and processes are vulnerable to genetic variants that lead to increased risk of human chromosome nondisjunction.
Collapse
|
32
|
Halder P, Pal U, Ray A, Sarkar S, Dutta S, Ghosh S. Polymorphisms of folate metabolism regulators increase risk of meiosis II nondisjunction of chromosome 21 in oocyte. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
33
|
Eyster C, Chuong HH, Lee CY, Pezza RJ, Dawson D. The pericentromeric heterochromatin of homologous chromosomes remains associated after centromere pairing dissolves in mouse spermatocyte meiosis. Chromosoma 2019; 128:355-367. [PMID: 31165256 PMCID: PMC6823320 DOI: 10.1007/s00412-019-00708-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 01/27/2023]
Abstract
In meiosis, crossovers between homologous chromosomes link them together. This enables them to attach to microtubules of the meiotic spindle as a unit, such that the homologs will be pulled away from one another at anaphase I. Homologous pairs can sometimes fail to become linked by crossovers. In some organisms, these non-exchange partners are still able to segregate properly. In several organisms, associations between the centromeres of non-exchange partners occur in meiotic prophase. These associations have been proposed to promote segregation in meiosis I. But it is unclear how centromere pairing could promote subsequent proper segregation. Here we report that meiotic centromere pairing of chromosomes in mouse spermatocytes allows the formation of an association between chromosome pairs. We find that heterochromatin regions of homologous centromeres remain associated even after centromere-pairing dissolves. Our results suggest the model that, in mouse spermatocytes, heterochromatin maintains the association of homologous centromeres in the absence crossing-over.
Collapse
Affiliation(s)
- Craig Eyster
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Hoa H Chuong
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Chih-Ying Lee
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Roberto J Pezza
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| | - Dean Dawson
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
34
|
DNA damage in aging, the stem cell perspective. Hum Genet 2019; 139:309-331. [PMID: 31324975 DOI: 10.1007/s00439-019-02047-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
DNA damage is one of the most consistent cellular process proposed to contribute to aging. The maintenance of genomic and epigenomic integrity is critical for proper function of cells and tissues throughout life, and this homeostasis is under constant strain from both extrinsic and intrinsic insults. Considering the relationship between lifespan and genotoxic burden, it is plausible that the longest-lived cellular populations would face an accumulation of DNA damage over time. Tissue-specific stem cells are multipotent populations residing in localized niches and are responsible for maintaining all lineages of their resident tissue/system throughout life. However, many of these stem cells are impacted by genotoxic stress. Several factors may dictate the specific stem cell population response to DNA damage, including the niche location, life history, and fate decisions after damage accrual. This leads to differential handling of DNA damage in different stem cell compartments. Given the importance of adult stem cells in preserving normal tissue function during an individual's lifetime, DNA damage sensitivity and accumulation in these compartments could have crucial implications for aging. Despite this, more support for direct functional effects driven by accumulated DNA damage in adult stem cell compartments is needed. This review will present current evidence for the accumulation and potential influence of DNA damage in adult tissue-specific stem cells and propose inquiry directions that could benefit individual healthspan.
Collapse
|
35
|
Shugoshin protects centromere pairing and promotes segregation of nonexchange partner chromosomes in meiosis. Proc Natl Acad Sci U S A 2019; 116:9417-9422. [PMID: 31019073 PMCID: PMC6511000 DOI: 10.1073/pnas.1902526116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Faithful chromosome segregation during meiosis I depends upon the formation of connections between homologous chromosomes. Crossovers between homologs connect the partners, allowing them to attach to the meiotic spindle as a unit, such that they migrate away from one another at anaphase I. Homologous partners also become connected by pairing of their centromeres in meiotic prophase. This centromere pairing can promote proper segregation at anaphase I of partners that have failed to become joined by a crossover. Centromere pairing is mediated by synaptonemal complex (SC) proteins that persist at the centromere when the SC disassembles. Here, using mouse spermatocyte and yeast model systems, we tested the role of shugoshin in promoting meiotic centromere pairing by protecting centromeric synaptonemal components from disassembly. The results show that shugoshin protects the centromeric SC in meiotic prophase and, in anaphase, promotes the proper segregation of partner chromosomes that are not linked by a crossover.
