1
|
Liao H, Li J, Wang YZ, Li H, An XL, Wang T, Chang RY, Zhu YG, Su JQ. Evolutionary diversification and succession of soil huge phages in glacier foreland. MICROBIOME 2025; 13:18. [PMID: 39838455 PMCID: PMC11748809 DOI: 10.1186/s40168-024-02017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND Huge phages (genome size ≥ 200 kb) have been detected in diverse habitats worldwide, infecting a variety of prokaryotes. However, their evolution and adaptation strategy in soils remain poorly understood due to the scarcity of soil-derived genomes. RESULTS Here, we conduct a size-fractioned (< 0.22 μm) metagenomic analysis across a 130-year chronosequence of a glacier foreland in the Tibetan Plateau and discovered 412 novel viral operational taxonomic units (vOTUs) of huge phages. The phylogenomic and gene-shared network analysis gained insights into their unique evolutionary history compared with smaller phages. Their communities in glacier foreland revealed a distinct pattern between the early (≤ 41 years) and late stages (> 41 years) based on the macrodiveristy (interspecies diversity) analysis. A significant increase in the diversity of huge phages communities following glacier retreat were observed according to current database. The phages distributed across sites within late stage demonstrated a remarkable higher microdiversity (intraspecies diversity) compared to other geographic range such as the intra early stage, suggesting that glacial retreat is key drivers of the huge phage speciation. Alongside the shift in huge phage communities, we also noted an evolutionary and functional transition between the early and late stages. The identification of abundant CRISPR-Cas12 and type IV restriction-modification (RM) systems in huge phages indicates their complex mechanisms for adaptive immunity. CONCLUSIONS Overall, this study unravels the importance of climate change in shaping the composition, evolution, and function of soil huge phage communities, and such further understanding of soil huge phages is vital for broader inclusion in soil ecosystem models. Video Abstract.
Collapse
Affiliation(s)
- Hu Liao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Zi Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Wang
- CAS Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Rui-Ying Chang
- CAS Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Baca CF, Marraffini LA. Nucleic acid recognition during prokaryotic immunity. Mol Cell 2025; 85:309-322. [PMID: 39824170 PMCID: PMC11750177 DOI: 10.1016/j.molcel.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025]
Abstract
Parasitic elements often spread to hosts through the delivery of their nucleic acids to the recipient. This is particularly true for the primary parasites of bacteria, bacteriophages (phages) and plasmids. Although bacterial immune systems can sense a diverse set of infection signals, such as a protein unique to the invader or the disruption of natural host processes, phage and plasmid nucleic acids represent some of the most common molecules that are recognized as foreign to initiate defense. In this review, we will discuss the various elements of invader nucleic acids that can be distinguished by bacterial host immune systems as "non-self" and how this signal is relayed to activate an immune response.
Collapse
Affiliation(s)
- Christian F Baca
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
3
|
Wang L, Tang Y, Deng Z, Chen S. DNA Phosphorothioate Modification Systems and Associated Phage Defense Systems. Annu Rev Microbiol 2024; 78:447-462. [PMID: 39565949 DOI: 10.1146/annurev-micro-041222-014330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In contrast to the well-known DNA methylation of nucleobases, DNA phosphorothioate (PT) modification occurs in the DNA sugar-phosphate backbone. The non-bridging oxygen is replaced by a sulfur atom, which increases the nuclease tolerance of the DNA. In recent years, we have witnessed advances in understanding of PT modification enzymes, the features of PT modification across prokaryotic genomes, and PT-related physiological functions. Although only a small fraction of modifiable recognition sites across bacterial genomes undergo PT modification, enzymes such as DndFGH and SspE can use this modification as a recognition marker to differentiate between self- and non-self-DNA, thus destroying PT-lacking invasive DNA and preventing autoimmunity. We highlight the molecular mechanisms of PT modification-associated defense systems. We also describe notable applications of PT systems in the engineering of phage-resistant bacterial strains, RNA editing, and nucleic acid detection.
Collapse
Affiliation(s)
- Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China;
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yaqian Tang
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Zixin Deng
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shi Chen
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China;
| |
Collapse
|
4
|
Yuan Y, DeMott MS, Byrne SR, Flores K, Poyet M, Groussin M, Microbiome Conservancy G, Berdy B, Comstock L, Alm EJ, Dedon PC. Phosphorothioate DNA modification by BREX Type 4 systems in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597175. [PMID: 38895356 PMCID: PMC11185695 DOI: 10.1101/2024.06.03.597175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Among dozens of microbial DNA modifications regulating gene expression and host defense, phosphorothioation (PT) is the only known backbone modification, with sulfur inserted at a non-bridging oxygen by dnd and ssp gene families. Here we explored the distribution of PT genes in 13,663 human gut microbiome genomes, finding that 6.3% possessed dnd or ssp genes predominantly in Bacillota, Bacteroidota, and Pseudomonadota. This analysis uncovered several putative new PT synthesis systems, including Type 4 Bacteriophage Exclusion (BREX) brx genes, which were genetically validated in Bacteroides salyersiae. Mass spectrometric analysis of DNA from 226 gut microbiome isolates possessing dnd, ssp, and brx genes revealed 8 PT dinucleotide settings confirmed in 6 consensus sequences by PT-specific DNA sequencing. Genomic analysis showed PT enrichment in rRNA genes and depletion at gene boundaries. These results illustrate the power of the microbiome for discovering prokaryotic epigenetics and the widespread distribution of oxidation-sensitive PTs in gut microbes.
Collapse
Affiliation(s)
- Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael S. DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shane R. Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Katia Flores
- Department of Microbiology, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Mathilde Poyet
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Experimental Medicine, Kiel University, Germany
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Clinical and Molecular Biology, Kiel University, Germany
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
| | - Global Microbiome Conservancy
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA
| | - Brittany Berdy
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Laurie Comstock
- Department of Microbiology, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Eric J. Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
5
|
Wang Y, Ge F, Liu J, Hu W, Liu G, Deng Z, He X. The binding affinity-dependent inhibition of cell growth and viability by DNA sulfur-binding domains. Mol Microbiol 2024; 121:971-983. [PMID: 38480679 DOI: 10.1111/mmi.15249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 05/16/2024]
Abstract
Increasing evidence suggests that DNA phosphorothioate (PT) modification serves several purposes in the bacterial host, and some restriction enzymes specifically target PT-DNA. PT-dependent restriction enzymes (PDREs) bind PT-DNA through their DNA sulfur binding domain (SBD) with dissociation constants (KD) of 5 nM~1 μM. Here, we report that SprMcrA, a PDRE, failed to dissociate from PT-DNA after cleavage due to high binding affinity, resulting in low DNA cleavage efficiency. Expression of SBDs in Escherichia coli cells with PT modification induced a drastic loss of cell viability at 25°C when both DNA strands of a PT site were bound, with one SBD on each DNA strand. However, at this temperature, SBD binding to only one PT DNA strand elicited a severe growth lag rather than lethality. This cell growth inhibition phenotype was alleviated by raising the growth temperature. An in vitro assay mimicking DNA replication and RNA transcription demonstrated that the bound SBD hindered the synthesis of new DNA and RNA when using PT-DNA as the template. Our findings suggest that DNA modification-targeting proteins might regulate cellular processes involved in DNA metabolism in addition to being components of restriction-modification systems and epigenetic readers.
Collapse
Affiliation(s)
- Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fulin Ge
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jinling Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Helbrecht I, Heiter D, Yang W, Vincze T, Hanneman A, Lutz T, Ettwiller L, Bochtler M, Xu SY. Characterization of winged helix domain fusion endonucleases as N6-methyladenine-dependent type IV restriction systems. Front Microbiol 2024; 15:1286822. [PMID: 38655080 PMCID: PMC11037411 DOI: 10.3389/fmicb.2024.1286822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/08/2024] [Indexed: 04/26/2024] Open
Abstract
Winged helix (wH) domains, also termed winged helix-turn-helix (wHTH) domains, are widespread in all kingdoms of life and have diverse roles. In the context of DNA binding and DNA modification sensing, some eukaryotic wH domains are known as sensors of non-methylated CpG. In contrast, the prokaryotic wH domains in DpnI and HhiV4I act as sensors of adenine methylation in the 6mApT (N6-methyladenine, 6mA, or N6mA) context. DNA-binding modes and interactions with the probed dinucleotide are vastly different in the two cases. Here, we show that the role of the wH domain as a sensor of adenine methylation is widespread in prokaryotes. We present previously uncharacterized examples of PD-(D/E)XK-wH (FcyTI, Psp4BI), PUA-wH-HNH (HtuIII), wH-GIY-YIG (Ahi29725I, Apa233I), and PLD-wH (Aba4572I, CbaI) fusion endonucleases that sense adenine methylation in the Dam+ Gm6ATC sequence contexts. Representatives of the wH domain endonuclease fusion families with the exception of the PLD-wH family could be purified, and an in vitro preference for adenine methylation in the Dam context could be demonstrated. Like most other modification-dependent restriction endonucleases (MDREs, also called type IV restriction systems), the new fusion endonucleases except those in the PD-(D/E)XK-wH family cleave close to but outside the recognition sequence. Taken together, our data illustrate the widespread combinatorial use of prokaryotic wH domains as adenine methylation readers. Other potential 6mA sensors in modified DNA are also discussed.
