1
|
Lam WH, Yu D, Zhang Q, Lin Y, Li N, Li J, Wu Y, Zhang Y, Gao N, Tye BK, Zhai Y, Dang S. DNA bending mediated by ORC is essential for replication licensing in budding yeast. Proc Natl Acad Sci U S A 2025; 122:e2502277122. [PMID: 40184174 PMCID: PMC12002289 DOI: 10.1073/pnas.2502277122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
In eukaryotes, the origin recognition complex (ORC) promotes the assembly of minichromosome maintenance 2 to 7 complexes into a head-to-head double hexamer at origin DNA in a process known as replication licensing. In this study, we present a series of cryoelectron microscopy structures of yeast ORC mutants in complex with origin DNA. We show that Orc6, the smallest subunit of ORC, utilizes its transcription factor II B-B domain to orchestrate the sequential binding of ORC to origin DNA. In addition, Orc6 plays the role of a scaffold by stabilizing the basic patch (BP) of Orc5 for ORC to capture and bend origin DNA. Importantly, disrupting DNA bending through mutating three key residues in Orc5-BP impairs ORC's ability to promote replication initiation at two points during the pre-RC assembly process. This study dissects the multifaceted role of Orc6 in orchestrating ORC's activities on DNA and underscores the vital role of DNA bending by ORC in replication licensing.
Collapse
Grants
- 32425014 MOST | National Natural Science Foundation of China (NSFC)
- GRF17119022 Research Grants Council, University Grants Committee (ç"究資助局)
- GRF17109623 Research Grants Council, University Grants Committee (ç"究資助局)
- C6036-21GF Research Grants Council, University Grants Committee (ç"究資助局)
- C7035-23GF Research Grants Council, University Grants Committee (ç"究資助局)
- CRS_HKU705/23 Research Grants Council, University Grants Committee (ç"究資助局)
- GRF16103321 Research Grants Council, University Grants Committee (ç"究資助局)
- GRF16102822 Research Grants Council, University Grants Committee (ç"究資助局)
- GRF16100233 Research Grants Council, University Grants Committee (ç"究資助局)
- C6001-21E Research Grants Council, University Grants Committee (ç"究資助局)
- C6012-22G Research Grants Council, University Grants Committee (ç"究資助局)
- Research Grants Council, University Grants Committee (ç”究資助局)
Collapse
Affiliation(s)
- Wai Hei Lam
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Daqi Yu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiongdan Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yuhan Lin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing100084, China
| | - Jian Li
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yue Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yingyi Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing100084, China
| | - Bik Kwoon Tye
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Yuanliang Zhai
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
2
|
Hadjicharalambous A, Whale AJ, Can G, Skehel JM, Houseley JM, Zegerman P. Checkpoint kinase interaction with DNA polymerase alpha regulates replication progression during stress. Wellcome Open Res 2023; 8:327. [PMID: 37766847 PMCID: PMC10521137 DOI: 10.12688/wellcomeopenres.19617.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/29/2023] Open
Abstract
Background: In eukaryotes, replication stress activates a checkpoint response, which facilitates genome duplication by stabilising the replisome. How the checkpoint kinases regulate the replisome remains poorly understood. The aim of this study is to identify new targets of checkpoint kinases within the replisome during replication stress. Methods: Here we use an unbiased biotin proximity-ligation approach in Saccharomyces cerevisiae to identify new interactors and substrates of the checkpoint kinase Rad53 in vivo. Results: From this screen, we identified the replication initiation factor Sld7 as a Rad53 substrate, and Pol1, the catalytic subunit of polymerase a, as a Rad53-interactor. We showed that CDK phosphorylation of Pol1 mediates its interaction with Rad53. Combined with other interactions between Rad53 and the replisome, this Rad53-Pol1 interaction is important for viability and replisome progression during replication stress. Conclusions: Together, we explain how the interactions of Rad53 with the replisome are controlled by both replication stress and the cell cycle, and why these interactions might be important for coordinating the stabilisation of both the leading and lagging strand machineries.
Collapse
Affiliation(s)
| | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, University of Cambridge, Cambridge, England, CB22 3AT, UK
| | - Geylani Can
- Department of Biochemistry, University of Cambridge, Cambridge, England, CB2 1GA, UK
| | - J. Mark Skehel
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, London, England, CB2 0QH, UK
| | - Jonathan M. Houseley
- Epigenetics Programme, Babraham Institute, University of Cambridge, Cambridge, England, CB22 3AT, UK
| | - Philip Zegerman
- Department of Biochemistry, University of Cambridge, Cambridge, England, CB2 1GA, UK
| |
Collapse
|
3
|
Yu Y, Shi S. Development and Perspective of Rhodotorula toruloides as an Efficient Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1802-1819. [PMID: 36688927 DOI: 10.1021/acs.jafc.2c07361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.
Collapse
Affiliation(s)
- Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Whale AJ, King M, Hull RM, Krueger F, Houseley J. Stimulation of adaptive gene amplification by origin firing under replication fork constraint. Nucleic Acids Res 2022; 50:915-936. [PMID: 35018465 PMCID: PMC8789084 DOI: 10.1093/nar/gkab1257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adaptive mutations can cause drug resistance in cancers and pathogens, and increase the tolerance of agricultural pests and diseases to chemical treatment. When and how adaptive mutations form is often hard to discern, but we have shown that adaptive copy number amplification of the copper resistance gene CUP1 occurs in response to environmental copper due to CUP1 transcriptional activation. Here we dissect the mechanism by which CUP1 transcription in budding yeast stimulates copy number variation (CNV). We show that transcriptionally stimulated CNV requires TREX-2 and Mediator, such that cells lacking TREX-2 or Mediator respond normally to copper but cannot acquire increased resistance. Mediator and TREX-2 can cause replication stress by tethering transcribed loci to nuclear pores, a process known as gene gating, and transcription at the CUP1 locus causes a TREX-2-dependent accumulation of replication forks indicative of replication fork stalling. TREX-2-dependent CUP1 gene amplification occurs by a Rad52 and Rad51-mediated homologous recombination mechanism that is enhanced by histone H3K56 acetylation and repressed by Pol32 and Pif1. CUP1 amplification is also critically dependent on late-firing replication origins present in the CUP1 repeats, and mutations that remove or inactivate these origins strongly suppress the acquisition of copper resistance. We propose that replicative stress imposed by nuclear pore association causes replication bubbles from these origins to collapse soon after activation, leaving a tract of H3K56-acetylated chromatin that promotes secondary recombination events during elongation after replication fork re-start events. The capacity for inefficient replication origins to promote copy number variation renders certain genomic regions more fragile than others, and therefore more likely to undergo adaptive evolution through de novo gene amplification.
Collapse
Affiliation(s)
- Alex J Whale
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Ryan M Hull
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Felix Krueger
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | | |
Collapse
|
5
|
Improved Production of Streptomyces sp. FA1 Xylanase in a Dual-Plasmid Pichia pastoris System. Curr Issues Mol Biol 2021; 43:2289-2304. [PMID: 34940135 PMCID: PMC8928940 DOI: 10.3390/cimb43030161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Methanol is considered as a potential hazard in the methanol-induced yeast expression of food-related enzymes. To increase the production efficiency of recombinant proteins in Pichia pastoris without methanol induction, a novel dual-plasmid system was constructed, for the first time, by a combining the strategies of genomic integration and episomal expression. To obtain a high copy number of the target gene, the autonomously replicating sequence derived from Kluyveromyces lactis (PARS) was used to construct episomal vectors carrying the constitutive promoters PGAP and PGCW14. In addition, an integrative vector carrying the PGCW14 promoter was constructed by replacing the PGAP promoter sequence with a partial PGCW14 promoter. Next, using xylanase XynA from Streptomyces sp. FA1 as the model enzyme, recombination strains were transformed with different combinations of integrating and episomal vectors that were constructed to investigate the changes in the protein yield. Results in shake flasks indicated that the highest enzyme yield was achieved when integrated PGAP and episomal PGCW14 were simultaneously transformed into the host strain. Meanwhile, the copy number of xynA increased from 1.14 ± 0.46 to 3.06 ± 0.35. The yield of XynA was successfully increased to 3925 U·mL-1 after 102 h of fermentation in a 3.6 L fermenter, which was 16.7-fold and 2.86-fold of the yields that were previously reported for the constitutive expression and methanol-induced expression of the identical protein, respectively. Furthermore, the high-cell-density fermentation period was shortened from 132 h to 102 h compared to that of methanol-induced system. Since the risk of methanol toxicity is removed, this novel expression system would be suitable for the production of proteins related to the food and pharmaceutical industries.