Collapse
|
36
|
Salehi P, Herzig L, Capone G, Lu A, Oron AP, Kim SJ. Comparison of Aberrant Behavior Checklist profiles across Prader-Willi syndrome, Down syndrome, and autism spectrum disorder. Am J Med Genet A 2018; 176:2751-2759. [DOI: 10.1002/ajmg.a.40665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/12/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Parisa Salehi
- Seattle Children's Hospital, Division of Endocrine; University of Washington; Seattle Washington
| | - Lisa Herzig
- Seattle Children's Hospital, Division of Developmental Medicine; University of Washington; Seattle Washington
| | - George Capone
- Kennedy Krieger Institute, Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Amanda Lu
- Seattle Children's Hospital; University of Washington; Seattle Washington
| | - Assaf P. Oron
- Epidemiology Section; Institute for Disease Modeling; Bellevue Washington
| | - Soo-Jeong Kim
- Seattle Children's Hospital, Division of Psychiatry; University of Washington; Seattle Washington
| |
Collapse
|
37
|
Ray A, Oliver TR, Halder P, Pal U, Sarkar S, Dutta S, Ghosh S. Risk of Down syndrome birth: Consanguineous marriage is associated with maternal meiosis-II nondisjunction at younger age and without any detectable recombination error. Am J Med Genet A 2018; 176:2342-2349. [PMID: 30240118 DOI: 10.1002/ajmg.a.40511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 05/17/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
Abstract
Consanguineous marriage was examined as a risk factor for Down syndrome birth. We genotyped Down syndrome family trios using short tandem repeat markers on 21q-to interpret the parental and meiotic stage of origin of errors as well as to record recombination profile along long arm of chromosome 21. We then compared nonconsanguineous (N = 811) group with-the consanguineous (N =157) marriages. We report for the first time that consanguineous marriage is associated with an increased risk for nondisjunction of chromosome 21 in oocytes-during the second meiotic division. We observed the absence of recombination more frequently in younger mothers in nonconsanguineous meiosis I cases. This was in contrast to an equal distribution of nonrecombinant cases across the age categories in the meiosis I consanguineous group. Moreover, the non-consanguineous group exhibited preferential telomeric recombination in meiosis I error among younger women and centromeric recombination in meiosis II errors in older women. In contrast, the consanguineous group exhibited medially placed recombination events in both meiosis I and meiosis II nondisjunction errors. Additionally, we recorded reduced maternal age at conception in the-consanguineous group. These findings suggest novel risk factors associated that increase the risk of chromosome 21 nondisjunction in the families with consanguinity.
Collapse
Affiliation(s)
- Anirban Ray
- Cytogenetics & Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
| | | | - Pinku Halder
- Cytogenetics & Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
| | - Upamanyu Pal
- Cytogenetics & Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
| | - Sumantra Sarkar
- Department of Pediatric Medicine, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Supratim Dutta
- Department of Pediatric Medicine, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Sujay Ghosh
- Cytogenetics & Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
| |
Collapse
|
38
|
Saiyed N, Bakshi S, Muthuswamy S, Agarwal S. Young mothers and higher incidence of maternal meiosis-I non- disjunction: Interplay of environmental exposure and genetic alterations during halt phase in trisomy 21. Reprod Toxicol 2018; 79:1-7. [PMID: 29702247 DOI: 10.1016/j.reprotox.2018.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022]
Abstract
Trisomy 21 is a genetic condition caused when chromosomes fail to separate during meiosis. We have studied conventional karyotype and QF-PCR using STR markers with high polymorphism and heterogeneity and the results were analyzed, to determine the paternal and meiotic origin of trisomy 21. This study was conducted using a detailed questionnaire to include: paternal, maternal, clinical and family history for various confounding factors such as age and regional environmental exposures where the parents resided. Out of 120 samples 95% (N = 114) were of maternal origin, including 92% (N = 105) of meiosis 1 errors and 8% (N = 9) meiosis 2 errors. Paternal origin accounted for 5% (N = 6) and were all due to meiosis-I errors. The higher incidence of maternal meiosis-I observed in the present study suggests that human trisomy 21 non-disjunction is a result of multiple factors contributing to the origin of the genetic condition.