Collapse
Affiliation(s)
- Igor Helbrecht
- New England Biolabs, Inc., Ipswich, MA, United States
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Daniel Heiter
- New England Biolabs, Inc., Ipswich, MA, United States
| | - Weiwei Yang
- New England Biolabs, Inc., Ipswich, MA, United States
| | - Tamas Vincze
- New England Biolabs, Inc., Ipswich, MA, United States
| | | | - Thomas Lutz
- New England Biolabs, Inc., Ipswich, MA, United States
| | | | - Matthias Bochtler
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | |
Collapse
|
7
|
Hu W, Yang B, Xiao Q, Wang Y, Shuai Y, Zhao G, Zhang L, Deng Z, He X, Liu G. Characterization of a promiscuous DNA sulfur binding domain and application in site-directed RNA base editing. Nucleic Acids Res 2023; 51:10782-10794. [PMID: 37702119 PMCID: PMC10602919 DOI: 10.1093/nar/gkad743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Phosphorothioate (PT)-modification was discovered in prokaryotes and is involved in many biological functions such as restriction-modification systems. PT-modification can be recognized by the sulfur binding domains (SBDs) of PT-dependent restriction endonucleases, through coordination with the sulfur atom, accompanied by interactions with the DNA backbone and bases. The unique characteristics of PT recognition endow SBDs with the potential to be developed into gene-targeting tools, but previously reported SBDs display sequence-specificity for PT-DNA, which limits their applications. In this work, we identified a novel sequence-promiscuous SBDHga from Hahella ganghwensis. We solved the crystal structure of SBDHga complexed with PT-DNA substrate to 1.8 Å resolution and revealed the recognition mechanism. A shorter L4 loop of SBDHga interacts with the DNA backbone, in contrast with previously reported SBDs, which interact with DNA bases. Furthermore, we explored the feasibility of using SBDHga and a PT-oligonucleotide as targeting tools for site-directed adenosine-to-inosine (A-to-I) RNA editing. A GFP non-sense mutant RNA was repaired at about 60% by harnessing a chimeric SBD-hADAR2DD (deaminase domain of human adenosine deaminase acting on RNA), comparable with currently available RNA editing techniques. This work provides insights into understanding the mechanism of sequence-specificity for SBDs and for developing new tools for gene therapy.
Collapse
Affiliation(s)
- Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Bingxu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Qingjie Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yuting Shuai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Gong Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
8
|
Shuai Y, Ju Y, Li Y, Ma D, Jiang L, Zhang J, Tan GY, Liu X, Wang S, Zhang L, Liu G. A rapid nucleic acid detection platform based on phosphorothioate-DNA and sulfur binding domain. Synth Syst Biotechnol 2023; 8:213-219. [PMID: 36875498 PMCID: PMC9982451 DOI: 10.1016/j.synbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Nucleic acid detection plays a key role in diverse diagnosis and disease control. Currently available nucleic acid detection techniques are challenged by trade-offs among speed, simplicity, precision and cost. Here, we described a novel method, designated SENSOR (Sulfur DNA mediated nucleic acid sensing platform), for rapid nucleic acid detection. SENSOR was developed from phosphorothioate (PT)-DNA and sulfur binding domain (SBD) which specifically binds double-stranded PT-modified DNA. SENSOR utilizes PT-DNA oligo and SBD as targeting module, which is linked with split luciferase reporter to generate luminescence signal within 10 min. We tested detection on synthesized nucleic acid and COVID-19 pseudovirus, achieving attomolar sensitivity combined with an amplification procedure. Single nucleotide polymorphisms (SNP) could also be discriminated. Indicating SENSOR a new promising nucleic acid detection technique.
Collapse
Affiliation(s)
- Yuting Shuai
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Yi Ju
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Yuanhang Li
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Dini Ma
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China.,State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic &Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lan Jiang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Guang Liu
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China.,State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic &Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Nicking mechanism underlying the DNA phosphorothioate-sensing antiphage defense by SspE. Nat Commun 2022; 13:6773. [PMID: 36351933 PMCID: PMC9646914 DOI: 10.1038/s41467-022-34505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
DNA phosphorothioate (PT) modification, with a nonbridging phosphate oxygen substituted by sulfur, represents a widespread epigenetic marker in prokaryotes and provides protection against genetic parasites. In the PT-based defense system Ssp, SspABCD confers a single-stranded PT modification of host DNA in the 5'-CPSCA-3' motif and SspE impedes phage propagation. SspE relies on PT modification in host DNA to exert antiphage activity. Here, structural and biochemical analyses reveal that SspE is preferentially recruited to PT sites mediated by the joint action of its N-terminal domain (NTD) hydrophobic cavity and C-terminal domain (CTD) DNA binding region. PT recognition enlarges the GTP-binding pocket, thereby increasing GTP hydrolysis activity, which subsequently triggers a conformational switch of SspE from a closed to an open state. The closed-to-open transition promotes the dissociation of SspE from self PT-DNA and turns on the DNA nicking nuclease activity of CTD, enabling SspE to accomplish self-nonself discrimination and limit phage predation, even when only a small fraction of modifiable consensus sequences is PT-protected in a bacterial genome.
Collapse
|
10
|
Yang W, Fomenkov A, Heiter D, Xu SY, Ettwiller L. High-throughput sequencing of EcoWI restriction fragments maps the genome-wide landscape of phosphorothioate modification at base resolution. PLoS Genet 2022; 18:e1010389. [PMID: 36121836 PMCID: PMC9521924 DOI: 10.1371/journal.pgen.1010389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Phosphorothioation (PT), in which a non-bridging oxygen is replaced by a sulfur, is one of the rare modifications discovered in bacteria and archaea that occurs on the sugar-phosphate backbone as opposed to the nucleobase moiety of DNA. While PT modification is widespread in the prokaryotic kingdom, how PT modifications are distributed in the genomes and their exact roles in the cell remain to be defined. In this study, we developed a simple and convenient technique called EcoWI-seq based on a modification-dependent restriction endonuclease to identify genomic positions of PT modifications. EcoWI-seq shows similar performance than other PT modification detection techniques and additionally, is easily scalable while requiring little starting material. As a proof of principle, we applied EcoWI-seq to map the PT modifications at base resolution in the genomes of both the Salmonella enterica cerro 87 and E. coli expressing the dnd+ gene cluster. Specifically, we address whether the partial establishment of modified PT positions is a stochastic or deterministic process. EcoWI-seq reveals a systematic usage of the same subset of target sites in clones for which the PT modification has been independently established. Large number of bacteria have modified their DNA mainly as part of a strategy to resist virus infection. Most of the modifications are chemical variations on the canonical bases A, T, C or G with phosphorothioate (PT) being a rare exception of a modification that happens on the backbone of the DNA. Interestingly, this PT modification was first chemically synthesized for specific biotechnological processes before scientists discovered that bacteria and archaea naturally perform this modification using their enzymes. The exact roles of phosphorothioation in bacteria and archaea is still under investigation. To enable further investigation of PT modifications, we designed EcoWI-seq, a method to identify the exact positions of these modifications in bacterial genomes. Notably, we applied the EcoWI-seq to several strains of E. coli for which PT modification has been induced by cloning into these strains, the necessary genes for making such modification. We found that these strains, despite being independently made, followed a precise pattern of PT modification with always the same sites being modified. This result indicates a deterministic process for the establishment of PT modification.
Collapse
Affiliation(s)
- Weiwei Yang
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - Alexey Fomenkov
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - Dan Heiter
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - Shuang-yong Xu
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
- * E-mail: (SYX); (LE)
| | - Laurence Ettwiller
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
- * E-mail: (SYX); (LE)
| |
Collapse
|
11
|
Gu X. A Simple Evolutionary Model of Genetic Robustness After Gene Duplication. J Mol Evol 2022; 90:352-361. [PMID: 35913597 DOI: 10.1007/s00239-022-10065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/23/2022] [Indexed: 10/16/2022]
Abstract
When a dispensable gene is duplicated (referred to the ancestral dispensability denoted by O+), genetic buffering and duplicate compensation together maintain the duplicate redundancy, whereas duplicate compensation is the only mechanism when an essential gene is duplicated (referred to the ancestral essentiality denoted by O-). To investigate these evolutionary scenarios of genetic robustness, I formulated a simple mixture model for analyzing duplicate pairs with one of the following states: double dispensable (DD), semi-dispensable (one dispensable one essential, DE), or double essential (EE). This model was applied to the yeast duplicate pairs from a whole-genome duplication (WGD) occurred about 100 million years ago (mya), and the mouse duplicate pairs from a WGD occurred about more than 500 mya. Both case studies revealed that the proportion of essentiality for those duplicates with ancestral essentiality [PE(O-)] was much higher than that for those with ancestral dispensability [PE(O+)]. While it was negligible in the yeast duplicate pairs, PE(O+) (about 20%) was shown statistically significant in the mouse duplicate pairs. These findings, together, support the hypothesis that both sub-functionalization and neo-functionalization may play some roles after gene duplication, though the former may be much faster than the later.
Collapse
Affiliation(s)
- Xun Gu
- The Laurence H. Baker Center in Bioinformatics on Biological Statistics, Department of Genetics, Development and Cell Biology, Program of Ecological and Evolutionary Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
12
|
System-Wide Analysis of the GATC-Binding Nucleoid-Associated Protein Gbn and Its Impact on
Streptomyces
Development. mSystems 2022; 7:e0006122. [PMID: 35575488 PMCID: PMC9239103 DOI: 10.1128/msystems.00061-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large part of the chemical space of bioactive natural products is derived from
Actinobacteria
. Many of the biosynthetic gene clusters for these compounds are cryptic; in others words, they are expressed in nature but not in the laboratory.