Collapse
|
6
|
Abdel-Banat BMA, Hoshida H, Akada R. Various short autonomously replicating sequences from the yeast Kluyveromyces marxianus seemingly without canonical consensus. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100053. [PMID: 34841344 PMCID: PMC8610295 DOI: 10.1016/j.crmicr.2021.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
Eukaryotic autonomously replicating sequences (ARSs) are composed of three domains, A, B, and C. Domain A is comprised of an ARS consensus sequence (ACS), while the B domain has the DNA unwinding element and the C domain is important for DNA-protein interactions. In Saccharomyces cerevisiae and Kluyveromyces lactis ARS101, the ACS is commonly composed of 11 bp, 5ˊ-(A/T)AAA(C/T)ATAAA(A/T)-3ˊ. This core sequence is essential for S. cerevisiae and K. lactis ARS activity. In this study, we identified ARS-containing sequences from genomic libraries of the yeast Kluyveromyces marxianus DMKU3-1042 and validated their replication activities. The identified K. marxianus DMKU3-1042 ARSs (KmARSs) have very effective replication ability but their sequences are divergent and share no common consensus. We have carried out point mutations, deletions, and base pairs substitutions within the sequences of some of the KmARSs to identify the sequence(s) that influence the replication activity. Consensus sequences same as the 11 bp ACS of S. cerevisiae and K. lactis were not found in all minimum functional KmARSs reported here except KmARS7. Moreover, partial sequences from different KmARSs are interchangeable among each other to retain the ARS activity. We have also specifically identified the essential nucleotides, which are indispensable for replication, within some of the KmARSs. Our deletions analysis revealed that only 21 bp in KmARS18 could retain the ARS activity. The identified KmARSs in this study are unique compared to other yeasts’ ARSs, do not share common ACS, and are interchangeable. Identification of minimal autonomously replicating sequences (ARSs) from the yeast Kluyveromyces marxianus DMKU3-1042. The identities of the isolated ARSs are divergent and have no common consensus with the ARSs of other yeasts. A short ARS sequence of twenty-one nucleotides functions as an effective replicator in K. marxianus DMKU3-1042. Segments of ARSs from the yeast K. marxianus are interchangeable among each other. Functional ARSs are found in both the intergenic and coding sequences of the strain DMKU3-1042.
Collapse
Affiliation(s)
- Babiker M A Abdel-Banat
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia.,Department of Crop Protection, University of Khartoum, Shambat 13314, Sudan
| | - Hisashi Hoshida
- Department of Applied Molecular Bioscience, Yamaguchi University Graduate School of Medicine, Tokiwadai, Ube, Japan
| | - Rinji Akada
- Department of Applied Molecular Bioscience, Yamaguchi University Graduate School of Medicine, Tokiwadai, Ube, Japan
| |
Collapse
|
7
|
Tan X, Wu X, Han M, Wang L, Xu L, Li B, Yuan Y. Yeast autonomously replicating sequence (ARS): Identification, function, and modification. Eng Life Sci 2021. [DOI: 10.1002/elsc.202000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiao‐Yu Tan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| | - Xiao‐Le Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| | - Ming‐Zhe Han
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| | - Li Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| | - Li Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| | - Bing‐Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| | - Ying‐Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| |
Collapse
|
8
|
Maria H, Kapoor S, Liu T, Rusche LN. Conservation of a DNA Replication Motif among Phylogenetically Distant Budding Yeast Species. Genome Biol Evol 2021; 13:6300524. [PMID: 34132803 PMCID: PMC8290112 DOI: 10.1093/gbe/evab137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic DNA replication begins at genomic loci termed origins, which are bound by the origin recognition complex (ORC). Although ORC is conserved across species, the sequence composition of origins is more varied. In the budding yeast Saccharomyces cerevisiae, the ORC-binding motif consists of an A/T-rich 17 bp “extended ACS” sequence adjacent to a B1 element composed of two 3-bp motifs. Similar sequences occur at origins in closely related species, but it is not clear when this type of replication origin arose and whether it predated a whole-genome duplication that occurred around 100 Ma in the budding yeast lineage. To address these questions, we identified the ORC-binding sequences in the nonduplicated species Torulaspora delbrueckii. We used chromatin immunoprecipitation followed by sequencing and identified 190 ORC-binding sites distributed across the eight T. delbrueckii chromosomes. Using these sites, we identified an ORC-binding motif that is nearly identical to the known motif in S. cerevisiae. We also found that the T. delbrueckii ORC-binding sites function as origins in T. delbrueckii when cloned onto a plasmid and that the motif is required for plasmid replication. Finally, we compared an S. cerevisiae origin with two T. delbrueckii ORC-binding sites and found that they conferred similar stabilities to a plasmid. These results reveal that the ORC-binding motif arose prior to the whole-genome duplication and has been maintained for over 100 Myr.
Collapse
Affiliation(s)
- Haniam Maria
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Shivali Kapoor
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Laura N Rusche
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| |
Collapse
|
9
|
Abstract
The Origin Recognition Complex (ORC) is an evolutionarily conserved six-subunit protein complex that binds specific sites at many locations to coordinately replicate the entire eukaryote genome. Though highly conserved in structure, ORC’s selectivity for replication origins has diverged tremendously between yeasts and humans to adapt to vastly different life cycles. In this work, we demonstrate that the selectivity determinant of ORC for DNA binding lies in a 19-amino acid insertion helix in the Orc4 subunit, which is present in yeast but absent in human. Removal of this motif from Orc4 transforms the yeast ORC, which selects origins based on base-specific binding at defined locations, into one whose selectivity is dictated by chromatin landscape and afforded with plasticity, as reported for human. Notably, the altered yeast ORC has acquired an affinity for regions near transcriptional start sites (TSSs), which the human ORC also favors. In most model yeast species the Origin Recognition Complex (ORC) binds defined and species-specific base sequences while in humans what determines the binding appears to be more complex. Here the authors reveal that the yeast’s ORC complex binding specificity is dependent on a 19-amino acid insertion helix in the Orc4 subunit which is lost in human.
Collapse
|
10
|
Manavalan B, Basith S, Shin TH, Lee G. Computational prediction of species-specific yeast DNA replication origin via iterative feature representation. Brief Bioinform 2020; 22:6000361. [PMID: 33232970 PMCID: PMC8294535 DOI: 10.1093/bib/bbaa304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Deoxyribonucleic acid replication is one of the most crucial tasks taking place in the cell, and it has to be precisely regulated. This process is initiated in the replication origins (ORIs), and thus it is essential to identify such sites for a deeper understanding of the cellular processes and functions related to the regulation of gene expression. Considering the important tasks performed by ORIs, several experimental and computational approaches have been developed in the prediction of such sites. However, existing computational predictors for ORIs have certain curbs, such as building only single-feature encoding models, limited systematic feature engineering efforts and failure to validate model robustness. Hence, we developed a novel species-specific yeast predictor called yORIpred that accurately identify ORIs in the yeast genomes. To develop yORIpred, we first constructed optimal 40 baseline models by exploring eight different sequence-based encodings and five different machine learning classifiers. Subsequently, the predicted probability of 40 models was considered as the novel feature vector and carried out iterative feature learning approach independently using five different classifiers. Our systematic analysis revealed that the feature representation learned by the support vector machine algorithm (yORIpred) could well discriminate the distribution characteristics between ORIs and non-ORIs when compared with the other four algorithms. Comprehensive benchmarking experiments showed that yORIpred achieved superior and stable performance when compared with the existing predictors on the same training datasets. Furthermore, independent evaluation showcased the best and accurate performance of yORIpred thus underscoring the significance of iterative feature representation. To facilitate the users in obtaining their desired results without undergoing any mathematical, statistical or computational hassles, we developed a web server for the yORIpred predictor, which is available at: http://thegleelab.org/yORIpred.