Collapse
Affiliation(s)
- Nazia Saiyed
- Institute of Science, Nirma University, S.G Highway, Ahmedabad, Gujarat, 382481, India
| | - Sonal Bakshi
- Institute of Science, Nirma University, S.G Highway, Ahmedabad, Gujarat, 382481, India.
| | - Srinivasan Muthuswamy
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Sarita Agarwal
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, Uttar Pradesh, 226014, India
| |
Collapse
|
39
|
Greaney J, Wei Z, Homer H. Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors. Hum Reprod Update 2017; 24:135-161. [PMID: 29244163 DOI: 10.1093/humupd/dmx035] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Meiotic chromosome segregation in human oocytes is notoriously error-prone, especially with ageing. Such errors markedly reduce the reproductive chances of increasing numbers of women embarking on pregnancy later in life. However, understanding the basis for these errors is hampered by limited access to human oocytes. OBJECTIVE AND RATIONALE Important new discoveries have arisen from molecular analyses of human female recombination and aneuploidy along with high-resolution analyses of human oocyte maturation and mouse models. Here, we review these findings to provide a contemporary picture of the key players choreographing chromosome segregation in mammalian oocytes and the cellular basis for errors. SEARCH METHODS A search of PubMed was conducted using keywords including meiosis, oocytes, recombination, cohesion, cohesin complex, chromosome segregation, kinetochores, spindle, aneuploidy, meiotic cell cycle, spindle assembly checkpoint, anaphase-promoting complex, DNA damage, telomeres, mitochondria, female ageing and female fertility. We extracted papers focusing on mouse and human oocytes that best aligned with the themes of this review and that reported transformative and novel discoveries. OUTCOMES Meiosis incorporates two sequential rounds of chromosome segregation executed by a spindle whose component microtubules bind chromosomes via kinetochores. Cohesion mediated by the cohesin complex holds chromosomes together and should be resolved at the appropriate time, in a specific step-wise manner and in conjunction with meiotically programmed kinetochore behaviour. In women, the stage is set for meiotic error even before birth when female-specific crossover maturation inefficiency leads to the formation of at-risk recombination patterns. In adult life, multiple co-conspiring factors interact with at-risk crossovers to increase the likelihood of mis-segregation. Available evidence support that these factors include, but are not limited to, cohesion deterioration, uncoordinated sister kinetochore behaviour, erroneous microtubule attachments, spindle instability and structural chromosomal defects that impact centromeres and telomeres. Data from mice indicate that cohesin and centromere-specific histones are long-lived proteins in oocytes. Since these proteins are pivotal for chromosome segregation, but lack any obvious renewal pathway, their deterioration with age provides an appealing explanation for at least some of the problems in older oocytes. WIDER IMPLICATIONS Research in the mouse model has identified a number of candidate genes and pathways that are important for chromosome segregation in this species. However, many of these have not yet been investigated in human oocytes so it is uncertain at this stage to what extent they apply to women. The challenge for the future involves applying emerging knowledge of female meiotic molecular regulation towards improving clinical fertility management.