Collapse
|
13
|
Jian H, Xu G, Yi Y, Hao Y, Wang Y, Xiong L, Wang S, Liu S, Meng C, Wang J, Zhang Y, Chen C, Feng X, Luo H, Zhang H, Zhang X, Wang L, Wang Z, Deng Z, Xiao X. The origin and impeded dissemination of the DNA phosphorothioation system in prokaryotes. Nat Commun 2021; 12:6382. [PMID: 34737280 PMCID: PMC8569181 DOI: 10.1038/s41467-021-26636-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Phosphorothioate (PT) modification by the dnd gene cluster is the first identified DNA backbone modification and constitute an epigenetic system with multiple functions, including antioxidant ability, restriction modification, and virus resistance. Despite these advantages for hosting dnd systems, they are surprisingly distributed sporadically among contemporary prokaryotic genomes. To address this ecological paradox, we systematically investigate the occurrence and phylogeny of dnd systems, and they are suggested to have originated in ancient Cyanobacteria after the Great Oxygenation Event. Interestingly, the occurrence of dnd systems and prophages is significantly negatively correlated. Further, we experimentally confirm that PT modification activates the filamentous phage SW1 by altering the binding affinity of repressor and the transcription level of its encoding gene. Competition assays, concurrent epigenomic and transcriptomic sequencing subsequently show that PT modification affects the expression of a variety of metabolic genes, which reduces the competitive fitness of the marine bacterium Shewanella piezotolerans WP3. Our findings strongly suggest that a series of negative effects on microorganisms caused by dnd systems limit horizontal gene transfer, thus leading to their sporadic distribution. Overall, our study reveals putative evolutionary scenario of the dnd system and provides novel insights into the physiological and ecological influences of PT modification.
Collapse
Affiliation(s)
- Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Guanpeng Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Siyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Canxing Meng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahua Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiaoyuan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
14
|
Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses - Part I. BIOCHEMISTRY (MOSCOW) 2021; 86:319-337. [PMID: 33838632 DOI: 10.1134/s0006297921030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). Constant threat of phage infection is a major force that shapes evolution of the microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering have been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection, with a focus on novel systems discovered in recent years. First chapter covers defense associated with cell surface, role of small molecules, and innate immunity systems relying on DNA modification.
Collapse
Affiliation(s)
- Artem B Isaev
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia.
| | - Olga S Musharova
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Institute of Molecular Genetics, Moscow, 119334, Russia
| | - Konstantin V Severinov
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Yu H, Li J, Liu G, Zhao G, Wang Y, Hu W, Deng Z, Wu G, Gan J, Zhao YL, He X. DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses. Nucleic Acids Res 2020; 48:8755-8766. [PMID: 32621606 PMCID: PMC7470945 DOI: 10.1093/nar/gkaa574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/04/2022] Open
Abstract
The sulfur atom of phosphorothioated DNA (PT-DNA) is coordinated by a surface cavity in the conserved sulfur-binding domain (SBD) of type IV restriction enzymes. However, some SBDs cannot recognize the sulfur atom in some sequence contexts. To illustrate the structural determinants for sequence specificity, we resolved the structure of SBDSpr, from endonuclease SprMcrA, in complex with DNA of GPSGCC, GPSATC and GPSAAC contexts. Structural and computational analyses explained why it binds the above PT-DNAs with an affinity in a decreasing order. The structural analysis of SBDSpr–GPSGCC and SBDSco–GPSGCC, the latter only recognizes DNA of GPSGCC, revealed that a positively charged loop above the sulfur-coordination cavity electrostatically interacts with the neighboring DNA phosphate linkage. The structural analysis indicated that the DNA–protein hydrogen bonding pattern and weak non-bonded interaction played important roles in sequence specificity of SBD protein. Exchanges of the positively-charged amino acid residues with the negatively-charged residues in the loop would enable SBDSco to extend recognization for more PT-DNA sequences, implying that type IV endonucleases can be engineered to recognize PT-DNA in novel target sequences.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Gong Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
16
|
Lutz T, Czapinska H, Fomenkov A, Potapov V, Heiter DF, Cao B, Dedon P, Bochtler M, Xu SY. Protein Domain Guided Screen for Sequence Specific and Phosphorothioate-Dependent Restriction Endonucleases. Front Microbiol 2020; 11:1960. [PMID: 33013736 PMCID: PMC7461809 DOI: 10.3389/fmicb.2020.01960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/24/2020] [Indexed: 11/25/2022] Open
Abstract
Modification dependent restriction endonucleases (MDREs) restrict modified DNA, typically with limited sequence specificity (∼2-4 bp). Here, we focus on MDREs that have an SRA and/or SBD (sulfur binding domain) fused to an HNH endonuclease domain, cleaving cytosine modified or phosphorothioated (PT) DNA. We independently characterized the SBD-SRA-HNH endonuclease ScoMcrA, which preferentially cleaves 5hmC modified DNA. We report five SBD-HNH endonucleases, all recognizing GpsAAC/GpsTTC sequence and cleaving outside with a single nucleotide 3' stagger: EcoWI (N7/N6), Ksp11411I (N5/N4), Bsp305I (N6/N4-5), Mae9806I [N(8-10)/N(8-9)], and Sau43800I [N(8-9)/N(7-8)]. EcoWI and Bsp305I are more specific for PT modified DNA in Mg2+ buffer, and promiscuous with Mn2+. Ksp11411I is more PT specific with Ni2+. EcoWI and Ksp11411I cleave fully- and hemi-PT modified oligos, while Bsp305I cleaves only fully modified ones. EcoWI forms a dimer in solution and cleaves more efficiently in the presence of two modified sites. In addition, we demonstrate that EcoWI PT-dependent activity has biological function: EcoWI expressing cells restrict dnd+ GpsAAC modified plasmid strongly, and GpsGCC DNA weakly. This work establishes a framework for biotechnology applications of PT-dependent restriction endonucleases (PTDRs).
Collapse
Affiliation(s)
- Thomas Lutz
- New England Biolabs, Inc., Ipswich, MA, United States
| | | | | | | | | | - Bo Cao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- College of Life Science, Qufu Normal University, Qufu, China
| | - Peter Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | | |
Collapse
|
17
|
Slyvka A, Zagorskaitė E, Czapinska H, Sasnauskas G, Bochtler M. Crystal structure of the EcoKMcrA N-terminal domain (NEco): recognition of modified cytosine bases without flipping. Nucleic Acids Res 2020; 47:11943-11955. [PMID: 31724709 PMCID: PMC7145662 DOI: 10.1093/nar/gkz1017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023] Open
Abstract
EcoKMcrA from Escherichia coli restricts CpG methylated or hydroxymethylated DNA, and may act as a barrier against host DNA. The enzyme consists of a novel N-terminal specificity domain that we term NEco, and a C-terminal catalytic HNH domain. Here, we report that NEco and full-length EcoKMcrA specificities are consistent. NEco affinity to DNA increases more from hemi- to full-methylation than from non- to hemi-methylation, indicating cooperative binding of the methyl groups. We determined the crystal structures of NEco in complex with fully modified DNA containing three variants of the Y5mCGR EcoKMcrA target sequence: C5mCGG, T5mCGA and T5hmCGA. The structures explain the specificity for the two central base pairs and one of the flanking pairs. As predicted based on earlier biochemical experiments, NEco does not flip any DNA bases. The proximal and distal methyl groups are accommodated in separate pockets. Changes to either pocket reduce DNA binding by NEco and restriction by EcoKMcrA, confirming the relevance of the crystallographically observed binding mode in solution.
Collapse
Affiliation(s)
- Anton Slyvka
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Evelina Zagorskaitė
- Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
18
|
Musiol-Kroll EM, Tocchetti A, Sosio M, Stegmann E. Challenges and advances in genetic manipulation of filamentous actinomycetes - the remarkable producers of specialized metabolites. Nat Prod Rep 2019; 36:1351-1369. [PMID: 31517370 DOI: 10.1039/c9np00029a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to February 2019Actinomycetes are Gram positive bacteria of the phylum Actinobacteria. These organisms are one of the most important sources of structurally diverse, clinically used antibiotics and other valuable bioactive products, as well as biotechnologically relevant enzymes. Most strains were discovered by their ability to produce a given molecule and were often poorly characterized, physiologically and genetically. The development of genetic methods for Streptomyces and related filamentous actinomycetes has led to the successful manipulation of antibiotic biosynthesis to attain structural modification of microbial metabolites that would have been inaccessible by chemical means and improved production yields. Moreover, genome mining reveals that actinomycete genomes contain multiple biosynthetic gene clusters (BGCs), however only a few of them are expressed under standard laboratory conditions, leading to the production of the respective compound(s). Thus, to access and activate the so-called "silent" BGCs, to improve their biosynthetic potential and to discover novel natural products methodologies for genetic manipulation are required. Although different methods have been applied for many actinomycete strains, genetic engineering is still remaining very challenging for some "underexplored" and poorly characterized actinomycetes. This review summarizes the strategies developed to overcome the obstacles to genetic manipulation of actinomycetes and allowing thereby rational genetic engineering of this industrially relevant group of microorganisms. At the end of this review we give some tips to researchers with limited or no previous experience in genetic manipulation of actinomycetes. The article covers the most relevant literature published until February 2019.