Collapse
Affiliation(s)
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Republic of Korea
| |
Collapse
|
11
|
Kapadia N, El-Hajj ZW, Zheng H, Beattie TR, Yu A, Reyes-Lamothe R. Processive Activity of Replicative DNA Polymerases in the Replisome of Live Eukaryotic Cells. Mol Cell 2020; 80:114-126.e8. [DOI: 10.1016/j.molcel.2020.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 07/02/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
|
12
|
Dao FY, Lv H, Zulfiqar H, Yang H, Su W, Gao H, Ding H, Lin H. A computational platform to identify origins of replication sites in eukaryotes. Brief Bioinform 2020; 22:1940-1950. [PMID: 32065211 DOI: 10.1093/bib/bbaa017] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
The locations of the initiation of genomic DNA replication are defined as origins of replication sites (ORIs), which regulate the onset of DNA replication and play significant roles in the DNA replication process. The study of ORIs is essential for understanding the cell-division cycle and gene expression regulation. Accurate identification of ORIs will provide important clues for DNA replication research and drug development by developing computational methods. In this paper, the first integrated predictor named iORI-Euk was built to identify ORIs in multiple eukaryotes and multiple cell types. In the predictor, seven eukaryotic (Homo sapiens, Mus musculus, Drosophila melanogaster, Arabidopsis thaliana, Pichia pastoris, Schizosaccharomyces pombe and Kluyveromyces lactis) ORI data was collected from public database to construct benchmark datasets. Subsequently, three feature extraction strategies which are k-mer, binary encoding and combination of k-mer and binary were used to formulate DNA sequence samples. We also compared the different classification algorithms' performance. As a result, the best results were obtained by using support vector machine in 5-fold cross-validation test and independent dataset test. Based on the optimal model, an online web server called iORI-Euk (http://lin-group.cn/server/iORI-Euk/) was established for the novel ORI identification.
Collapse
Affiliation(s)
- Fu-Ying Dao
- Center for Informational Biology at University of Electronic Science and Technology of China
| | - Hao Lv
- Center for Informational Biology at University of Electronic Science and Technology of China
| | - Hasan Zulfiqar
- Center for Informational Biology at University of Electronic Science and Technology of China
| | - Hui Yang
- Center for Informational Biology at University of Electronic Science and Technology of China
| | - Wei Su
- Center for Informational Biology at University of Electronic Science and Technology of China
| | - Hui Gao
- Center for Informational Biology at University of Electronic Science and Technology of China
| | - Hui Ding
- Center for Informational Biology at University of Electronic Science and Technology of China
| | - Hao Lin
- Center for Informational Biology at University of Electronic Science and Technology of China
| |
Collapse
|
13
|
Lou C, Zhao J, Shi R, Wang Q, Zhou W, Wang Y, Wang G, Huang L, Feng X, Zhou F. sefOri: selecting the best-engineered sequence features to predict DNA replication origins. Bioinformatics 2019; 36:49-55. [DOI: 10.1093/bioinformatics/btz506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/25/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
AbstractMotivationCell divisions start from replicating the double-stranded DNA, and the DNA replication process needs to be precisely regulated both spatially and temporally. The DNA is replicated starting from the DNA replication origins. A few successful prediction models were generated based on the assumption that the DNA replication origin regions have sequence level features like physicochemical properties significantly different from the other DNA regions.ResultsThis study proposed a feature selection procedure to further refine the classification model of the DNA replication origins. The experimental data demonstrated that as large as 26% improvement in the prediction accuracy may be achieved on the yeast Saccharomyces cerevisiae. Moreover, the prediction accuracies of the DNA replication origins were improved for all the four yeast genomes investigated in this study.Availability and implementationThe software sefOri version 1.0 was available at http://www.healthinformaticslab.org/supp/resources.php. An online server was also provided for the convenience of the users, and its web link may be found in the above-mentioned web page.Supplementary informationSupplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chenwei Lou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Jian Zhao
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Ruoyao Shi
- BioKnow Health Informatics Lab, College of Life Sciences, Jilin University, Changchun 130012, China
| | - Qian Wang
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Wenyang Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Yubo Wang
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Guoqing Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun 130012, China
| | - Lan Huang
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Xin Feng
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Fengfeng Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Autonomously Replicating Linear Plasmids That Facilitate the Analysis of Replication Origin Function in Candida albicans. mSphere 2019; 4:4/2/e00103-19. [PMID: 30842269 PMCID: PMC6403455 DOI: 10.1128/msphere.00103-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circular plasmids are important tools for molecular manipulation in model fungi such as baker’s yeast, yet, in Candida albicans, an important yeast pathogen of humans, prior studies were not able to generate circular plasmids that were autonomous (duplicated without inserting themselves into the chromosome). Here, we found that linearizing circular plasmids with sequences from telomeres, the chromosome ends, allows the plasmids to duplicate and segregate in C. albicans. We used this system to identify chromosomal sequences that facilitate the initiation of plasmid replication (origins) and to show that an ∼100-bp fragment of a C. albicans origin and an origin sequence from a distantly related yeast can both function as origins in C. albicans. Thus, the requirements for plasmid geometry, but not necessarily for origin sequences, differ between C. albicans and baker’s yeast. The ability to generate autonomously replicating plasmids has been elusive in Candida albicans, a prevalent human fungal commensal and pathogen. Instead, plasmids generally integrate into the genome. Here, we assessed plasmid and transformant properties, including plasmid geometry, transformant colony size, four selectable markers, and potential origins of replication, for their ability to drive autonomous plasmid maintenance. Importantly, linear plasmids with terminal telomere repeats yielded many more autonomous transformants than circular plasmids with the identical sequences. Furthermore, we could distinguish (by colony size) transient, autonomously replicating, and chromosomally integrated transformants (tiny, medium, and large, respectively). Candida albicansURA3 and a heterologous marker, ARG4, yielded many transient transformants indicative of weak origin activity; the replication of the plasmid carrying the heterologous LEU2 marker was highly dependent upon the addition of a bona fide origin sequence. Several bona fide chromosomal origins, with an origin fragment of ∼100 bp as well as a heterologous origin, panARS, from Kluyveromyces lactis, drove autonomous replication, yielding moderate transformation efficiency and plasmid stability. Thus, C. albicans maintains linear plasmids that yield high transformation efficiency and are maintained autonomously in an origin-dependent manner. IMPORTANCE Circular plasmids are important tools for molecular manipulation in model fungi such as baker’s yeast, yet, in Candida albicans, an important yeast pathogen of humans, prior studies were not able to generate circular plasmids that were autonomous (duplicated without inserting themselves into the chromosome). Here, we found that linearizing circular plasmids with sequences from telomeres, the chromosome ends, allows the plasmids to duplicate and segregate in C. albicans. We used this system to identify chromosomal sequences that facilitate the initiation of plasmid replication (origins) and to show that an ∼100-bp fragment of a C. albicans origin and an origin sequence from a distantly related yeast can both function as origins in C. albicans. Thus, the requirements for plasmid geometry, but not necessarily for origin sequences, differ between C. albicans and baker’s yeast.
