1
|
Ngan WY, Parab L, Bertels F, Gallie J. A more significant role for insertion sequences in large-scale rearrangements in bacterial genomes. mBio 2025; 16:e0305224. [PMID: 39636122 PMCID: PMC11708052 DOI: 10.1128/mbio.03052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Insertion sequences (ISs) are mobile pieces of DNA that are widespread in bacterial genomes. IS movements typically involve (i) excision of the IS element, (ii) cutting of target site DNA, and (iii) IS element insertion. This process generates a new copy of the IS element and a short duplication at the target site. It has been noted that, for some extant IS copies, no target site duplications (TSDs) are readily identifiable. TSD absence has been attributed to degeneration of the TSD after the insertion event, recombination between identical ISs, or adjacent deletions. Indeed, the latter two-recombination between ISs and adjacent deletions-are frequent causes for the absence of TSDs, which we demonstrate here in an analysis of genome sequence data from the Lenski long-term evolution experiment. Furthermore, we propose that some IS movements-namely, those that occur in association with large-scale genomic rearrangements-do not generate TSDs, and occur without evidence for recombination between ISs or adjacent deletions. In support of this hypothesis, we provide two direct, empirical observations of such IS transposition events: an IS5 movement plus a large deletion in Escherichia coli C, and an IS481 movement occurring with a large duplication in Pseudomonas fluorescens SBW25. Although unlikely, it is possible that the observed deletion and associated IS movement occurred in two successive events in one overnight culture. However, an IS at the center of a large-scale duplication is not readily explained, suggesting that IS element activity may promote both large-scale deletions and duplications. IMPORTANCE Insertion sequences are the most common mobile genetic elements found in bacterial genomes, and hence they significantly impact bacterial evolution. We observe insertion sequence movement at the center of large-scale deletions and duplications that occurred during laboratory evolution experiments with Escherichia coli and Pseudomonas fluorescens, involving three distinct types of transposase. We raise the possibility that the transposase does not mediate DNA cleavage but instead inserts into existing DNA breaks. Our research highlights the importance of insertion sequences for the generation of large-scale genomic rearrangements and raises questions concerning the mechanistic basis of these mutations.
Collapse
Affiliation(s)
- Wing Y. Ngan
- Microbial Evolutionary Dynamics Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Lavisha Parab
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Frederic Bertels
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jenna Gallie
- Microbial Evolutionary Dynamics Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
2
|
van Dijk B, Buffard P, Farr AD, Giersdorf F, Meijer J, Dutilh BE, Rainey PB. Identifying and tracking mobile elements in evolving compost communities yields insights into the nanobiome. ISME COMMUNICATIONS 2023; 3:90. [PMID: 37640834 PMCID: PMC10462680 DOI: 10.1038/s43705-023-00294-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Microbial evolution is driven by rapid changes in gene content mediated by horizontal gene transfer (HGT). While mobile genetic elements (MGEs) are important drivers of gene flux, the nanobiome-the zoo of Darwinian replicators that depend on microbial hosts-remains poorly characterised. New approaches are necessary to increase our understanding beyond MGEs shaping individual populations, towards their impacts on complex microbial communities. A bioinformatic pipeline (xenoseq) was developed to cross-compare metagenomic samples from microbial consortia evolving in parallel, aimed at identifying MGE dissemination, which was applied to compost communities which underwent periodic mixing of MGEs. We show that xenoseq can distinguish movement of MGEs from demographic changes in community composition that otherwise confounds identification, and furthermore demonstrate the discovery of various unexpected entities. Of particular interest was a nanobacterium of the candidate phylum radiation (CPR) which is closely related to a species identified in groundwater ecosystems (Candidatus Saccharibacterium), and appears to have a parasitic lifestyle. We also highlight another prolific mobile element, a 313 kb plasmid hosted by a Cellvibrio lineage. The host was predicted to be capable of nitrogen fixation, and acquisition of the plasmid coincides with increased ammonia production. Taken together, our data show that new experimental strategies combined with bioinformatic analyses of metagenomic data stand to provide insight into the nanobiome as a driver of microbial community evolution.