Collapse
Affiliation(s)
- Ewa M Musiol-Kroll
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| | | | | | - Evi Stegmann
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| |
Collapse
|
19
|
Yao P, Liu Y, Wang C, Lan W, Wang C, Cao C. Investigating the interactions between DNA and DndE during DNA phosphorothioation. FEBS Lett 2019; 593:2790-2799. [PMID: 31276192 DOI: 10.1002/1873-3468.13529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
Abstract
The DNA phosphorothioate modification is a novel physiological variation in bacteria. DndE controls this modification by binding to dsDNA via a mechanism that remains unclear. Structural analysis of the wild-type DndE tetramer suggests that a positively charged region in its center is important for DNA binding. In the present study, we replaced residues G21 and G24 in this region with lysines, which increases the DNA binding affinity but does not affect the DNA degradation phenotype. Structural analysis of the mutant indicates that it forms a new tetrameric conformation and that DndE interacts with DNA as a monomer rather than as a tetramer. A structural model of the DndE-DNA complex, based on its structural homolog P22 Arc repressor, indicates that two flexible loops in DndE are determinants of DNA binding.
Collapse
Affiliation(s)
- Penfei Yao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaping Liu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengkun Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems. J Ind Microbiol Biotechnol 2019; 46:1435-1443. [PMID: 31342224 PMCID: PMC6791906 DOI: 10.1007/s10295-019-02218-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
A major barrier to both metabolic engineering and fundamental biological studies is the lack of genetic tools in most microorganisms. One example is Clostridium thermocellum ATCC 27405T, where genetic tools are not available to help validate decades of hypotheses. A significant barrier to DNA transformation is restriction–modification systems, which defend against foreign DNA methylated differently than the host. To determine the active restriction–modification systems in this strain, we performed complete methylome analysis via single-molecule, real-time sequencing to detect 6-methyladenine and 4-methylcytosine and the rarely used whole-genome bisulfite sequencing to detect 5-methylcytosine. Multiple active systems were identified, and corresponding DNA methyltransferases were expressed from the Escherichia coli chromosome to mimic the C. thermocellum methylome. Plasmid methylation was experimentally validated and successfully electroporated into C. thermocellum ATCC 27405. This combined approach enabled genetic modification of the C. thermocellum-type strain and acts as a blueprint for transformation of other non-model microorganisms.
Collapse
|
21
|
Kisiala M, Copelas A, Czapinska H, Xu SY, Bochtler M. Crystal structure of the modification-dependent SRA-HNH endonuclease TagI. Nucleic Acids Res 2019; 46:10489-10503. [PMID: 30202937 PMCID: PMC6212794 DOI: 10.1093/nar/gky781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
TagI belongs to the recently characterized SRA-HNH family of modification-dependent restriction endonucleases (REases) that also includes ScoA3IV (Sco5333) and TbiR51I (Tbis1). Here, we present a crystal structure of dimeric TagI, which exhibits a DNA binding site formed jointly by the nuclease domains, and separate binding sites for modified DNA bases in the two protomers. The nuclease domains have characteristic features of HNH/ββα-Me REases, and catalyze nicks or double strand breaks, with preference for /RY and RYN/RY sites, respectively. The SRA domains have the canonical fold. Their pockets for the flipped bases are spacious enough to accommodate 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC), but not glucosyl-5-hydroxymethylcytosine (g5hmC). Such preference is in agreement with the biochemical determination of the TagI modification dependence and the results of phage restriction assays. The ability of TagI to digest plasmids methylated by Dcm (C5mCWGG), M.Fnu4HI (G5mCNGC) or M.HpyCH4IV (A5mCGT) suggests that the SRA domains of the enzyme are tolerant to different sequence contexts of the modified base.
Collapse
Affiliation(s)
- Marlena Kisiala
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland.,Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Alyssa Copelas
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Shuang-Yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
22
|
Czapinska H, Kowalska M, Zagorskaite E, Manakova E, Slyvka A, Xu SY, Siksnys V, Sasnauskas G, Bochtler M. Activity and structure of EcoKMcrA. Nucleic Acids Res 2019; 46:9829-9841. [PMID: 30107581 PMCID: PMC6182155 DOI: 10.1093/nar/gky731] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
Escherichia coli McrA (EcoKMcrA) acts as a methylcytosine and hydroxymethylcytosine dependent restriction endonuclease. We present a biochemical characterization of EcoKMcrA that includes the first demonstration of its endonuclease activity, small angle X-ray scattering (SAXS) data, and a crystal structure of the enzyme in the absence of DNA. Our data indicate that EcoKMcrA dimerizes via the anticipated C-terminal HNH domains, which together form a single DNA binding site. The N-terminal domains are not homologous to SRA domains, do not interact with each other, and have separate DNA binding sites. Electrophoretic mobility shift assay (EMSA) and footprinting experiments suggest that the N-terminal domains can sense the presence and sequence context of modified cytosines. Pyrrolocytosine fluorescence data indicate no base flipping. In vitro, EcoKMcrA DNA endonuclease activity requires Mn2+ ions, is not strictly methyl dependent, and is not observed when active site variants of the enzyme are used. In cells, EcoKMcrA specifically restricts DNA that is modified in the correct sequence context. This activity is impaired by mutations of the nuclease active site, unless the enzyme is highly overexpressed.
Collapse
Affiliation(s)
- Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Monika Kowalska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Evelina Zagorskaite
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Elena Manakova
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Anton Slyvka
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Shuang-Yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
23
|
Wang L, Jiang S, Deng Z, Dedon PC, Chen S. DNA phosphorothioate modification-a new multi-functional epigenetic system in bacteria. FEMS Microbiol Rev 2019; 43:109-122. [PMID: 30289455 PMCID: PMC6435447 DOI: 10.1093/femsre/fuy036] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Synthetic phosphorothioate (PT) internucleotide linkages, in which a nonbridging oxygen is replaced by a sulphur atom, share similar physical and chemical properties with phosphodiesters but confer enhanced nuclease tolerance on DNA/RNA, making PTs a valuable biochemical and pharmacological tool. Interestingly, PT modification was recently found to occur naturally in bacteria in a sequence-selective and RP configuration-specific manner. This oxygen-sulphur swap is catalysed by the gene products of dndABCDE, which constitute a defence barrier with DndFGH in some bacterial strains that can distinguish and attack non-PT-modified foreign DNA, resembling DNA methylation-based restriction-modification (R-M) systems. Despite their similar defensive mechanisms, PT- and methylation-based R-M systems have evolved to target different consensus contexts in the host cell because when they share the same recognition sequences, the protective function of each can be impeded. The redox and nucleophilic properties of PT sulphur render PT modification a versatile player in the maintenance of cellular redox homeostasis, epigenetic regulation and environmental fitness. The widespread presence of dnd systems is considered a consequence of extensive horizontal gene transfer, whereas the lability of PT during oxidative stress and the susceptibility of PT to PT-dependent endonucleases provide possible explanations for the ubiquitous but sporadic distribution of PT modification in the bacterial world.
Collapse
Affiliation(s)
- Lianrong Wang
- Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Susu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Masschusetts Avenue, Cambridge, Massachusetts, USA
| | - Shi Chen
- Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| |
Collapse
|
24
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Structural basis for the recognition of sulfur in phosphorothioated DNA. Nat Commun 2018; 9:4689. [PMID: 30409991 PMCID: PMC6224610 DOI: 10.1038/s41467-018-07093-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
There have been very few reports on protein domains that specifically recognize sulfur. Here we present the crystal structure of the sulfur-binding domain (SBD) from the DNA phosphorothioation (PT)-dependent restriction endonuclease ScoMcrA. SBD contains a hydrophobic surface cavity that is formed by the aromatic ring of Y164, the pyrolidine ring of P165, and the non-polar side chains of four other residues that serve as lid, base, and wall of the cavity. The SBD and PT-DNA undergo conformational changes upon binding. The S187RGRR191 loop inserts into the DNA major groove to make contacts with the bases of the GPSGCC core sequence. Mutating key residues of SBD impairs PT-DNA association. More than 1000 sequenced microbial species from fourteen phyla contain SBD homologs. We show that three of these homologs bind PT-DNA in vitro and restrict PT-DNA gene transfer in vivo. These results show that SBD-like PT-DNA readers exist widely in prokaryotes.