Collapse
|
15
|
The evolution of the temporal program of genome replication. Nat Commun 2018; 9:2199. [PMID: 29875360 PMCID: PMC5989221 DOI: 10.1038/s41467-018-04628-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/08/2018] [Indexed: 01/19/2023] Open
Abstract
Genome replication is highly regulated in time and space, but the rules governing the remodeling of these programs during evolution remain largely unknown. We generated genome-wide replication timing profiles for ten Lachancea yeasts, covering a continuous evolutionary range from closely related to more divergent species. We show that replication programs primarily evolve through a highly dynamic evolutionary renewal of the cohort of active replication origins. We found that gained origins appear with low activity yet become more efficient and fire earlier as they evolutionarily age. By contrast, origins that are lost comprise the complete range of firing strength. Additionally, they preferentially occur in close vicinity to strong origins. Interestingly, despite high evolutionary turnover, active replication origins remain regularly spaced along chromosomes in all species, suggesting that origin distribution is optimized to limit large inter-origin intervals. We propose a model on the evolutionary birth, death, and conservation of active replication origins. Temporal programs of genome replication show different levels of conservation between closely or distantly related species. Here, the authors generate genome-wide replication timing profiles for ten yeast species, and analyze their evolutionary dynamics.
Collapse
|
16
|
Cao M, Gao M, Lopez-Garcia CL, Wu Y, Seetharam AS, Severin AJ, Shao Z. Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering. ACS Synth Biol 2017; 6:1545-1553. [PMID: 28391682 DOI: 10.1021/acssynbio.7b00046] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many nonconventional yeast species have highly desirable features that are not possessed by model yeasts, despite that significant technology hurdles to effectively manipulate them lay in front. Scheffersomyces stipitis is one of the most important exemplary nonconventional yeasts in biorenewables industry, which has a high native xylose utilization capacity. Recent study suggested its much better potential than Saccharomyces cerevisiae as a well-suited microbial biomanufacturing platform for producing high-value compounds derived from shikimate pathway, many of which are associated with potent nutraceutical or pharmaceutical properties. However, the broad application of S. stipitis is hampered by the lack of stable episomal expression platforms and precise genome-editing tools. Here we report the success in pinpointing the centromeric DNA as the partitioning element to guarantee stable extra-chromosomal DNA segregation. The identified centromeric sequence not only stabilized episomal plasmid, enabled homogeneous gene expression, increased the titer of a commercially relevant compound by 3-fold, and also dramatically increased gene knockout efficiency from <1% to more than 80% with the expression of CRISPR components on the new stable plasmid. This study elucidated that establishment of a stable minichromosome-like expression platform is key to achieving functional modifications of nonconventional yeast species in order to expand the current collection of microbial factories.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Meirong Gao
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Carmen Lorena Lopez-Garcia
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Yutong Wu
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Arun Somwarpet Seetharam
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Andrew Josef Severin
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Zengyi Shao
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
17
|
Müller CA, Nieduszynski CA. DNA replication timing influences gene expression level. J Cell Biol 2017; 216:1907-1914. [PMID: 28539386 PMCID: PMC5496624 DOI: 10.1083/jcb.201701061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic genomes are replicated in a reproducible temporal order whose physiological significance is poorly understood. Müller and Nieduszynski compare the temporal order of genome replication in phylogenetically diverse yeast species and identify genes for which conserved replication timing contributes to maximal expression. Eukaryotic genomes are replicated in a reproducible temporal order; however, the physiological significance is poorly understood. We compared replication timing in divergent yeast species and identified genomic features with conserved replication times. Histone genes were among the earliest replicating loci in all species. We specifically delayed the replication of HTA1-HTB1 and discovered that this halved the expression of these histone genes. Finally, we showed that histone and cell cycle genes in general are exempt from Rtt109-dependent dosage compensation, suggesting the existence of pathways excluding specific loci from dosage compensation mechanisms. Thus, we have uncovered one of the first physiological requirements for regulated replication time and demonstrated a direct link between replication timing and gene expression.
Collapse
Affiliation(s)
- Carolin A Müller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | | |
Collapse
|
18
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
19
|
Camattari A, Goh A, Yip LY, Tan AHM, Ng SW, Tran A, Liu G, Liachko I, Dunham MJ, Rancati G. Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications. Microb Cell Fact 2016; 15:139. [PMID: 27515025 PMCID: PMC4981965 DOI: 10.1186/s12934-016-0540-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022] Open
Abstract
Background Recombinant protein production in the methylotrophic yeast Pichia pastoris largely relies on integrative vectors. Although the stability of integrated expression cassettes is well appreciated for most applications, the availability of reliable episomal vectors for this host would represent a useful tool to expedite cloning and high-throughput screening, ameliorating also the relatively high clonal variability reported in transformants from integrative vectors caused by off-target integration in the P. pastoris genome. Recently, heterologous and endogenous autonomously replicating sequences (ARS) were identified in P. pastoris by genome mining, opening the possibility of expanding the available toolbox to include efficient episomal plasmids. The aim of this technical report is to validate a 452-bp sequence (“panARS”) in context of P. pastoris expression vectors, and to compare their performance to classical integrative plasmids. Moreover, we aimed to test if such episomal vectors would be suitable to sustain in vivo recombination, using fragments for transformation, directly in P. pastoris cells. Results A panARS-based episomal vector was evaluated using blue fluorescent protein (BFP) as a reporter gene. Normalized fluorescence from colonies carrying panARS-BFP outperformed the level of signal obtained from integrative controls by several-fold, whereas endogenous sequences, identified from the P. pastoris genome, were not as efficient in terms of protein production. At the single cell level, panARS-BFP clones showed lower interclonal variability but higher intraclonal variation compared to their integrative counterparts, supporting the idea that heterologous protein production could benefit from episomal plasmids. Finally, efficiency of 2-fragment and 3-fragment in vivo recombination was tested using varying lengths of overlapping regions and molar ratios between fragments. Upon optimization, minimal background was obtained for in vivo assembled vectors, suggesting this could be a quick and efficient method to generate of episomal plasmids of interest. Conclusions An expression vector based on the panARS sequence was shown to outperform its integrative counterparts in terms of protein productivity and interclonal variability, facilitating recombinant protein expression and screening. Using optimized fragment lengths and ratios, it was possible to perform reliable in vivo recombination of fragments in P. pastoris. Taken together, these results support the applicability of panARS episomal vectors for synthetic biology approaches.
Collapse
Affiliation(s)
- Andrea Camattari
- Bioprocessing Technology Institute (A-STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| | - Amelia Goh
- Bioprocessing Technology Institute (A-STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Lian Yee Yip
- Bioprocessing Technology Institute (A-STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Andy Hee Meng Tan
- Bioprocessing Technology Institute (A-STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Sze Wai Ng
- Bioprocessing Technology Institute (A-STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Anthony Tran
- Institute of Medical Biology (A-STAR), 8a Biomedical Grove, #06-06, Singapore, 138648, Singapore
| | - Gaowen Liu
- Institute of Medical Biology (A-STAR), 8a Biomedical Grove, #06-06, Singapore, 138648, Singapore
| | - Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Giulia Rancati
- Institute of Medical Biology (A-STAR), 8a Biomedical Grove, #06-06, Singapore, 138648, Singapore
| |
Collapse
|
20
|
Dileep V, Rivera-Mulia JC, Sima J, Gilbert DM. Large-Scale Chromatin Structure-Function Relationships during the Cell Cycle and Development: Insights from Replication Timing. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:53-63. [PMID: 26590169 DOI: 10.1101/sqb.2015.80.027284] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chromosome architecture has received a lot of attention since the recent development of genome-scale methods to measure chromatin interactions (Hi-C), enabling the first sequence-based models of chromosome tertiary structure. A view has emerged of chromosomes as a string of structural units (topologically associating domains; TADs) whose boundaries persist through the cell cycle and development. TADs with similar chromatin states tend to aggregate, forming spatially segregated chromatin compartments. However, high-resolution Hi-C has revealed substructure within TADs (subTADs) that poses a challenge for models that attribute significance to structural units at any given scale. More than 20 years ago, the DNA replication field independently identified stable structural (and functional) units of chromosomes (replication foci) as well as spatially segregated chromatin compartments (early and late foci), but lacked the means to link these units to genomic map units. Genome-wide studies of replication timing (RT) have now merged these two disciplines by identifying individual units of replication regulation (replication domains; RDs) that correspond to TADs and are arranged in 3D to form spatiotemporally segregated subnuclear compartments. Furthermore, classifying RDs/TADs by their constitutive versus developmentally regulated RT has revealed distinct classes of chromatin organization, providing unexpected insight into the relationship between large-scale chromosome structure and function.