Collapse
Affiliation(s)
- Bram van Dijk
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands.
| | - Pauline Buffard
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Andrew D Farr
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Franz Giersdorf
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jeroen Meijer
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL CNRS, Paris, France.
| |
Collapse
|
3
|
Bertels F, Rainey PB. Ancient Darwinian replicators nested within eubacterial genomes. Bioessays 2023; 45:e2200085. [PMID: 36456469 DOI: 10.1002/bies.202200085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Integrative mobile genetic elements (MGEs), such as transposons and insertion sequences, propagate within bacterial genomes, but persistence times in individual lineages are short. For long-term survival, MGEs must continuously invade new hosts by horizontal transfer. Theoretically, MGEs that persist for millions of years in single lineages, and are thus subject to vertical inheritance, should not exist. Here we draw attention to an exception - a class of MGE termed REPIN. REPINs are non-autonomous MGEs whose duplication depends on non-jumping RAYT transposases. Comparisons of REPINs and typical MGEs show that replication rates of REPINs are orders of magnitude lower, REPIN population size fluctuations correlate with changes in available genome space, REPIN conservation depends on RAYT function, and REPIN diversity accumulates within host lineages. These data lead to the hypothesis that REPINs form enduring, beneficial associations with eubacterial chromosomes. Given replicative nesting, our hypothesis predicts conflicts arising from the diverging effects of selection acting simultaneously on REPINs and host genomes. Evidence in support comes from patterns of REPIN abundance and diversity in two distantly related bacterial species. Together this bolsters the conclusion that REPINs are the genetic counterpart of mutualistic endosymbiotic bacteria.
Collapse
Affiliation(s)
- Frederic Bertels
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, Paris, France
| |
Collapse
|
4
|
van Dijk B, Bertels F, Stolk L, Takeuchi N, Rainey PB. Transposable elements promote the evolution of genome streamlining. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200477. [PMID: 34839699 PMCID: PMC8628081 DOI: 10.1098/rstb.2020.0477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Eukaryotes and prokaryotes have distinct genome architectures, with marked differences in genome size, the ratio of coding/non-coding DNA, and the abundance of transposable elements (TEs). As TEs replicate independently of their hosts, the proliferation of TEs is thought to have driven genome expansion in eukaryotes. However, prokaryotes also have TEs in intergenic spaces, so why do prokaryotes have small, streamlined genomes? Using an in silico model describing the genomes of single-celled asexual organisms that coevolve with TEs, we show that TEs acquired from the environment by horizontal gene transfer can promote the evolution of genome streamlining. The process depends on local interactions and is underpinned by rock-paper-scissors dynamics in which populations of cells with streamlined genomes beat TEs, which beat non-streamlined genomes, which beat streamlined genomes, in continuous and repeating cycles. Streamlining is maladaptive to individual cells, but improves lineage viability by hindering the proliferation of TEs. Streamlining does not evolve in sexually reproducing populations because recombination partially frees TEs from the deleterious effects they cause. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Bram van Dijk
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Frederic Bertels
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Lianne Stolk
- Theoretical Biology, Department of Biology, Utrecht University, The Netherlands
| | - Nobuto Takeuchi
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paul B. Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, Paris, France
| |
Collapse
|
5
|
Bhatt P, Bhandari G, Bhatt K, Maithani D, Mishra S, Gangola S, Bhatt R, Huang Y, Chen S. Plasmid-mediated catabolism for the removal of xenobiotics from the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126618. [PMID: 34329102 DOI: 10.1016/j.jhazmat.2021.126618] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of xenobiotics adversely affects the environment. The genes that are present in the chromosome of the bacteria are considered nonmobile, whereas the genes present on the plasmids are considered mobile genetic elements. Plasmids are considered indispensable for xenobiotic degradation into the contaminated environment. In the contaminated sites, bacteria with plasmids can transfer the mobile genetic element into another strain. This mechanism helps in spreading the catabolic genes into the bacterial population at the contaminated sites. The indigenous microbial strains with such degradative plasmids are important for the bioremediation of xenobiotics. Environmental factors play a critical role in the conjugation efficiency, which is involved in the bioremediation of the xenobiotics at the contaminated sites. However, there is still a need for more research to fill in the gaps regarding plasmids and their impact on bioremediation. This review explores the role of bacterial plasmids in the bioremediation of xenobiotics from contaminated environments.