Collapse
|
26
|
Yu H, Liu G, Zhao G, Hu W, Wu G, Deng Z, He X. Identification of a conserved DNA sulfur recognition domain by characterizing the phosphorothioate-specific endonuclease SprMcrA from Streptomyces pristinaespiralis. Mol Microbiol 2018; 110:484-497. [PMID: 30184284 DOI: 10.1111/mmi.14118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2018] [Indexed: 12/28/2022]
Abstract
Streptomyces species have been valuable models for understanding the phenomenon of DNA phosphorothioation in which sulfur replaces a non-bridging oxygen in the phosphate backbone of DNA. We previously reported that the restriction endonuclease ScoMcrA from Streptomyces coelicolor cleaves phosphorothioate DNA and Dcm-methylated DNA at sites 16-28 nucleotides away from the modification sites. However, cleavage of modified DNA by ScoMcrA is always incomplete and accompanied by severe promiscuous activity on unmodified DNA. These features complicate the studies of recognition and cleavage of phosphorothioate DNA. For these reasons, we here characterized SprMcrA from Streptomyces pristinaespiralis, a much smaller homolog of ScoMcrA with a rare HRH motif, a variant of the HNH motif that forms the catalytic center of these endonucleases. The sulfur-binding domain of SprMcrA and its phosphorothioation recognition site were determined. Compared to ScoMcrA, SprMcrA has higher specificity in discerning phosphorothioate DNA from unmodified DNA, and this enzyme generally cuts both strands at a distance of 11-14 nucleotides from the 5' side of the recognition site. The HRH/HNH motif has its own sequence specificity in DNA hydrolysis, leading to failure of cleavage at some phosphorothioated sites. An R248N mutation of the central residue in HRH resulted in 30-fold enhancement in cleavage activity of phosphorothioate DNA and altered the cleavage efficiency at some sites, whereas mutation of both His residues abolished restriction activity. This is the first report of a recognition domain for phosphorothioate DNA and phosphorothioate-dependent and sequence-specific restriction activity.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gong Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria. Proc Natl Acad Sci U S A 2018. [PMID: 29531068 DOI: 10.1073/pnas.1721916115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The chemical diversity of physiological DNA modifications has expanded with the identification of phosphorothioate (PT) modification in which the nonbridging oxygen in the sugar-phosphate backbone of DNA is replaced by sulfur. Together with DndFGH as cognate restriction enzymes, DNA PT modification, which is catalyzed by the DndABCDE proteins, functions as a bacterial restriction-modification (R-M) system that protects cells against invading foreign DNA. However, the occurrence of dnd systems across a large number of bacterial genomes and their functions other than R-M are poorly understood. Here, a genomic survey revealed the prevalence of bacterial dnd systems: 1,349 bacterial dnd systems were observed to occur sporadically across diverse phylogenetic groups, and nearly half of these occur in the form of a solitary dndBCDE gene cluster that lacks the dndFGH restriction counterparts. A phylogenetic analysis of 734 complete PT R-M pairs revealed the coevolution of M and R components, despite the observation that several PT R-M pairs appeared to be assembled from M and R parts acquired from distantly related organisms. Concurrent epigenomic analysis, transcriptome analysis, and metabolome characterization showed that a solitary PT modification contributed to the overall cellular redox state, the loss of which perturbed the cellular redox balance and induced Pseudomonas fluorescens to reconfigure its metabolism to fend off oxidative stress. An in vitro transcriptional assay revealed altered transcriptional efficiency in the presence of PT DNA modification, implicating its function in epigenetic regulation. These data suggest the versatility of PT in addition to its involvement in R-M protection.
Collapse
|
28
|
Prey Range and Genome Evolution of Halobacteriovorax marinus Predatory Bacteria from an Estuary. mSphere 2018; 3:mSphere00508-17. [PMID: 29359184 PMCID: PMC5760749 DOI: 10.1128/msphere.00508-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/05/2017] [Indexed: 02/04/2023] Open
Abstract
Predatory bacteria attack and digest other bacteria and therefore may play a role in shaping microbial communities. To investigate phenotypic and genotypic variation in saltwater-adapted predatory bacteria, we isolated Halobacteriovorax marinus BE01 from an estuary in Rhode Island, assayed whether it could attack different prey bacteria, and sequenced and analyzed its genome. We found that BE01 is a prey generalist, attacking bacteria from different phylogenetic groups and environments. Gene order and amino acid sequences are highly conserved between BE01 and the H. marinus type strain, SJ. By comparative genomics, we detected two regions of gene content difference that likely occurred via horizontal gene transfer events. Acquired genes encode functions such as modification of DNA, membrane synthesis and regulation of gene expression. Understanding genome evolution and variation in predation phenotypes among predatory bacteria will inform their development as biocontrol agents and clarify how they impact microbial communities. Halobacteriovorax strains are saltwater-adapted predatory bacteria that attack Gram-negative bacteria and may play an important role in shaping microbial communities. To understand how Halobacteriovorax strains impact ecosystems and develop them as biocontrol agents, it is important to characterize variation in predation phenotypes and investigate Halobacteriovorax genome evolution. We isolated Halobacteriovorax marinus BE01 from an estuary in Rhode Island using Vibrio from the same site as prey. Small, fast-moving, attack-phase BE01 cells attach to and invade prey cells, consistent with the intraperiplasmic predation strategy of the H. marinus type strain, SJ. BE01 is a prey generalist, forming plaques on Vibrio strains from the estuary, Pseudomonas from soil, and Escherichia coli. Genome analysis revealed extremely high conservation of gene order and amino acid sequences between BE01 and SJ, suggesting strong selective pressure to maintain the genome in this H. marinus lineage. Despite this, we identified two regions of gene content difference that likely resulted from horizontal gene transfer. Analysis of modal codon usage frequencies supports the hypothesis that these regions were acquired from bacteria with different codon usage biases than H. marinus. In one of these regions, BE01 and SJ carry different genes associated with mobile genetic elements. Acquired functions in BE01 include the dnd operon, which encodes a pathway for DNA modification, and a suite of genes involved in membrane synthesis and regulation of gene expression that was likely acquired from another Halobacteriovorax lineage. This analysis provides further evidence that horizontal gene transfer plays an important role in genome evolution in predatory bacteria. IMPORTANCE Predatory bacteria attack and digest other bacteria and therefore may play a role in shaping microbial communities. To investigate phenotypic and genotypic variation in saltwater-adapted predatory bacteria, we isolated Halobacteriovorax marinus BE01 from an estuary in Rhode Island, assayed whether it could attack different prey bacteria, and sequenced and analyzed its genome. We found that BE01 is a prey generalist, attacking bacteria from different phylogenetic groups and environments. Gene order and amino acid sequences are highly conserved between BE01 and the H. marinus type strain, SJ. By comparative genomics, we detected two regions of gene content difference that likely occurred via horizontal gene transfer events. Acquired genes encode functions such as modification of DNA, membrane synthesis and regulation of gene expression. Understanding genome evolution and variation in predation phenotypes among predatory bacteria will inform their development as biocontrol agents and clarify how they impact microbial communities.
Collapse
|
29
|
Restriction and modification of deoxyarchaeosine (dG +)-containing phage 9 g DNA. Sci Rep 2017; 7:8348. [PMID: 28827753 PMCID: PMC5567051 DOI: 10.1038/s41598-017-08864-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/18/2017] [Indexed: 11/08/2022] Open
Abstract
E. coli phage 9 g contains the modified base deoxyarchaeosine (dG+) in its genome. The phage encodes its own primase, DNA ligase, DNA polymerase, and enzymes necessary to synthesize and incorporate dG+. Here we report phage 9 g DNA sensitivity to >200 Type II restriction endonucleases (REases). Among the REases tested approximately 29% generated complete or partial digestions, while the remaining 71% displayed resistance to restriction. Phage 9 g restriction fragments can be degraded by DNA exonucleases or ligated by T3 and T4 DNA ligases. In addition, we examined a number of cytosine and adenine methyltransferases to generate double base modifications. M.AluI, M.CviPI, M.HhaI, and M.EcoGII were able to introduce 5mC or N6mA into 9 g DNA as confirmed by partial resistance to restriction and by liquid chromatography-mass spectrometry. A number of wild-type E. coli bacteria restricted phage 9 g, indicating natural restriction barriers exist in some strains. A BlastP search of GenBank sequences revealed five glutamine amidotransferase-QueC homologs in Enterobacteria and Pseudomonas phage, and distant homologs in other phage and bacterial genomes, suggesting that dG+ is not a rare modification. We also mapped phage 9 g DNA packaging (pac) site containing two 21-bp direct repeats and a major terminase cleavage site in the phage genome.
Collapse
|
30
|
Dai D, Du A, Xiong K, Pu T, Zhou X, Deng Z, Liang J, He X, Wang Z. DNA Phosphorothioate Modification Plays a Role in Peroxides Resistance in Streptomyces lividans. Front Microbiol 2016; 7:1380. [PMID: 27630631 PMCID: PMC5005934 DOI: 10.3389/fmicb.2016.01380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
DNA phosphorothioation, conferred by dnd genes, was originally discovered in the soil-dwelling bacterium Streptomyces lividans, and thereafter found to exist in various bacterial genera. However, the physiological significance of this sulfur modification of the DNA backbone remains unknown in S. lividans. Our studies indicate that DNA phosphorothioation has a major role in resistance to oxidative stress in the strain. Although Streptomyces species express multiple catalase/peroxidase and organic hydroperoxide resistance genes to protect them against peroxide damage, a wild type strain of S. lividans exhibited two-fold to 10-fold higher survival, compared to a dnd− mutant, following treatment with peroxides. RNA-seq experiments revealed that, catalase and organic hydroperoxide resistance gene expression were not up-regulated in the wild type strain, suggesting that the resistance to oxidative stress was not due to the up-regulation of these genes by DNA phosphorothioation. Quantitative RT-PCR analysis was conducted to trace the expression of the catalase and the organic hydroperoxide resistance genes after peroxides treatments. A bunch of these genes were activated in the dnd− mutant rather than the wild type strain in response to peroxides. Moreover, the organic hydroperoxide peracetic acid was scavenged more rapidly in the presence than in the absence of phosphorothioate modification, both in vivo and in vitro. The dnd gene cluster can be up-regulated by the disulfide stressor diamide. Overall, our observations suggest that DNA phosphorothioate modification functions as a peroxide resistance system in S. lividans.