Collapse
Affiliation(s)
- Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295
| | | | - Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295 Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306-4295
| |
Collapse
|
21
|
Descorps-Declère S, Saguez C, Cournac A, Marbouty M, Rolland T, Ma L, Bouchier C, Moszer I, Dujon B, Koszul R, Richard GF. Genome-wide replication landscape of Candida glabrata. BMC Biol 2015; 13:69. [PMID: 26329162 PMCID: PMC4556013 DOI: 10.1186/s12915-015-0177-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/05/2015] [Indexed: 11/25/2022] Open
Abstract
Background The opportunistic pathogen Candida glabrata is a member of the Saccharomycetaceae yeasts. Like its close relative Saccharomyces cerevisiae, it underwent a whole-genome duplication followed by an extensive loss of genes. Its genome contains a large number of very long tandem repeats, called megasatellites. In order to determine the whole replication program of the C. glabrata genome and its general chromosomal organization, we used deep-sequencing and chromosome conformation capture experiments. Results We identified 253 replication fork origins, genome wide. Centromeres, HML and HMR loci, and most histone genes are replicated early, whereas natural chromosomal breakpoints are located in late-replicating regions. In addition, 275 autonomously replicating sequences (ARS) were identified during ARS-capture experiments, and their relative fitness was determined during growth competition. Analysis of ARSs allowed us to identify a 17-bp consensus, similar to the S. cerevisiae ARS consensus sequence but slightly more constrained. Megasatellites are not in close proximity to replication origins or termini. Using chromosome conformation capture, we also show that early origins tend to cluster whereas non-subtelomeric megasatellites do not cluster in the yeast nucleus. Conclusions Despite a shorter cell cycle, the C. glabrata replication program shares unexpected striking similarities to S. cerevisiae, in spite of their large evolutionary distance and the presence of highly repetitive large tandem repeats in C. glabrata. No correlation could be found between the replication program and megasatellites, suggesting that their formation and propagation might not be directly caused by replication fork initiation or termination. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0177-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphane Descorps-Declère
- Institut Pasteur, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), F-75015, Paris, France.
| | - Cyril Saguez
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, F-75015, Paris, France. .,CNRS, UMR3525, F-75015, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
| | - Axel Cournac
- CNRS, UMR3525, F-75015, Paris, France. .,Institut Pasteur, Groupe Régulation Spatiale des Génomes, Département Génomes & Génétique, F-75015, Paris, France.
| | - Martial Marbouty
- CNRS, UMR3525, F-75015, Paris, France. .,Institut Pasteur, Groupe Régulation Spatiale des Génomes, Département Génomes & Génétique, F-75015, Paris, France.
| | - Thomas Rolland
- Present address: Institut Pasteur, Unité de Génétique Humaine et Fonctions Cognitives, Département des Neurosciences, F-75015, Paris, France.
| | - Laurence Ma
- Institut Pasteur, Plate-forme Génomique, Département Génomes & Génétique, F-75015, Paris, France.
| | - Christiane Bouchier
- Institut Pasteur, Plate-forme Génomique, Département Génomes & Génétique, F-75015, Paris, France.
| | - Ivan Moszer
- Present address: Plate-forme Bio-informatique/Biostatistique, Institut de Neurosciences Translationnelles IHU-A-ICM, Hôpital Pitié-Salpêtrière, 47-83 bd de l'Hôpital, 75561, Paris, Cedex 13, France.
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, F-75015, Paris, France. .,CNRS, UMR3525, F-75015, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
| | - Romain Koszul
- CNRS, UMR3525, F-75015, Paris, France. .,Institut Pasteur, Groupe Régulation Spatiale des Génomes, Département Génomes & Génétique, F-75015, Paris, France.
| | - Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, F-75015, Paris, France. .,CNRS, UMR3525, F-75015, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
| |
Collapse
|
22
|
Peng C, Luo H, Zhang X, Gao F. Recent advances in the genome-wide study of DNA replication origins in yeast. Front Microbiol 2015; 6:117. [PMID: 25745419 PMCID: PMC4333867 DOI: 10.3389/fmicb.2015.00117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/29/2015] [Indexed: 11/13/2022] Open
Abstract
DNA replication, one of the central events in the cell cycle, is the basis of biological inheritance. In order to be duplicated, a DNA double helix must be opened at defined sites, which are called DNA replication origins (ORIs). Unlike in bacteria, where replication initiates from a single replication origin, multiple origins are utilized in the eukaryotic genomes. Among them, the ORIs in budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe have been best characterized. In recent years, advances in DNA microarray and next-generation sequencing technologies have increased the number of yeast species involved in ORIs research dramatically. The ORIs in some non-conventional yeast species such as Kluyveromyces lactis and Pichia pastoris have also been genome-widely identified. Relevant databases of replication origins in yeast were constructed, then the comparative genomic analysis can be carried out. Here, we review several experimental approaches that have been used to map replication origins in yeast and some of the available web resources related to yeast ORIs. We also discuss the sequence characteristics and chromosome structures of ORIs in the four yeast species, which can be utilized to improve yeast replication origins prediction.
Collapse
Affiliation(s)
- Chong Peng
- Department of Physics, Tianjin University , Tianjin, China
| | - Hao Luo
- Department of Physics, Tianjin University , Tianjin, China
| | - Xi Zhang
- Department of Physics, Tianjin University , Tianjin, China
| | - Feng Gao
- Department of Physics, Tianjin University , Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin, China
| |
Collapse
|
23
|
Origin replication complex binding, nucleosome depletion patterns, and a primary sequence motif can predict origins of replication in a genome with epigenetic centromeres. mBio 2014; 5:e01703-14. [PMID: 25182328 PMCID: PMC4173791 DOI: 10.1128/mbio.01703-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Origins of DNA replication are key genetic elements, yet their identification remains elusive in most organisms. In previous work, we found that centromeres contain origins of replication (ORIs) that are determined epigenetically in the pathogenic yeast Candida albicans. In this study, we used origin recognition complex (ORC) binding and nucleosome occupancy patterns in Saccharomyces cerevisiae and Kluyveromyces lactis to train a machine learning algorithm to predict the position of active arm (noncentromeric) origins in the C. albicans genome. The model identified bona fide active origins as determined by the presence of replication intermediates on nondenaturing two-dimensional (2D) gels. Importantly, these origins function at their native chromosomal loci and also as autonomously replicating sequences (ARSs) on a linear plasmid. A “mini-ARS screen” identified at least one and often two ARS regions of ≥100 bp within each bona fide origin. Furthermore, a 15-bp AC-rich consensus motif was associated with the predicted origins and conferred autonomous replicating activity to the mini-ARSs. Thus, while centromeres and the origins associated with them are epigenetic, arm origins are dependent upon critical DNA features, such as a binding site for ORC and a propensity for nucleosome exclusion. DNA replication machinery is highly conserved, yet the definition of exactly what specifies a replication origin differs in different species. Here, we utilized computational genomics to predict origin locations in Candida albicans by combining locations of binding sites for the conserved origin replication complex, necessary for replication initiation, together with chromatin organization patterns. We identified predicted sequences that exhibited bona fide origin function and developed a linear plasmid assay to delimit the DNA fragments necessary for origin function. Additionally, we found that a short AC-rich motif, which is enriched in predicted origins, is required for origin function. Thus, we demonstrated a new machine learning paradigm for identification of potential origins from a genome with no prior information. Furthermore, this work suggests that C. albicans has two different types of origins: “hard-wired” arm origins that rely upon specific sequence motifs and “epigenetic” centromeric origins that are recruited to kinetochores in a sequence-independent manner.