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Geeta Bhandari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun 248161, Uttarakhand, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249404, Uttarakhand, India
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Rakesh Bhatt
- Department of Civil Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
6
|
Gómez-García G, Ruiz-Enamorado A, Yuste L, Rojo F, Moreno R. Expression of the ISPpu9 transposase of Pseudomonas putida KT2440 is regulated by two small RNAs and the secondary structure of the mRNA 5'-untranslated region. Nucleic Acids Res 2021; 49:9211-9228. [PMID: 34379788 PMCID: PMC8450116 DOI: 10.1093/nar/gkab672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/23/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Insertion sequences (ISs) are mobile genetic elements that only carry the information required for their own transposition. Pseudomonas putida KT2440, a model bacterium, has seven copies of an IS called ISPpu9 inserted into repetitive extragenic palindromic sequences. This work shows that the gene for ISPpu9 transposase, tnp, is regulated by two small RNAs (sRNAs) named Asr9 and Ssr9, which are encoded upstream and downstream of tnp, respectively. The tnp mRNA has a long 5′-untranslated region (5′-UTR) that can fold into a secondary structure that likely includes the ribosome-binding site (RBS). Mutations weakening this structure increased tnp mRNA translation. Asr9, an antisense sRNA complementary to the 5′-UTR, was shown to be very stable. Eliminating Asr9 considerably reduced tnp mRNA translation, suggesting that it helps to unfold this secondary structure, exposing the RBS. Ectopic overproduction of Asr9 increased the transposition frequency of a new ISPpu9 entering the cell by conjugation, suggesting improved tnp expression. Ssr9 has significant complementarity to Asr9 and annealed to it in vitro forming an RNA duplex; this would sequester it and possibly facilitate its degradation. Thus, the antisense Asr9 sRNA likely facilitates tnp expression, improving transposition, while Ssr9 might counteract Asr9, keeping tnp expression low.
Collapse
Affiliation(s)
- Guillermo Gómez-García
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Angel Ruiz-Enamorado
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Luis Yuste
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Fernando Rojo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Renata Moreno
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| |
Collapse
|
7
|
Corneloup A, Caumont-Sarcos A, Kamgoue A, Marty B, Le PTN, Siguier P, Guynet C, Ton-Hoang B. TnpAREP and REP sequences dissemination in bacterial genomes: REP recognition determinants. Nucleic Acids Res 2021; 49:6982-6995. [PMID: 34161591 PMCID: PMC8266576 DOI: 10.1093/nar/gkab524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 11/12/2022] Open
Abstract
REP, diverse palindromic DNA sequences found at high copy number in many bacterial genomes, have been attributed important roles in cell physiology but their dissemination mechanisms are poorly understood. They might represent non-autonomous transposable elements mobilizable by TnpAREP, the first prokaryotic domesticated transposase associated with REP. TnpAREP, fundamentally different from classical transposases, are members of the HuH superfamily and closely related to the transposases of the IS200/IS605 family. We previously showed that Escherichia coli TnpAREP processes cognate single stranded REP in vitro and that this activity requires the integrity of the REP structure, in particular imperfect palindromes interrupted by a bulge and preceded by a conserved DNA motif. A second group of REPs rather carry perfect palindromes, raising questions about how the latter are recognized by their cognate TnpAREP. To get insight into the importance of REP structural and sequence determinants in these two groups, we developed an in vitro activity assay coupled to a mutational analysis for three different TnpAREP/REP duos via a SELEX approach. We also tackled the question of how the cleavage site is selected. This study revealed that two TnpAREP groups have co-evolved with their cognate REPs and use different strategies to recognize their REP substrates.