Collapse
Affiliation(s)
- Daofeng Dai
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Aiqin Du
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Kangli Xiong
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Tianning Pu
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
31
|
Xu SY, Klein P, Degtyarev SK, Roberts RJ. Expression and purification of the modification-dependent restriction enzyme BisI and its homologous enzymes. Sci Rep 2016; 6:28579. [PMID: 27353146 PMCID: PMC4926085 DOI: 10.1038/srep28579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
The methylation-dependent restriction endonuclease (REase) BisI (G(m5)C ↓ NGC) is found in Bacillus subtilis T30. We expressed and purified the BisI endonuclease and 34 BisI homologs identified in bacterial genomes. 23 of these BisI homologs are active based on digestion of (m5)C-modified substrates. Two major specificities were found among these BisI family enzymes: Group I enzymes cut GCNGC containing two to four (m5)C in the two strands, or hemi-methylated sites containing two (m5)C in one strand; Group II enzymes only cut GCNGC sites containing three to four (m5)C, while one enzyme requires all four cytosines to be modified for cleavage. Another homolog, Esp638I cleaves GCS ↓ SGC (relaxed specificity RCN ↓ NGY, containing at least four (m5)C). Two BisI homologs show degenerate specificity cleaving unmodified DNA. Many homologs are small proteins ranging from 150 to 190 amino acid (aa) residues, but some homologs associated with mobile genetic elements are larger and contain an extra C-terminal domain. More than 156 BisI homologs are found in >60 bacterial genera, indicating that these enzymes are widespread in bacteria. They may play an important biological function in restricting pre-modified phage DNA.
Collapse
Affiliation(s)
- Shuang-yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Pernelle Klein
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | | | | |
Collapse
|
32
|
Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev 2016; 116:12655-12687. [PMID: 27319741 DOI: 10.1021/acs.chemrev.6b00114] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.
Collapse
Affiliation(s)
- Peter Weigele
- Chemical Biology, New England Biolabs , Ipswich, Massachusetts 01938, United States
| | | |
Collapse
|
33
|
Lan W, Hu Z, Shen J, Wang C, Jiang F, Liu H, Long D, Liu M, Cao C. Structural investigation into physiological DNA phosphorothioate modification. Sci Rep 2016; 6:25737. [PMID: 27169778 PMCID: PMC4864419 DOI: 10.1038/srep25737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
DNA phosphorothioate (PT) modification, with sulfur replacing a nonbridging phosphate oxygen in a sequence and stereo specific manner, is a novel physiological variation in bacteria. But what effects on DNA properties PT modification has is still unclear. To address this, we prepared three double-stranded (ds) DNA decamers, d(CGPXGCCGCCGA) with its complementary strand d(TCGGCGPXGCCG) (where X = O or S, i.e., PT-free dsDNA, [Sp, Sp]-PT dsDNA or [Rp, Rp]-PT dsDNA) located in gene of Streptomyces lividans. Their melting temperature (Tm) measurement indicates that [Rp, Rp]-PT dsDNA is most unstable. Their electron transfer potential detection presents an order of anti-oxidation properties: Sp-PT DNA > Rp-PT DNA > PT-free DNA. Their NMR structures demonstrate that PT modification doesn’t change their B-form conformation. The sulfur in [Rp, Rp]-PT dsDNA locates in the major groove, with steric effects on protons in the sugar close to modification sites, resulting in its unstability, and facilitating its selectively interactions with ScoMcrA. We thought that PT modification was dialectical to the bacteria. It protects the hosting bacteria by working as antioxidant against H2O2, and acts as a marker, directing restriction enzyme observed in other hosts, like ScoMcrA, to correctly cleave the PT modified DNA, so that bacteria cannot spread and survive.
Collapse
Affiliation(s)
- Wenxian Lan
- State Key Laboratory of Bio-organic and Natural Product Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhongpei Hu
- State Key Laboratory of Bio-organic and Natural Product Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Shen
- State Key Laboratory of Bio-organic and Natural Product Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Chunxi Wang
- State Key Laboratory of Bio-organic and Natural Product Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Feng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jialuo Road, Shanghai, 201800, China
| | - Huili Liu
- State key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics of Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan 430071, China
| | - Dewu Long
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jialuo Road, Shanghai, 201800, China
| | - Maili Liu
- State key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics of Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan 430071, China
| | - Chunyang Cao
- State Key Laboratory of Bio-organic and Natural Product Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
34
|
Iyer LM, Zhang D, Aravind L. Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification. Bioessays 2015; 38:27-40. [PMID: 26660621 PMCID: PMC4738411 DOI: 10.1002/bies.201500104] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
While N6‐methyladenosine (m6A) is a well‐known epigenetic modification in bacterial DNA, it remained largely unstudied in eukaryotes. Recent studies have brought to fore its potential epigenetic role across diverse eukaryotes with biological consequences, which are distinct and possibly even opposite to the well‐studied 5‐methylcytosine mark. Adenine methyltransferases appear to have been independently acquired by eukaryotes on at least 13 occasions from prokaryotic restriction‐modification and counter‐restriction systems. On at least four to five instances, these methyltransferases were recruited as RNA methylases. Thus, m6A marks in eukaryotic DNA and RNA might be more widespread and diversified than previously believed. Several m6A‐binding protein domains from prokaryotes were also acquired by eukaryotes, facilitating prediction of potential readers for these marks. Further, multiple lineages of the AlkB family of dioxygenases have been recruited as m6A demethylases. Although members of the TET/JBP family of dioxygenases have also been suggested to be m6A demethylases, this proposal needs more careful evaluation. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Han T, Yamada-Mabuchi M, Zhao G, Li L, Liu G, Ou HY, Deng Z, Zheng Y, He X. Recognition and cleavage of 5-methylcytosine DNA by bacterial SRA-HNH proteins. Nucleic Acids Res 2015; 43:1147-59. [PMID: 25564526 PMCID: PMC4333417 DOI: 10.1093/nar/gku1376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SET and RING-finger-associated (SRA) domain is involved in establishment and maintenance of DNA methylation in eukaryotes. Proteins containing SRA domains exist in mammals, plants, even microorganisms. It has been established that mammalian SRA domain recognizes 5-methylcytosine (5mC) through a base-flipping mechanism. Here, we identified and characterized two SRA domain-containing proteins with the common domain architecture of N-terminal SRA domain and C-terminal HNH nuclease domain, Sco5333 from Streptomyces coelicolor and Tbis1 from Thermobispora bispora. Both sco5333 and tbis1 cannot establish in methylated Escherichia coli hosts (dcm+), and this in vivo toxicity requires both SRA and HNH domain. Purified Sco5333 and Tbis1 displayed weak DNA cleavage activity in the presence of Mg2+, Mn2+ and Co2+ and the cleavage activity was suppressed by Zn2+. Both Sco5333 and Tbis1 bind to 5mC-containing DNA in all sequence contexts and have at least a preference of 100 folds in binding affinity for methylated DNA over non-methylated one. We suggest that linkage of methyl-specific SRA domain and weakly active HNH domain may represent a universal mechanism in competing alien methylated DNA but to maximum extent minimizing damage to its own chromosome.
Collapse
Affiliation(s)
- Tiesheng Han
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | | | - Gong Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Li Li
- Engineering Research Center of Industrial Microbiology (Ministry of Education), College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yu Zheng
- New England BioLabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
36
|
Liu G, Zhang Z, Zhao G, Deng Z, Wu G, He X. Crystallization and preliminary X-ray analysis of the type IV restriction endonuclease ScoMcrA from Streptomyces coelicolor, which cleaves both Dcm-methylated DNA and phosphorothioated DNA. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:57-60. [PMID: 25615970 DOI: 10.1107/s2053230x14025801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022]
Abstract
ScoMcrA is a type IV modification-dependent restriction endonuclease found in the model strain Streptomyces coelicolor. Unlike type I, II and III restriction endonucleases, which cleave unmodified DNA, type IV restriction endonucleases cleave modified DNA, including methylated, hydroxymethylated, glucosyl-hydroxymethylated and phosphorothioated DNA. ScoMcrA targets both Dcm-methylated DNA and phosphorothioated DNA, and makes double-strand breaks 16-28 nt away from the modified nucleotides or the phosphorothioate links. However, the mechanism by which ScoMcrA recognizes these two entirely different types of modification remains unclear. In this study, the ScoMcrA protein was overexpressed, purified and crystallized. The crystals diffracted to 3.35 Å resolution and belonged to space group P2(1)2(1)2(1). The unit-cell parameters were determined to be a=130.19, b=139.36, c=281.01 Å, α=β=γ=90°. These results will facilitate the detailed structural analysis of ScoMcrA and further elucidation of its biochemical mechanism.
Collapse
Affiliation(s)
- Guang Liu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Zhenyi Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Gong Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|
37
|
Chen P, Jeannotte R, Weimer BC. Exploring bacterial epigenomics in the next-generation sequencing era: a new approach for an emerging frontier. Trends Microbiol 2014; 22:292-300. [PMID: 24725482 DOI: 10.1016/j.tim.2014.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 02/08/2023]
Abstract
Epigenetics has an important role for the success of foodborne pathogen persistence in diverse host niches. Substantial challenges exist in determining DNA methylation to situation-specific phenotypic traits. DNA modification, mediated by restriction-modification systems, functions as an immune response against antagonistic external DNA, and bacteriophage-acquired methyltransferases (MTase) and orphan MTases - those lacking the cognate restriction endonuclease - facilitate evolution of new phenotypes via gene expression modulation via DNA and RNA modifications, including methylation and phosphorothioation. Recent establishment of large-scale genome sequencing projects will result in a significant increase in genome availability that will lead to new demands for data analysis including new predictive bioinformatics approaches that can be verified with traditional scientific rigor. Sequencing technologies that detect modification coupled with mass spectrometry to discover new adducts is a powerful tactic to study bacterial epigenetics, which is poised to make novel and far-reaching discoveries that link biological significance and the bacterial epigenome.