Collapse
|
24
|
Temporal and spatial regulation of eukaryotic DNA replication: From regulated initiation to genome-scale timing program. Semin Cell Dev Biol 2014; 30:110-20. [DOI: 10.1016/j.semcdb.2014.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/04/2014] [Indexed: 11/23/2022]
|
25
|
GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris. PLoS Genet 2014; 10:e1004169. [PMID: 24603708 PMCID: PMC3945215 DOI: 10.1371/journal.pgen.1004169] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/25/2013] [Indexed: 11/19/2022] Open
Abstract
The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins--a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.
Collapse
|
26
|
Duderstadt KE, Reyes-Lamothe R, van Oijen AM, Sherratt DJ. Replication-fork dynamics. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a010157. [PMID: 23881939 DOI: 10.1101/cshperspect.a010157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The proliferation of all organisms depends on the coordination of enzymatic events within large multiprotein replisomes that duplicate chromosomes. Whereas the structure and function of many core replisome components have been clarified, the timing and order of molecular events during replication remains obscure. To better understand the replication mechanism, new methods must be developed that allow for the observation and characterization of short-lived states and dynamic events at single replication forks. Over the last decade, great progress has been made toward this goal with the development of novel DNA nanomanipulation and fluorescence imaging techniques allowing for the direct observation of replication-fork dynamics both reconstituted in vitro and in live cells. This article reviews these new single-molecule approaches and the revised understanding of replisome operation that has emerged.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, Netherlands
| | | | | | | |
Collapse
|
27
|
Liachko I, Dunham MJ. An autonomously replicating sequence for use in a wide range of budding yeasts. FEMS Yeast Res 2013; 14:364-7. [PMID: 24205893 DOI: 10.1111/1567-1364.12123] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/27/2022] Open
Abstract
The initiation of DNA replication at replication origins is essential for the duplication of genomes. In yeast, the autonomously replicating sequence (ARS) property of replication origins is necessary for the stable maintenance of episomal plasmids. However, because the sequence determinants of ARS function differ among yeast species, current ARS modules are limited for use to a subset of yeasts. Here, we describe a short ARS sequence that functions in at least 10 diverse species of budding yeast. These include, but are not limited to members of the Saccharomyces, Lachancea, Kluyveromyces, and Pichia (Komagataella) genera spanning over 500 million years of evolution. In addition to its wide species range, this ARS and an optimized derivative confer improved plasmid stability relative to other currently used ARS modules.
Collapse
Affiliation(s)
- Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
28
|
Newman TJ, Mamun MA, Nieduszynski CA, Blow JJ. Replisome stall events have shaped the distribution of replication origins in the genomes of yeasts. Nucleic Acids Res 2013; 41:9705-18. [PMID: 23963700 PMCID: PMC3834809 DOI: 10.1093/nar/gkt728] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 01/21/2023] Open
Abstract
During S phase, the entire genome must be precisely duplicated, with no sections of DNA left unreplicated. Here, we develop a simple mathematical model to describe the probability of replication failing due to the irreversible stalling of replication forks. We show that the probability of complete genome replication is maximized if replication origins are evenly spaced, the largest inter-origin distances are minimized, and the end-most origins are positioned close to chromosome ends. We show that origin positions in the yeast Saccharomyces cerevisiae genome conform to all three predictions thereby maximizing the probability of complete replication if replication forks stall. Origin positions in four other yeasts-Kluyveromyces lactis, Lachancea kluyveri, Lachancea waltii and Schizosaccharomyces pombe-also conform to these predictions. Equating failure rates at chromosome ends with those in chromosome interiors gives a mean per nucleotide fork stall rate of ∼5 × 10(-8), which is consistent with experimental estimates. Using this value in our theoretical predictions gives replication failure rates that are consistent with data from replication origin knockout experiments. Our theory also predicts that significantly larger genomes, such as those of mammals, will experience a much greater probability of replication failure genome-wide, and therefore will likely require additional compensatory mechanisms.
Collapse
Affiliation(s)
- Timothy J. Newman
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Mohammed A. Mamun
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Conrad A. Nieduszynski
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| | - J. Julian Blow
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
29
|
Foureau E, Courdavault V, Navarro Gallón SM, Besseau S, Simkin AJ, Crèche J, Atehortùa L, Giglioli-Guivarc’h N, Clastre M, Papon N. Characterization of an autonomously replicating sequence in Candida guilliermondii. Microbiol Res 2013; 168:580-8. [DOI: 10.1016/j.micres.2013.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/04/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
|
30
|
Specification of DNA replication origins and genomic base composition in fission yeasts. J Mol Biol 2013; 425:4706-13. [PMID: 24095860 DOI: 10.1016/j.jmb.2013.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 11/21/2022]
Abstract
In the "Replicon Theory", Jacob, Brenner and Cuzin proposed the existence of replicators and initiators as the two major actors in DNA replication. Over the years, many protein components of initiators have been shown to be conserved in different organisms during evolution. By contrast, replicator DNA sequences (often referred to as replication origins) have diverged beyond possible comparison between eukaryotic genomes. Replication origins in the fission yeast Schizosaccharomyces pombe are made up of A+T-rich sequences that do not share any consensus elements. The information encoded in these replicators is interpreted by the Orc4 subunit of the ORC (origin recognition complex), which is unique among eukaryotes in that it contains a large domain harboring nine AT-hook subdomains that target ORC to a great variety of A+T-rich sequences along the chromosomes. Recently, the genomes of other Schizosaccharomyces species have been sequenced and the regions encompassing their replication origins have been identified. DNA sequence analysis and comparison of the organization of their Orc4 proteins have revealed species-specific differences that contribute to our understanding of how the specification of replication origins has evolved during the phylogenetic divergence of fission yeasts.
Collapse
|
31
|
Abstract
The onset of genomic DNA synthesis requires precise interactions of specialized initiator proteins with DNA at sites where the replication machinery can be loaded. These sites, defined as replication origins, are found at a few unique locations in all of the prokaryotic chromosomes examined so far. However, replication origins are dispersed among tens of thousands of loci in metazoan chromosomes, thereby raising questions regarding the role of specific nucleotide sequences and chromatin environment in origin selection and the mechanisms used by initiators to recognize replication origins. Close examination of bacterial and archaeal replication origins reveals an array of DNA sequence motifs that position individual initiator protein molecules and promote initiator oligomerization on origin DNA. Conversely, the need for specific recognition sequences in eukaryotic replication origins is relaxed. In fact, the primary rule for origin selection appears to be flexibility, a feature that is modulated either by structural elements or by epigenetic mechanisms at least partly linked to the organization of the genome for gene expression.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901
| | | |
Collapse
|
32
|
Abstract
Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.
Collapse
Affiliation(s)
- Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
33
|
Agier N, Romano OM, Touzain F, Cosentino Lagomarsino M, Fischer G. The spatiotemporal program of replication in the genome of Lachancea kluyveri. Genome Biol Evol 2013; 5:370-88. [PMID: 23355306 PMCID: PMC3590768 DOI: 10.1093/gbe/evt014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 12/11/2022] Open
Abstract
We generated a genome-wide replication profile in the genome of Lachancea kluyveri and assessed the relationship between replication and base composition. This species diverged from Saccharomyces cerevisiae before the ancestral whole genome duplication. The genome comprises eight chromosomes among which a chromosomal arm of 1 Mb has a G + C-content much higher than the rest of the genome. We identified 252 active replication origins in L. kluyveri and found considerable divergence in origin location with S. cerevisiae and with Lachancea waltii. Although some global features of S. cerevisiae replication are conserved: Centromeres replicate early, whereas telomeres replicate late, we found that replication origins both in L. kluyveri and L. waltii do not behave as evolutionary fragile sites. In L. kluyveri, replication timing along chromosomes alternates between regions of early and late activating origins, except for the 1 Mb GC-rich chromosomal arm. This chromosomal arm contains an origin consensus motif different from other chromosomes and is replicated early during S-phase. We showed that precocious replication results from the specific absence of late firing origins in this chromosomal arm. In addition, we found a correlation between GC-content and distance from replication origins as well as a lack of replication-associated compositional skew between leading and lagging strands specifically in this GC-rich chromosomal arm. These findings suggest that the unusual base composition in the genome of L. kluyveri could be linked to replication.