Collapse
Affiliation(s)
- Alix Corneloup
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), CBI, CNRS, Université Toulouse UPS, Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), CBI, CNRS, Université Toulouse UPS, Toulouse, France
| | | | - Brigitte Marty
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), CBI, CNRS, Université Toulouse UPS, Toulouse, France
| | - Phan Thai Nguyen Le
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), CBI, CNRS, Université Toulouse UPS, Toulouse, France
| | - Patricia Siguier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), CBI, CNRS, Université Toulouse UPS, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), CBI, CNRS, Université Toulouse UPS, Toulouse, France
| | - Bao Ton-Hoang
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), CBI, CNRS, Université Toulouse UPS, Toulouse, France
| |
Collapse
|
8
|
Park HJ, Gokhale CS, Bertels F. How sequence populations persist inside bacterial genomes. Genetics 2021; 217:6151697. [PMID: 33724360 PMCID: PMC8049555 DOI: 10.1093/genetics/iyab027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/04/2021] [Indexed: 01/04/2023] Open
Abstract
Compared to their eukaryotic counterparts, bacterial genomes are small and contain extremely tightly packed genes. Repetitive sequences are rare but not completely absent. One of the most common repeat families is REPINs. REPINs can replicate in the host genome and form populations that persist for millions of years. Here, we model the interactions of these intragenomic sequence populations with the bacterial host. We first confirm well-established results, in the presence and absence of horizontal gene transfer (hgt) sequence populations either expand until they drive the host to extinction or the sequence population gets purged from the genome. We then show that a sequence population can be stably maintained, when each individual sequence provides a benefit that decreases with increasing sequence population size. Maintaining a sequence population of stable size also requires the replication of the sequence population to be costly to the host, otherwise the sequence population size will increase indefinitely. Surprisingly, in regimes with high hgt rates, the benefit conferred by the sequence population does not have to exceed the damage it causes to its host. Our analyses provide a plausible scenario for the persistence of sequence populations in bacterial genomes. We also hypothesize a limited biologically relevant parameter range for the provided benefit, which can be tested in future experiments.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany.,Asia Pacific Center for Theoretical Physics, Pohang, 37673, Korea.,Department of Physics, POSTECH, Pohang, 37673, Korea
| | - Chaitanya S Gokhale
- Research Group for Theoretical Models of Eco-evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
| | - Frederic Bertels
- Research Group for Microbial Molecular Evolution, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
| |
Collapse
|
9
|
GENOME ANALYSIS OF Pseudomonas brassicacearum S-1 – AN ANTAGONIST OF CROP PATHOGENS. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The strain Pseudomonas brassicacearum S-1 is the basis of the biopesticide “Ecogreen”, which is used to control pathogens infecting vegetable and green spicy crops in small-scale hydroponics. Aim. The purpose of this work was to sequence and analyze the nucleotide sequence of the genome of strain P. brassicacearum S-1 (GenBank accession number CP045701). Methods. Whole-genome sequencing was performed by both MiSeq (Illuminа) and MinION (Oxford Nanopore). Analysis of the genome sequence was performed with a number of bioinformatics programs. Results. The genome of the P. brassicacearum S-1 strain comprising a single circular 6 577 561-bp chromosome with GC content of 60.8 %. Genome analysis revealed genes that constitute valuable biotechnological potential of the S-1 strain and determine synthesis of a wide range of secondary metabolites. Moreover, mobile genetic elements, prophages and short repetitive sequences were identified in the S-1 genome. Conclusions. Detected genetic determinants, which are responsible for the synthesis of practically valuable compounds, indicate a significant potential of the P. brassicacearum S-1 strain as a biocontrol agent.
Collapse
|
10
|
Ayan GB, Park HJ, Gallie J. The birth of a bacterial tRNA gene by large-scale, tandem duplication events. eLife 2020; 9:57947. [PMID: 33124983 PMCID: PMC7661048 DOI: 10.7554/elife.57947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Organisms differ in the types and numbers of tRNA genes that they carry. While the evolutionary mechanisms behind tRNA gene set evolution have been investigated theoretically and computationally, direct observations of tRNA gene set evolution remain rare. Here, we report the evolution of a tRNA gene set in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The growth defect caused by deleting the single-copy tRNA gene, serCGA, is rapidly compensated by large-scale (45–290 kb) duplications in the chromosome. Each duplication encompasses a second, compensatory tRNA gene (serTGA) and is associated with a rise in tRNA-Ser(UGA) in the mature tRNA pool. We postulate that tRNA-Ser(CGA) elimination increases the translational demand for tRNA-Ser(UGA), a pressure relieved by increasing serTGA copy number. This work demonstrates that tRNA gene sets can evolve through duplication of existing tRNA genes, a phenomenon that may contribute to the presence of multiple, identical tRNA gene copies within genomes.