Collapse
Affiliation(s)
- Jessica Greaney
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Zhe Wei
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Hayden Homer
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| |
Collapse
|
40
|
Gu Y. Association between polymorphisms in folate metabolism genes and maternal risk for Down syndrome: A meta-analysis. Mol Clin Oncol 2017; 7:367-377. [PMID: 28781813 PMCID: PMC5532847 DOI: 10.3892/mco.2017.1338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/26/2017] [Indexed: 01/09/2023] Open
Abstract
Previous studies have focused on the association between polymorphisms of the genes involved in folate metabolism and Down syndrome (DS); however, the results remain inconclusive. The present meta-analysis was conducted to assess the association between RFC-1 A80G/MTR A2756G/CBS 844ins68 polymorphisms and the maternal risk of DS. Published studies were retrieved from PubMed, Embase, China National Knowledge Infrastructure and Chinese Biomedicine databases. Pooled odds ratios (ORs) with 95% confidence interval (CIs) were calculated using the fixed- or random-effects model. Additionally, test of heterogeneity, cumulative meta-analysis, sensitivity analysis and assessment of bias were also performed. Finally, 11, 11 and 6 studies were deemed eligible for meta-analyses of RFC-1 A80G, MTR A2756G and CBS 844ins68, respectively. A significant association between RFC-1 A80G polymorphism and DS risk was observed for G vs. A (OR=1.19, 95% CI: 1.004-1.40, P=0.04) and the recessive model (OR=1.28, 95% CI: 1.05-1.56, P=0.01). In the stratified analysis by source of control or sample size, a significantly increased risk was observed among hospital-based studies and large-sample groups (>200 subjects), respectively. In addition, the cumulative meta-analysis of the RFC-1 A80G variant revealed a trend toward an association as the amount of data increased. However, for the MTR A2756G and CBS 844ins68 polymorphisms, no obvious association was found for all genetic models. In summary, the present meta-analysis demonstrated that RFC-1 A80G, but not MTR A2756G or CBS 844ins68, was considered as a maternal risk factor for DS in the offspring.
Collapse
Affiliation(s)
- Yanqing Gu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
41
|
Aloui M, Nasri K, Jemaa NB, Sahraoui M, Masmoudi A, Zghal D, Chelli D, Chaâbouni H, Hamida AMB, Siala Gaigi S, Marrakchi R. Fetopathological examination for the fetuses with Down syndrome in Tunisia: Epidemiological study and associated malformations. Pathol Res Pract 2017; 213:1200-1206. [PMID: 28736088 DOI: 10.1016/j.prp.2017.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/19/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND For Down syndrome (DS), traditional epidemiological studies to determine the prevalence, cause, and clinical significance of the syndrome have been conducted over the last 100 years. In Tunisia, the current work is the first in-depth study in epidemiology of DS from fetopathological data. AIM OF THE STUDY The aim of this epidemiological study was to determine the impact of some feto-maternal characteristics in occurrence of DS and to search the frequency of associated congenital malformations with this syndrome. METHODS Our retrospective study was realized for 144 fetuses with DS among 9321 autopsied fetuses in embryo-fetopathological service between 1994 and 2011. RESULTS In our study, the majority of mothers (72.91%) were 35 years and older, with a statistically significant difference (p<10-6, OR=16.7, CI=8.7-32.4). The abnormalities of extremities (31%) were the most common fetal abnormalities followed by facial (23.51%) and digestive abnormalities (19.63%). CONCLUSION One of the main conclusions of this research is that the most common risk factor for DS is maternal age. On the other hand, the type and the frequency of associated congenital anomalies with DS are still controversial.
Collapse
Affiliation(s)
- Meriem Aloui
- Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia; UR 06/SP14 Troubles du développement embryo-fœtal et placentaire, Service d'embryo-fœtopathologie, Centre de Maternité et de Néonatologie de Tunis, 1007 Tunis, Tunisia.