Collapse
Affiliation(s)
- Nicolas Agier
- UPMC, UMR7238, Génomique des Microorganismes, Paris, France
- CNRS, UMR7238, Génomique des Microorganismes, Paris, France
| | | | - Fabrice Touzain
- UPMC, UMR7238, Génomique des Microorganismes, Paris, France
- CNRS, UMR7238, Génomique des Microorganismes, Paris, France
- Present address: ANSES, Ploufragan/Plouzané Laboratory Viral Genomics and Biosecurity Unit (GVB), Ploufragan, France
| | - Marco Cosentino Lagomarsino
- UPMC, UMR7238, Génomique des Microorganismes, Paris, France
- CNRS, UMR7238, Génomique des Microorganismes, Paris, France
| | - Gilles Fischer
- UPMC, UMR7238, Génomique des Microorganismes, Paris, France
- CNRS, UMR7238, Génomique des Microorganismes, Paris, France
| |
Collapse
|
34
|
Liachko I, Youngblood RA, Keich U, Dunham MJ. High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast. Genome Res 2012; 23:698-704. [PMID: 23241746 PMCID: PMC3613586 DOI: 10.1101/gr.144659.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
DNA replication origins are necessary for the duplication of genomes. In addition, plasmid-based expression systems require DNA replication origins to maintain plasmids efficiently. The yeast autonomously replicating sequence (ARS) assay has been a valuable tool in dissecting replication origin structure and function. However, the dearth of information on origins in diverse yeasts limits the availability of efficient replication origin modules to only a handful of species and restricts our understanding of origin function and evolution. To enable rapid study of origins, we have developed a sequencing-based suite of methods for comprehensively mapping and characterizing ARSs within a yeast genome. Our approach finely maps genomic inserts capable of supporting plasmid replication and uses massively parallel deep mutational scanning to define molecular determinants of ARS function with single-nucleotide resolution. In addition to providing unprecedented detail into origin structure, our data have allowed us to design short, synthetic DNA sequences that retain maximal ARS function. These methods can be readily applied to understand and modulate ARS function in diverse systems.
Collapse
Affiliation(s)
- Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA
| | | | | | | |
Collapse
|
35
|
Yadav MP, Padmanabhan S, Tripathi VP, Mishra RK, Dubey DD. Analysis of stress-induced duplex destabilization (SIDD) properties of replication origins, genes and intergenes in the fission yeast, Schizosaccharomyces pombe. BMC Res Notes 2012; 5:643. [PMID: 23163955 PMCID: PMC3533806 DOI: 10.1186/1756-0500-5-643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/12/2012] [Indexed: 11/24/2022] Open
Abstract
Background Replication and transcription, the two key functions of DNA, require unwinding of the DNA double helix. It has been shown that replication origins in the budding yeast, Saccharomyces cerevisiae contain an easily unwound stretch of DNA. We have used a recently developed method for determining the locations and degrees of stress-induced duplex destabilization (SIDD) for all the reported replication origins in the genome of the fission yeast, Schizosaccharomyces pombe. Results We have found that the origins are more susceptible to SIDD as compared to the non-origin intergenic regions (NOIRs) and genes. SIDD analysis of many known origins in other eukaryotes suggests that SIDD is a common property of replication origins. Interestingly, the previously shown deletion-dependent changes in the activities of the origins of the ura4 origin region on chromosome 3 are paralleled by changes in SIDD properties, suggesting SIDD’s role in origin activity. SIDD profiling following in silico deletions of some origins suggests that many of the closely spaced S. pombe origins could be clusters of two or three weak origins, similar to the ura4 origin region. Conclusion SIDD appears to be a highly conserved, functionally important property of replication origins in S. pombe and other organisms. The distinctly low SIDD scores of origins and the long range effects of genetic alterations on SIDD properties provide a unique predictive potential to the SIDD analysis. This could be used in exploring different aspects of structural and functional organization of origins including interactions between closely spaced origins.
Collapse
Affiliation(s)
- Mukesh P Yadav
- Department of Biotechnology, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh 222001, India
| | | | | | | | | |
Collapse
|
36
|
Müller CA, Nieduszynski CA. Conservation of replication timing reveals global and local regulation of replication origin activity. Genome Res 2012; 22:1953-62. [PMID: 22767388 PMCID: PMC3460190 DOI: 10.1101/gr.139477.112] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DNA replication initiates from defined locations called replication origins; some origins are highly active, whereas others are dormant and rarely used. Origins also differ in their activation time, resulting in particular genomic regions replicating at characteristic times and in a defined temporal order. Here we report the comparison of genome replication in four budding yeast species: Saccharomyces cerevisiae, S. paradoxus, S. arboricolus, and S. bayanus. First, we find that the locations of active origins are predominantly conserved between species, whereas dormant origins are poorly conserved. Second, we generated genome-wide replication profiles for each of these species and discovered that the temporal order of genome replication is highly conserved. Therefore, active origins are not only conserved in location, but also in activation time. Only a minority of these conserved origins show differences in activation time between these species. To gain insight as to the mechanisms by which origin activation time is regulated we generated replication profiles for a S. cerevisiae/S. bayanus hybrid strain and find that there are both local and global regulators of origin function.
Collapse
Affiliation(s)
- Carolin A Müller
- Centre for Genetics and Genomics, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | |
Collapse
|
37
|
Di Rienzi SC, Lindstrom KC, Mann T, Noble WS, Raghuraman MK, Brewer BJ. Maintaining replication origins in the face of genomic change. Genome Res 2012; 22:1940-52. [PMID: 22665441 PMCID: PMC3460189 DOI: 10.1101/gr.138248.112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Origins of replication present a paradox to evolutionary biologists. As a collection, they are absolutely essential genomic features, but individually are highly redundant and nonessential. It is therefore difficult to predict to what extent and in what regard origins are conserved over evolutionary time. Here, through a comparative genomic analysis of replication origins and chromosomal replication patterns in the budding yeasts Saccharomyces cerevisiae and Lachancea waltii, we assess to what extent replication origins survived genomic change produced from 150 million years of evolution. We find that L. waltii origins exhibit a core consensus sequence and nucleosome occupancy pattern highly similar to those of S. cerevisiae origins. We further observe that the overall progression of chromosomal replication is similar between L. waltii and S. cerevisiae. Nevertheless, few origins show evidence of being conserved in location between the two species. Among the conserved origins are those surrounding centromeres and adjacent to histone genes, suggesting that proximity to an origin may be important for their regulation. We conclude that, over evolutionary time, origins maintain sequence, structure, and regulation, but are continually being created and destroyed, with the result that their locations are generally not conserved.