Collapse
Affiliation(s)
- Poyin Chen
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Universidad de Tarapacá, Avenida General Velásquez N°1775, Arica, Chile
| | - Richard Jeannotte
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Universidad de Tarapacá, Avenida General Velásquez N°1775, Arica, Chile; Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Universidad de Tarapacá, Avenida General Velásquez N°1775, Arica, Chile.
| |
Collapse
|
38
|
Gutjahr A, Xu SY. Engineering nicking enzymes that preferentially nick 5-methylcytosine-modified DNA. Nucleic Acids Res 2014; 42:e77. [PMID: 24609382 PMCID: PMC4027164 DOI: 10.1093/nar/gku192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
N.ϕGamma is a strand-specific and site-specific DNA nicking enzyme (YCG↓GT or AC↑CGR). Here we describe the isolation of single and double mutants of N.ϕGamma with attenuated activity. The nicking domains (NDs) of E59A and 11 double mutants were fused to the 5mCG-binding domain of MBD2 and generated fusion enzymes that preferentially nick 5mCG-modified DNA. The CG dinucleotide can be modified by C5 methyltransferases (MTases) such as M.SssI, M.HhaI or M.HpaII to create composite sites AC↑YGG N(8-15) 5mCG. We also constructed a fusion enzyme 2xMBD2-ND(N.BceSVIII) targeting more frequent composite sites AS↑YS N(5-12) 5mCG in Mn2+ buffer. 5mCG-dependent nicking requires special digestion conditions in high salt (0.3 M KCl) or in Ni2+ buffer. The fusion enzyme can be used to nick and label 5mCG-modified plasmid and genomic DNAs with fluorescently labeled Cy3-dUTP and potentially be useful for diagnostic applications, DNA sequencing and optical mapping of epigenetic markers. The importance of the predicted catalytic residues D89, H90, N106 and H115 in N.ϕGamma was confirmed by mutagenesis. We found that the wild-type enzyme N.ϕGamma prefers to nick 5mCG-modified DNA in Ni2+ buffer even though the nicking activity is sub-optimal compared to the activity in Mg2+ buffer.
Collapse
Affiliation(s)
- Alice Gutjahr
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Shuang-yong Xu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
39
|
Zaburannyi N, Rabyk M, Ostash B, Fedorenko V, Luzhetskyy A. Insights into naturally minimised Streptomyces albus J1074 genome. BMC Genomics 2014; 15:97. [PMID: 24495463 PMCID: PMC3937824 DOI: 10.1186/1471-2164-15-97] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 02/01/2014] [Indexed: 11/10/2022] Open
Abstract
Background The Streptomyces albus J1074 strain is one of the most widely used chassis for the heterologous production of bioactive natural products. The fast growth and an efficient genetic system make this strain an attractive model for expressing cryptic biosynthetic pathways to aid drug discovery. Results To improve its capabilities for the heterologous expression of biosynthetic gene clusters, the complete genomic sequence of S. albus J1074 was obtained. With a size of 6,841,649 bp, coding for 5,832 genes, its genome is the smallest within the genus streptomycetes. Genome analysis revealed a strong tendency to reduce the number of genetic duplicates. The whole transcriptomes were sequenced at different time points to identify the early metabolic switch from the exponential to the stationary phase in S. albus J1074. Conclusions S. albus J1074 carries the smallest genome among the completely sequenced species of the genus Streptomyces. The detailed genome and transcriptome analysis discloses its capability to serve as a premium host for the heterologous production of natural products. Moreover, the genome revealed 22 additional putative secondary metabolite gene clusters that reinforce the strain’s potential for natural product synthesis.
Collapse
Affiliation(s)
| | | | | | | | - Andriy Luzhetskyy
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarland University Campus, Building C2,3, 66123 Saarbrücken, Germany.
| |
Collapse
|
40
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 2014; 42:3-19. [PMID: 24141096 PMCID: PMC3874209 DOI: 10.1093/nar/gkt990] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 11/16/2022] Open
Abstract
In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - David T. F. Dryden
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | |
Collapse
|
41
|
Xu SY, Kuzin AP, Seetharaman J, Gutjahr A, Chan SH, Chen Y, Xiao R, Acton TB, Montelione GT, Tong L. Structure determination and biochemical characterization of a putative HNH endonuclease from Geobacter metallireducens GS-15. PLoS One 2013; 8:e72114. [PMID: 24039739 PMCID: PMC3765158 DOI: 10.1371/journal.pone.0072114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/12/2013] [Indexed: 01/07/2023] Open
Abstract
The crystal structure of a putative HNH endonuclease, Gmet_0936 protein from Geobacter metallireducens GS-15, has been determined at 2.6 Å resolution using single-wavelength anomalous dispersion method. The structure contains a two-stranded anti-parallel β-sheet that are surrounded by two helices on each face, and reveals a Zn ion bound in each monomer, coordinated by residues Cys38, Cys41, Cys73, and Cys76, which likely plays an important structural role in stabilizing the overall conformation. Structural homologs of Gmet_0936 include Hpy99I endonuclease, phage T4 endonuclease VII, and other HNH endonucleases, with these enzymes sharing 15-20% amino acid sequence identity. An overlay of Gmet_0936 and Hpy99I structures shows that most of the secondary structure elements, catalytic residues as well as the zinc binding site (zinc ribbon) are conserved. However, Gmet_0936 lacks the N-terminal domain of Hpy99I, which mediates DNA binding as well as dimerization. Purified Gmet_0936 forms dimers in solution and a dimer of the protein is observed in the crystal, but with a different mode of dimerization as compared to Hpy99I. Gmet_0936 and its N77H variant show a weak DNA binding activity in a DNA mobility shift assay and a weak Mn²⁺-dependent nicking activity on supercoiled plasmids in low pH buffers. The preferred substrate appears to be acid and heat-treated DNA with AP sites, suggesting Gmet_0936 may be a DNA repair enzyme.
Collapse
Affiliation(s)
- Shuang-yong Xu
- New England Biolabs, Inc. Research Department, Ipswich, Massachusetts, United States of America
- * E-mail: (SX); (LT)
| | - Alexandre P. Kuzin
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York, United States of America
| | - Jayaraman Seetharaman
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York, United States of America
| | - Alice Gutjahr
- New England Biolabs, Inc. Research Department, Ipswich, Massachusetts, United States of America
| | - Siu-Hong Chan
- New England Biolabs, Inc. Research Department, Ipswich, Massachusetts, United States of America
| | - Yang Chen
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York, United States of America
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, New Jersey, United States of America
| | - Thomas B. Acton
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, New Jersey, United States of America
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, New Jersey, United States of America
| | - Liang Tong
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York, United States of America
- * E-mail: (SX); (LT)
| |
Collapse
|
42
|
Abstract
The 1952 observation of host-induced non-hereditary variation in bacteriophages by Salvador Luria and Mary Human led to the discovery in the 1960s of modifying enzymes that glucosylate hydroxymethylcytosine in T-even phages and of genes encoding corresponding host activities that restrict non-glucosylated phage DNA: rglA and rglB (restricts glucoseless phage). In the 1980’s, appreciation of the biological scope of these activities was dramatically expanded with the demonstration that plant and animal DNA was also sensitive to restriction in cloning experiments. The rgl genes were renamed mcrA and mcrBC (modified cytosine restriction). The new class of modification-dependent restriction enzymes was named Type IV, as distinct from the familiar modification-blocked Types I–III. A third Escherichia coli enzyme, mrr (modified DNA rejection and restriction) recognizes both methylcytosine and methyladenine. In recent years, the universe of modification-dependent enzymes has expanded greatly. Technical advances allow use of Type IV enzymes to study epigenetic mechanisms in mammals and plants. Type IV enzymes recognize modified DNA with low sequence selectivity and have emerged many times independently during evolution. Here, we review biochemical and structural data on these proteins, the resurgent interest in Type IV enzymes as tools for epigenetic research and the evolutionary pressures on these systems.
Collapse
Affiliation(s)
- Wil A M Loenen
- Leiden University Medical Center, P.O. Box 9600 2300RC Leiden, The Netherlands and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | | |
Collapse
|
43
|
Genome engineering in actinomycetes using site-specific recombinases. Appl Microbiol Biotechnol 2013; 97:4701-12. [PMID: 23584280 DOI: 10.1007/s00253-013-4866-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 11/27/2022]
Abstract
The rational modification of the actinomycetes genomes has a variety of applications in research, medicine, and biotechnology. The use of site-specific recombinases allows generation of multiple mutations, large DNA deletions, integrations, and inversions and may lead to significant progress in all of these fields. Despite their huge potential, site-specific recombinase-based technologies have primarily been used for simple marker removal from a chromosome. In this review, we summarise the site-specific recombination approaches for genome engineering in various actinomycetes.