| | - Kaouther Nasri
- Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia; UR 06/SP14 Troubles du développement embryo-fœtal et placentaire, Service d'embryo-fœtopathologie, Centre de Maternité et de Néonatologie de Tunis, 1007 Tunis, Tunisia
| | - Nadia Ben Jemaa
- UR 06/SP14 Troubles du développement embryo-fœtal et placentaire, Service d'embryo-fœtopathologie, Centre de Maternité et de Néonatologie de Tunis, 1007 Tunis, Tunisia; Faculté de Médecine de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisia
| | - Meriem Sahraoui
- UR 06/SP14 Troubles du développement embryo-fœtal et placentaire, Service d'embryo-fœtopathologie, Centre de Maternité et de Néonatologie de Tunis, 1007 Tunis, Tunisia
| | - Aida Masmoudi
- UR 06/SP14 Troubles du développement embryo-fœtal et placentaire, Service d'embryo-fœtopathologie, Centre de Maternité et de Néonatologie de Tunis, 1007 Tunis, Tunisia; Faculté de Médecine de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisia
| | - Dorra Zghal
- Service de Gynécologie obstétrique C, Centre de Maternité et de Néonatologie de Tunis, 1007 Tunis, Tunisia
| | - Dalenda Chelli
- Service de Gynécologie obstétrique A, Centre de Maternité et de Néonatologie de Tunis, 1007 Tunis, Tunisia
| | - Habiba Chaâbouni
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisia
| | - Abdel Majid Ben Hamida
- Service de Médecine Préventive, Faculté de Médecine de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisia
| | - Soumeya Siala Gaigi
- UR 06/SP14 Troubles du développement embryo-fœtal et placentaire, Service d'embryo-fœtopathologie, Centre de Maternité et de Néonatologie de Tunis, 1007 Tunis, Tunisia; Faculté de Médecine de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisia
| | - Raja Marrakchi
- Laboratoire de Génétique, Immunologie et Pathologie Humaine, Faculté des Sciences de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisia
| |
Collapse
|
42
|
Bhaumik P, Ghosh P, Ghosh S, Feingold E, Ozbek U, Sarkar B, Dey SK. Combined association of Presenilin-1 and Apolipoprotein E polymorphisms with maternal meiosis II error in Down syndrome births. Genet Mol Biol 2017; 40:577-585. [PMID: 28767121 PMCID: PMC5596362 DOI: 10.1590/1678-4685-gmb-2016-0138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 02/27/2017] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease and Down syndrome often exhibit close association and predictively share common genetic risk-factors. Presenilin-1 (PSEN-1) and Apolipoprotein E (APOE) genes are associated with early and late onset of Alzheimer's disease, respectively. Presenilin -1 is involved in faithful chromosomal segregation. A higher frequency of the APOE ε4 allele has been reported among young mothers giving birth to Down syndrome children. In this study, 170 Down syndrome patients, grouped according to maternal meiotic stage of nondisjunction and maternal age at conception, and their parents were genotyped for PSEN-1 intron-8 and APOE polymorphisms. The control group consisted of 186 mothers of karyotypically normal children. The frequencies of the PSEN-1 T allele and TT genotype, in the presence of the APOE ε4 allele, were significantly higher among young mothers (< 35 years) with meiosis II nondisjunction than in young control mothers (96.43% vs. 65.91% P = 0.0002 and 92.86% vs. 45.45% P < 0.0001 respectively) but not among mothers with meiosis I nondisjunction. We infer that the co-occurrence of the PSEN-1 T allele and the APOE ε4 allele associatively increases the risk of meiotic segregation error II among young women.