Collapse
Affiliation(s)
- Sara C Di Rienzi
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
38
|
Xu J, Yanagisawa Y, Tsankov AM, Hart C, Aoki K, Kommajosyula N, Steinmann KE, Bochicchio J, Russ C, Regev A, Rando OJ, Nusbaum C, Niki H, Milos P, Weng Z, Rhind N. Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol 2012; 13:R27. [PMID: 22531001 PMCID: PMC3446301 DOI: 10.1186/gb-2012-13-4-r27] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/27/2012] [Accepted: 04/24/2012] [Indexed: 01/13/2023] Open
Abstract
Background DNA replication initiates at distinct origins in eukaryotic genomes, but the genomic features that define these sites are not well understood. Results We have taken a combined experimental and bioinformatic approach to identify and characterize origins of replication in three distantly related fission yeasts: Schizosaccharomyces pombe, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus. Using single-molecule deep sequencing to construct amplification-free high-resolution replication profiles, we located origins and identified sequence motifs that predict origin function. We then mapped nucleosome occupancy by deep sequencing of mononucleosomal DNA from the corresponding species, finding that origins tend to occupy nucleosome-depleted regions. Conclusions The sequences that specify origins are evolutionarily plastic, with low complexity nucleosome-excluding sequences functioning in S. pombe and S. octosporus, and binding sites for trans-acting nucleosome-excluding proteins functioning in S. japonicus. Furthermore, chromosome-scale variation in replication timing is conserved independently of origin location and via a mechanism distinct from known heterochromatic effects on origin function. These results are consistent with a model in which origins are simply the nucleosome-depleted regions of the genome with the highest affinity for the origin recognition complex. This approach provides a general strategy for understanding the mechanisms that define DNA replication origins in eukaryotes.
Collapse
Affiliation(s)
- Jia Xu
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gao F, Luo H, Zhang CT. DeOri: a database of eukaryotic DNA replication origins. Bioinformatics 2012; 28:1551-2. [DOI: 10.1093/bioinformatics/bts151] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
40
|
Shah K, Krishnamachari A. Nucleotide correlation based measure for identifying origin of replication in genomic sequences. Biosystems 2012; 107:52-5. [PMID: 21945744 DOI: 10.1016/j.biosystems.2011.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/30/2011] [Accepted: 09/10/2011] [Indexed: 12/18/2022]
Abstract
Computational prediction of the origin of replication is a challenging problem and of immense interest to biologists. Several methods have been proposed for identifying the replicon site for various classes of organisms. However, these methods have limited applicability since the replication mechanism is different in different organisms. We propose a correlation measure and show that it is correctly able to predict the origin of replication in most of the bacterial genomes. When applied to Methanocaldococcus jannaschii, Plasmodium falciparum apicoplast and Nicotiana tabacum plastid, this correlation based method is able to correctly predict the origin of replication whereas the generally used GC skew measure fails. Thus, this correlation based measure is a novel and promising tool for predicting the origin of replication in a wide class of organisms. This could have important implications in not only gaining a deeper understanding of the replication machinery in higher organisms, but also for drug discovery.
Collapse
Affiliation(s)
- Kushal Shah
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| | | |
Collapse
|
41
|
Liachko I, Tanaka E, Cox K, Chung SCC, Yang L, Seher A, Hallas L, Cha E, Kang G, Pace H, Barrow J, Inada M, Tye BK, Keich U. Novel features of ARS selection in budding yeast Lachancea kluyveri. BMC Genomics 2011; 12:633. [PMID: 22204614 PMCID: PMC3306766 DOI: 10.1186/1471-2164-12-633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The characterization of DNA replication origins in yeast has shed much light on the mechanisms of initiation of DNA replication. However, very little is known about the evolution of origins or the evolution of mechanisms through which origins are recognized by the initiation machinery. This lack of understanding is largely due to the vast evolutionary distances between model organisms in which origins have been examined. RESULTS In this study we have isolated and characterized autonomously replicating sequences (ARSs) in Lachancea kluyveri - a pre-whole genome duplication (WGD) budding yeast. Through a combination of experimental work and rigorous computational analysis, we show that L. kluyveri ARSs require a sequence that is similar but much longer than the ARS Consensus Sequence well defined in Saccharomyces cerevisiae. Moreover, compared with S. cerevisiae and K. lactis, the replication licensing machinery in L. kluyveri seems more tolerant to variations in the ARS sequence composition. It is able to initiate replication from almost all S. cerevisiae ARSs tested and most Kluyveromyces lactis ARSs. In contrast, only about half of the L. kluyveri ARSs function in S. cerevisiae and less than 10% function in K. lactis. CONCLUSIONS Our findings demonstrate a replication initiation system with novel features and underscore the functional diversity within the budding yeasts. Furthermore, we have developed new approaches for analyzing biologically functional DNA sequences with ill-defined motifs.
Collapse
Affiliation(s)
- Ivan Liachko
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Marsolier-Kergoat MC, Goldar A. DNA replication induces compositional biases in yeast. Mol Biol Evol 2011; 29:893-904. [PMID: 21948086 DOI: 10.1093/molbev/msr240] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Asymmetries intrinsic to the process of DNA replication are expected to cause differences in the substitution patterns of the leading and the lagging strands and to induce compositional biases. These biases have been detected in the majority of eubacterial genomes but rarely in eukaryotes. Only in the human genome, the activity of a minority of replication origins seems to generate compositional biases. In this work, we provide evidence for replication-associated GC and TA skews in the genomes of two yeast species, Saccharomyces cerevisiae and Kluyveromyces lactis, whereas the data for the Schizosaccharomyces pombe genome are less conclusive. In contrast with the genomes of Homo sapiens and of the majority of eubacteria, the leading strand is enriched in cytosine and adenine in both S. cerevisiae and K. lactis. We observed significant variations across the interorigin intervals of several substitution rates in the S. cerevisiae lineage since its divergence from S. paradoxus. We also found that the S. cerevisiae genome is far from compositional equilibrium and that its present compositional biases are due to substitution rates operating before its divergence from S. paradoxus. Finally, we observed that replication and transcription tend to be cooriented in the S. cerevisiae genome, especially for genes encoding subunits of protein complexes. Taken together, our results suggest that replication-related compositional biases may be a feature of many eukaryotic genomes despite the stochastic nature of the firing of replication origins in these genomes.
Collapse
|
43
|
Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication. Proc Natl Acad Sci U S A 2010; 107:19384-9. [PMID: 20974972 DOI: 10.1073/pnas.1006436107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The origin recognition complex (ORC) defines origins of replication and also interacts with heterochromatin proteins in a variety of species, but how ORC functions in heterochromatin assembly remains unclear. The largest subunit of ORC, Orc1, is particularly interesting because it contains a nucleosome-binding BAH domain and because it gave rise to Sir3, a key silencing protein in Saccharomyces cerevisiae, through gene duplication. We examined whether Orc1 possessed a Sir3-like silencing function before duplication and found that Orc1 from the yeast Kluyveromyces lactis, which diverged from S. cerevisiae before the duplication, acts in conjunction with the deacetylase Sir2 and the histone-binding protein Sir4 to generate heterochromatin at telomeres and a mating-type locus. Moreover, the ability of KlOrc1 to spread across a silenced locus depends on its nucleosome-binding BAH domain and the deacetylase Sir2. Interestingly, KlOrc1 appears to act independently of the entire ORC, as other subunits of the complex, Orc4 and Orc5, are not strongly associated with silenced domains. These findings demonstrate that Orc1 functioned in silencing before duplication and suggest that Orc1 and Sir2, both of which are broadly conserved among eukaryotes, may have an ancient history of cooperating to generate chromatin structures, with Sir2 deacetylating histones and Orc1 binding to these deacetylated nucleosomes through its BAH domain.
Collapse
|
44
|
Abstract
Mechanisms regulating where and when eukaryotic DNA replication initiates remain a mystery. Recently, genome-scale methods have been brought to bear on this problem. The identification of replication origins and their associated proteins in yeasts is a well-integrated investigative tool, but corresponding data sets from multicellular organisms are scarce. By contrast, standardized protocols for evaluating replication timing have generated informative data sets for most eukaryotic systems. Here, I summarize the genome-scale methods that are most frequently used to analyse replication in eukaryotes, the kinds of questions each method can address and the technical hurdles that must be overcome to gain a complete understanding of the nature of eukaryotic replication origins.
Collapse
|
45
|
News in brief. Nat Methods 2010. [DOI: 10.1038/nmeth0810-581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|