Collapse
|
44
|
Xu SY, Gupta YK. Natural zinc ribbon HNH endonucleases and engineered zinc finger nicking endonuclease. Nucleic Acids Res 2012; 41:378-90. [PMID: 23125367 PMCID: PMC3592412 DOI: 10.1093/nar/gks1043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Many bacteriophage and prophage genomes encode an HNH endonuclease (HNHE) next to their cohesive end site and terminase genes. The HNH catalytic domain contains the conserved catalytic residues His-Asn-His and a zinc-binding site [CxxC]2. An additional zinc ribbon (ZR) domain with one to two zinc-binding sites ([CxxxxC], [CxxxxH], [CxxxC], [HxxxH], [CxxC] or [CxxH]) is frequently found at the N-terminus or C-terminus of the HNHE or a ZR domain protein (ZRP) located adjacent to the HNHE. We expressed and purified 10 such HNHEs and characterized their cleavage sites. These HNHEs are site-specific and strand-specific nicking endonucleases (NEase or nickase) with 3- to 7-bp specificities. A minimal HNH nicking domain of 76 amino acid residues was identified from Bacillus phage γ HNHE and subsequently fused to a zinc finger protein to generate a chimeric NEase with a new specificity (12–13 bp). The identification of a large pool of previously unknown natural NEases and engineered NEases provides more ‘tools’ for DNA manipulation and molecular diagnostics. The small modular HNH nicking domain can be used to generate rare NEases applicable to targeted genome editing. In addition, the engineered ZF nickase is useful for evaluation of off-target sites in vitro before performing cell-based gene modification.
Collapse
Affiliation(s)
- Shuang-yong Xu
- New England Biolabs, Inc, Research Department, 240 County Road, Ipswich, MA 01938, USA.
| | | |
Collapse
|
45
|
Novel molecular fossils of bacteria: insights into hydrothermal origin of life. J Theor Biol 2012; 310:249-56. [PMID: 22796638 DOI: 10.1016/j.jtbi.2012.06.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 11/21/2022]
Abstract
Hydrothermal vents, in particular, alkaline submarine vents, are potential systems for the origin of life. Early hydrothermal vents may have imprinted on biochemical processes and housekeeping proteins of life and have hallmarked key molecules. This essay introduces new information to this discussion by focusing on newly identified sulfur-modified DNA and a heretofore ignored anhydro bond of the cell wall peptidoglycan in bacteria. It is suggested that they are novel molecular fossils that are relevant to the settings of alkaline submarine vents and harbor clues of early life. As DNA and the cell wall are bound up with genetic information and the integrity of cell, respectively, these two molecular fossils may provide insights into hydrothermal origin of life from a new angle.
Collapse
|
46
|
Zhang YC, Liang J, Lian P, Han Y, Chen Y, Bai L, Wang Z, Liang J, Deng Z, Zhao YL. Theoretical study on steric effects of DNA phosphorothioation: B-helical destabilization in Rp-phosphorothioated DNA. J Phys Chem B 2012; 116:10639-48. [PMID: 22857608 DOI: 10.1021/jp302494b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phosphorothioation, with sulfur replacing a nonbridging oxygen of phosphate, has surfaced in bacterial DNA electrophoresis. To understand structural characteristics of the thio-substituted DNA, we have investigated the correlation between the relative energy of phosphate/phosphorothioate linkage and the backbone torsions. The relative energies (R.E.) computed by the quantum mechanical method, the PBE1PBE(CPCM, solvent=water)//PBE1PBE/6-31+G(2df) level of theory, were used to construct energy-scoring functions against backbone torsion variables, resulting in the squared correlation coefficients r(2) of 0.90-0.95. Then, the DNA energy alteration by phosphorothioation is estimated with the relative energy difference (ΔR.E.) between phosphate and phosphorothioate of the phosphate linkages in the DNA crystallographic database (NDB). As a result, Rp-phosphorothioation shifts the relative energy of B-helical structures by 2.7 ± 3.4 kcal/mol, destabilizing about 95% linkages, while Sp-phosphorothioation by -1.4 ± 2.4 kcal/mol, stabilizing over 84% linkages in the data sets. The B-helical destabilization is likely caused by the steric effect between the sulfur atom of Rp-phosphorothioate and the neighboring C-H groups of deoxyribose on the groove wall in B-helix. The unfavorable interaction may be magnified by the increasing rigidness of P-O-involving backbone torsions α and ζ upon the nonbridging phosphorothioations. Since B-helix is the most prevalent DNA double-helical structure and Rp-phosphorothioation is the exclusive configuration in bacteria thio-DNA found to date, the observed stereospecificity-destabilization correlation may reflect a structure-function relationship of biological DNA-phosphorothiation.
Collapse
Affiliation(s)
- Yi-Chao Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xie X, Liang J, Pu T, Xu F, Yao F, Yang Y, Zhao YL, You D, Zhou X, Deng Z, Wang Z. Phosphorothioate DNA as an antioxidant in bacteria. Nucleic Acids Res 2012; 40:9115-24. [PMID: 22772986 PMCID: PMC3467049 DOI: 10.1093/nar/gks650] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Diverse bacteria contain DNA with sulfur incorporated stereo-specifically into their DNA backbone at specific sequences (phosphorothioation). We found that in vitro oxidation of phosphorothioate (PT) DNA by hydrogen peroxide (H(2)O(2)) or peracetic acid has two possible outcomes: DNA backbone cleavage or sulfur removal resulting in restoration of normal DNA backbone. The physiological relevance of this redox reaction was investigated by challenging PT DNA hosting Salmonella enterica cells using H(2)O(2). DNA phosphorothioation was found to correlate with increasing resistance to the growth inhibition by H(2)O(2). Resistance to H(2)O(2) was abolished when each of the three dnd genes, required for phosphorothioation, was inactivated. In vivo, PT DNA is more resistant to the double-strand break damage caused by H(2)O(2) than PT-free DNA. Furthermore, sulfur on the modified DNA was consumed and the DNA was converted to PT-free state when the bacteria were incubated with H(2)O(2). These findings are consistent with a hypothesis that phosphorothioation modification endows DNA with reducing chemical property, which protects the hosting bacteria against peroxide, explaining why this modification is maintained by diverse bacteria.
Collapse
Affiliation(s)
- Xinqiang Xie
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Van Pijkeren JP, Neoh KM, Sirias D, Findley AS, Britton RA. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri. Bioengineered 2012; 3:209-17. [PMID: 22750793 PMCID: PMC3476877 DOI: 10.4161/bioe.21049] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Single-stranded DNA (ssDNA) recombineering is a technology which is used to make subtle changes in the chromosome of several bacterial genera. Cells which express a single-stranded DNA binding protein (RecT or Bet) are transformed with an oligonucleotide which is incorporated via an annealing and replication-dependent mechanism. By in silico analysis we identified ssDNA binding protein homologs in the genus Lactobacillus and Lactococcus lactis. To assess whether we could further improve the recombineering efficiency in Lactobacillus reuteri ATCC PTA 6475 we expressed several RecT homologs in this strain. RecT derived from Enterococcus faecalis CRMEN 19 yielded comparable efficiencies compared with a native RecT protein, but none of the other proteins further increased the recombineering efficiency. We successfully improved recombineering efficiency 10-fold in L. lactis by increasing oligonucleotide concentration combined with the use of oligonucleotides containing phosphorothioate-linkages (PTOs). Surprisingly, neither increased oligonucleotide concentration nor PTO linkages enhanced recombineering in L. reuteri 6475. To emphasize the utility of this technology in improving probiotic features we modified six bases in a transcriptional regulatory element region of the pdu-operon of L. reuteri 6475, yielding a 3-fold increase in the production of the antimicrobial compound reuterin. Directed genetic modification of lactic acid bacteria through ssDNA recombineering will simplify strain improvement in a way that, when mutating a single base, is genetically indistinguishable from strains obtained through directed evolution.
Collapse
Affiliation(s)
- Jan-Peter Van Pijkeren
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | | | | | | |
Collapse
|
49
|
Chen F, Zhang Z, Lin K, Qian T, Zhang Y, You D, He X, Wang Z, Liang J, Deng Z, Wu G. Crystal structure of the cysteine desulfurase DndA from Streptomyces lividans which is involved in DNA phosphorothioation. PLoS One 2012; 7:e36635. [PMID: 22570733 PMCID: PMC3343029 DOI: 10.1371/journal.pone.0036635] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/04/2012] [Indexed: 11/18/2022] Open
Abstract
DNA phosphorothioation is widespread among prokaryotes, and might function to restrict gene transfer among different kinds of bacteria. There has been little investigation into the structural mechanism of the DNA phosphorothioation process. DndA is a cysteine desulfurase which is involved in the first step of DNA phosphorothioation. In this study, we determined the crystal structure of Streptomyces lividans DndA in complex with its covalently bound cofactor PLP, to a resolution of 2.4 Å. Our structure reveals the molecular mechanism that DndA employs to recognize its cofactor PLP, and suggests the potential binding site for the substrate L-cysteine on DndA. In contrast to previously determined structures of cysteine desulfurases, the catalytic cysteine of DndA was found to reside on a β strand. This catalytic cysteine is very far away from the presumable location of the substrate, suggesting that a conformational change of DndA is required during the catalysis process to bring the catalytic cysteine close to the substrate cysteine. Moreover, our in vitro enzymatic assay results suggested that this conformational change is unlikely to be a simple result of random thermal motion, since moving the catalytic cysteine two residues forward or backward in the primary sequence completely disabled the cysteine desulfurase activity of DndA.
Collapse
Affiliation(s)
- Fukun Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kui Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (KL); (GW)
| | - Tianle Qian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (KL); (GW)
| |
Collapse
|
50
|
Hu W, Wang C, Liang J, Zhang T, Hu Z, Wang Z, Lan W, Li F, Wu H, Ding J, Wu G, Deng Z, Cao C. Structural insights into DndE from Escherichia coli B7A involved in DNA phosphorothioation modification. Cell Res 2012; 22:1203-6. [PMID: 22525332 DOI: 10.1038/cr.2012.66] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|