Collapse
Affiliation(s)
- Pranami Bhaumik
- Department of Biotechnology, School of Biotechnology and Biological
Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | - Priyanka Ghosh
- Department of Biotechnology, School of Biotechnology and Biological
Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | - Sujay Ghosh
- Department of Zoology, University of Calcutta, Ballygunge Science
college campus, Kolkata, West Bengal, India
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health,
University of Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health,
University of Pittsburgh, Pittsburgh, PA, USA
| | - Umut Ozbek
- Department of Biostatistics, Graduate School of Public Health,
University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Subrata Kumar Dey
- Department of Biotechnology, School of Biotechnology and Biological
Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal, India
| |
Collapse
|
43
|
Bhaumik P, Bhattacharya M, Ghosh P, Ghosh S, Kumar Dey S. Telomere length analysis in Down syndrome birth. Mech Ageing Dev 2017; 164:20-26. [PMID: 28327364 DOI: 10.1016/j.mad.2017.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/27/2017] [Accepted: 03/14/2017] [Indexed: 11/19/2022]
Abstract
Human reproductive fitness depends upon telomere chemistry. Maternal age, meiotic nondisjunction error and telomere length of mother of trisomic child are someway associated. Reports exhibiting maternal inheritance of telomere length in Down syndrome child are very scanty. To investigate this, we collected peripheral blood from 170 mothers of Down syndrome child and 186 age matched mothers of euploid child with their newly born babies. Telomere length was measured by restriction digestion - southern blotting technique. Meiotic nondisjunction error was detected by STR genotyping. Subjects are classified by age (old >35 years and young ˂35 years) and by meiotic error (MI and MII). Linear regression was run to explore the age - telomere length relationship in each maternal groups. The study reveals that with age, telomere erodes in length. Old MII mothers carry the shortest (p˂0.001), control mothers have the longest telomere and MI lies in between. Babies from older mother have longer telomere (p˂0.001) moreover; telomeres are longer in Down syndrome babies than control babies (p˂0.001). To conclude, this study represents not only the relation between maternal aging and telomere length but also explore the maternal heritability of telomere length in families with Down syndrome child.
Collapse
Affiliation(s)
- Pranami Bhaumik
- Department of Biotechnology, School of Biotechnology and Biological Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly known as West Bengal University of Technology) BF-142, Salt Lake City, Sector I, Kolkata, West Bengal, 700064, India
| | - Mandar Bhattacharya
- Department of Biotechnology, School of Biotechnology and Biological Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly known as West Bengal University of Technology) BF-142, Salt Lake City, Sector I, Kolkata, West Bengal, 700064, India
| | - Priyanka Ghosh
- Department of Biotechnology, School of Biotechnology and Biological Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly known as West Bengal University of Technology) BF-142, Salt Lake City, Sector I, Kolkata, West Bengal, 700064, India
| | - Sujay Ghosh
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta,(Ballygunge Science college campus), 35 Ballygunge Circular Road., Kolkata, West Bengal, 700019, India
| | - Subrata Kumar Dey
- Department of Biotechnology, School of Biotechnology and Biological Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly known as West Bengal University of Technology) BF-142, Salt Lake City, Sector I, Kolkata, West Bengal, 700064, India.
| |
Collapse
|
44
|
Reichman R, Alleva B, Smolikove S. Prophase I: Preparing Chromosomes for Segregation in the Developing Oocyte. Results Probl Cell Differ 2017; 59:125-173. [PMID: 28247048 DOI: 10.1007/978-3-319-44820-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Formation of an oocyte involves a specialized cell division termed meiosis. In meiotic prophase I (the initial stage of meiosis), chromosomes undergo elaborate events to ensure the proper segregation of their chromosomes into gametes. These events include processes leading to the formation of a crossover that, along with sister chromatid cohesion, forms the physical link between homologous chromosomes. Crossovers are formed as an outcome of recombination. This process initiates with programmed double-strand breaks that are repaired through the use of homologous chromosomes as a repair template. The accurate repair to form crossovers takes place in the context of the synaptonemal complex, a protein complex that links homologous chromosomes in meiotic prophase I. To allow proper execution of meiotic prophase I events, signaling processes connect different steps in recombination and synapsis. The events occurring in meiotic prophase I are a prerequisite for proper chromosome segregation in the meiotic divisions. When these processes go awry, chromosomes missegregate. These meiotic errors are thought to increase with aging and may contribute to the increase in aneuploidy observed in advanced maternal age female oocytes.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Alleva
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
45
|
The Slavic NBN Founder Mutation: A Role for Reproductive Fitness? PLoS One 2016; 11:e0167984. [PMID: 27936167 PMCID: PMC5148078 DOI: 10.1371/journal.pone.0167984] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/23/2016] [Indexed: 01/21/2023] Open
Abstract
The vast majority of patients with Nijmegen Breakage Syndrome (NBS) are of Slavic origin and carry a deleterious deletion (c.657del5; rs587776650) in the NBN gene on chromosome 8q21. This mutation is essentially confined to Slavic populations and may thus be considered a Slavic founder mutation. Notably, not a single parenthood of a homozygous c.657del5 carrier has been reported to date, while heterozygous carriers do reproduce but have an increased cancer risk. These observations seem to conflict with the considerable carrier frequency of c.657del5 of 0.5% to 1% as observed in different Slavic populations because deleterious mutations would be eliminated quite rapidly by purifying selection. Therefore, we propose that heterozygous c.657del5 carriers have increased reproductive success, i.e., that the mutation confers heterozygote advantage. In fact, in our cohort study of the reproductive history of 24 NBS pedigrees from the Czech Republic, we observed that female carriers gave birth to more children on average than female non-carriers, while no such reproductive differences were observed for males. We also estimate that c.657del5 likely occurred less than 300 generations ago, thus supporting the view that the original mutation predated the historic split and subsequent spread of the ‘Slavic people’. We surmise that the higher fertility of female c.657del5 carriers reflects a lower miscarriage rate in these women, thereby reflecting the role of the NBN gene product, nibrin, in the repair of DNA double strand breaks and their processing in immune gene rearrangements, telomere maintenance, and meiotic recombination, akin to the previously described role of the DNA repair genes BRCA1 and BRCA2.
Collapse
|
46
|
Meiotic Centromere Coupling and Pairing Function by Two Separate Mechanisms in Saccharomyces cerevisiae. Genetics 2016; 205:657-671. [PMID: 27913618 DOI: 10.1534/genetics.116.190264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/25/2016] [Indexed: 12/17/2022] Open
Abstract
In meiosis I, chromosomes become paired with their homologous partners and then are pulled toward opposite poles of the spindle. In the budding yeast, Saccharomyces cerevisiae, in early meiotic prophase, centromeres are observed to associate in pairs in a homology-independent manner; a process called centromere coupling. Later, as homologous chromosomes align, their centromeres associate in a process called centromere pairing. The synaptonemal complex protein Zip1 is necessary for both types of centromere association. We aimed to test the role of centromere coupling in modulating recombination at centromeres, and to test whether the two types of centromere associations depend upon the same sets of genes. The zip1-S75E mutation, which blocks centromere coupling but no other known functions of Zip1, was used to show that in the absence of centromere coupling, centromere-proximal recombination was unchanged. Further, this mutation did not diminish centromere pairing, demonstrating that these two processes have different genetic requirements. In addition, we tested other synaptonemal complex components, Ecm11 and Zip4, for their contributions to centromere pairing. ECM11 was dispensable for centromere pairing and segregation of achiasmate partner chromosomes; while ZIP4 was not required for centromere pairing during pachytene, but was required for proper segregation of achiasmate chromosomes. These findings help differentiate the two mechanisms that allow centromeres to interact in meiotic prophase, and illustrate that centromere pairing, which was previously shown to be necessary to ensure disjunction of achiasmate chromosomes, is not sufficient for ensuring their disjunction.
Collapse
|
47
|
Oliver TR, Middlebrooks C, Harden A, Scott N, Johnson B, Jones J, Walker C, Wilkerson C, Saffold SH, Akinseye A, Smith T, Feingold E, Sherman SL. Variation in the Zinc Finger of PRDM9 is Associated with the Absence of Recombination along Nondisjoined Chromosomes 21 of Maternal Origin. JOURNAL OF DOWN SYNDROME & CHROMOSOME ABNORMALITIES 2016; 2:115. [PMID: 28702511 PMCID: PMC5502783 DOI: 10.4172/2472-1115.1000115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Variation in the zinc finger-binding domain (ZFBD) of the protein PR Domain-Containing Protein 9 (PRDM9) is associated with altered placement of recombination in the human genome. As both the absence and altered placement of recombination are observed among chromosomes 21 that nondisjoin, we genotyped the PRDM9 ZFBD among mothers of children with Trisomy 21 in efforts to determine if variation within this region is associated with the recombination-related risk for chromosome 21 nondisjunction (NDJ). In our approach, PCR was used to amplify the ZFBD of PRDM9 and products were then subjected to bi-directional Sanger sequencing. DNA sequencing reads were aligned and compared to the sequence of the PRDM9 alleles previously identified. Chi-Square analysis was used to compare allele frequencies between cases (N=235, mothers of children with maternally-derived Trisomy 21) and controls (N=48, fathers of children with maternally-derived Trisomy 21). Results of our analysis showed that the frequency of PRDM9 ZF minor alleles is significantly increased among women displaying NDJ of chromosome 21 and no recombination on 21q (p=0.02). Even more, when compared to those for the PRDM9 major A-allele, these minor alleles displayed fewer predicted binding sites on 21q. These findings suggest that allelic variation in the ZF of PRDM9 may play a role in the risk for chromosome 21 NDJ by leading to reduced recombination on 21q.
Collapse
Affiliation(s)
| | - Candace Middlebrooks
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, MD, 20892, USA
| | - Ariel Harden
- Department of Biology, Spelman College, Atlanta, GA, 30314, USA
| | - Nyeisha Scott
- Department of Biology, Spelman College, Atlanta, GA, 30314, USA
| | - Blair Johnson
- Department of Biology, Spelman College, Atlanta, GA, 30314, USA
| | - Jillian Jones
- Department of Biology, Spelman College, Atlanta, GA, 30314, USA
| | - Christin Walker
- Department of Biology, Spelman College, Atlanta, GA, 30314, USA
| | | | | | | | - Tunde Smith
- Department of Biology, Morehouse College, Atlanta, GA, 30314, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
48
|
Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc Natl Acad Sci U S A 2016; 113:E6823-E6830. [PMID: 27791141 DOI: 10.1073/pnas.1612047113] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In humans, errors in meiotic chromosome segregation that produce aneuploid gametes increase dramatically as women age, a phenomenon termed the "maternal age effect." During meiosis, cohesion between sister chromatids keeps recombinant homologs physically attached and premature loss of cohesion can lead to missegregation of homologs during meiosis I. A growing body of evidence suggests that meiotic cohesion deteriorates as oocytes age and contributes to the maternal age effect. One hallmark of aging cells is an increase in oxidative damage caused by reactive oxygen species (ROS). Therefore, increased oxidative damage in older oocytes may be one of the factors that leads to premature loss of cohesion and segregation errors. To test this hypothesis, we used an RNAi strategy to induce oxidative stress in Drosophila oocytes and measured the fidelity of chromosome segregation during meiosis. Knockdown of either the cytoplasmic or mitochondrial ROS scavenger superoxide dismutase (SOD) caused a significant increase in segregation errors, and heterozygosity for an smc1 deletion enhanced this phenotype. FISH analysis indicated that SOD knockdown moderately increased the percentage of oocytes with arm cohesion defects. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the frequency at which recombinant homologs missegregate during meiosis I is significantly greater in SOD knockdown oocytes than in controls. Together these results provide an in vivo demonstration that oxidative stress during meiotic prophase induces chromosome segregation errors and support the model that accelerated loss of cohesion in aging human oocytes is caused, at least in part, by oxidative damage.
Collapse
|
49
|
Coppedè F. Risk factors for Down syndrome. Arch Toxicol 2016; 90:2917-2929. [DOI: 10.1007/s00204-016-1843-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022]
|
50
|
Ottolini CS, Capalbo A, Newnham L, Cimadomo D, Natesan SA, Hoffmann ER, Ubaldi FM, Rienzi L, Handyside AH. Generation of meiomaps of genome-wide recombination and chromosome segregation in human oocytes. Nat Protoc 2016; 11:1229-43. [DOI: 10.1038/nprot.2016.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|