Collapse
Affiliation(s)
- Gökçe B Ayan
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hye Jin Park
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Asia Pacific Center for Theoretical Physics, Pohang, Republic of Korea
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
11
|
MITE Aba12 , a Novel Mobile Miniature Inverted-Repeat Transposable Element Identified in Acinetobacter baumannii ATCC 17978 and Its Prevalence across the Moraxellaceae Family. mSphere 2019; 4:4/1/e00028-19. [PMID: 30787115 PMCID: PMC6382973 DOI: 10.1128/mspheredirect.00028-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
One of the most important weapons in the armory of Acinetobacter is its impressive genetic plasticity, facilitating rapid genetic mutations and rearrangements as well as integration of foreign determinants carried by mobile genetic elements. Of these, IS are considered one of the key forces shaping bacterial genomes and ultimately evolution. We report the identification of a novel nonautonomous IS-derived element present in multiple bacterial species from the Moraxellaceae family and its recent translocation into the hns locus in the A. baumannii ATCC 17978 genome. The latter finding adds new knowledge to only a limited number of documented examples of MITEs in the literature and underscores the plastic nature of the hns locus in A. baumannii. MITEAba12, and its predicted parent(s), may be a source of substantial adaptive evolution within environmental and clinically relevant bacterial pathogens and, thus, have broad implications for niche-specific adaptation. Insertion sequences (IS) are fundamental mediators of genome plasticity with the potential to generate phenotypic variation with significant evolutionary outcomes. Here, a recently active miniature inverted-repeat transposon element (MITE) was identified in a derivative of Acinetobacter baumannii ATCC 17978 after being subjected to stress conditions. Transposition of the novel element led to the disruption of the hns gene, resulting in a characteristic hypermotile phenotype. DNA identity shared between the terminal inverted repeats of this MITE and coresident ISAba12 elements, together with the generation of 9-bp target site duplications, provides strong evidence that ISAba12 elements were responsible for mobilization of the MITE (designated MITEAba12) within this strain. A wider genome-level survey identified MITEAba12 in 30 additional Acinetobacter genomes at various frequencies and one Moraxella osloensis genome. Ninety MITEAba12 copies could be identified, of which 40% had target site duplications, indicating recent transposition events. Elements ranged between 111 and 114 bp; 90% were 113 bp in length. Using the MITEAba12 consensus sequence, putative outward-facing Escherichia coli σ70 promoter sequences in both orientations were identified. The identification of transcripts originating from the promoter in one direction supports the proposal that the element can influence neighboring host gene transcription. The location of MITEAba12 varied significantly between and within genomes, preferentially integrating into AT-rich regions. Additionally, a copy of MITEAba12 was identified in a novel 8.5-kb composite transposon, Tn6645, in the M. osloensis CCUG 350 chromosome. Overall, this study shows that MITEAba12 is the most abundant nonautonomous element currently found in Acinetobacter. IMPORTANCE One of the most important weapons in the armory of Acinetobacter is its impressive genetic plasticity, facilitating rapid genetic mutations and rearrangements as well as integration of foreign determinants carried by mobile genetic elements. Of these, IS are considered one of the key forces shaping bacterial genomes and ultimately evolution. We report the identification of a novel nonautonomous IS-derived element present in multiple bacterial species from the Moraxellaceae family and its recent translocation into the hns locus in the A. baumannii ATCC 17978 genome. The latter finding adds new knowledge to only a limited number of documented examples of MITEs in the literature and underscores the plastic nature of the hns locus in A. baumannii. MITEAba12, and its predicted parent(s), may be a source of substantial adaptive evolution within environmental and clinically relevant bacterial pathogens and, thus, have broad implications for niche-specific adaptation.
Collapse
|
12
|
Quentin Y, Siguier P, Chandler M, Fichant G. Single-strand DNA processing: phylogenomics and sequence diversity of a superfamily of potential prokaryotic HuH endonucleases. BMC Genomics 2018; 19:475. [PMID: 29914351 PMCID: PMC6006769 DOI: 10.1186/s12864-018-4836-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022] Open
Abstract
Background Some mobile genetic elements target the lagging strand template during DNA replication. Bacterial examples are insertion sequences IS608 and ISDra2 (IS200/IS605 family members). They use obligatory single-stranded circular DNA intermediates for excision and insertion and encode a transposase, TnpAIS200, which recognizes subterminal secondary structures at the insertion sequence ends. Similar secondary structures, Repeated Extragenic Palindromes (REP), are present in many bacterial genomes. TnpAIS200-related proteins, TnpAREP, have been identified and could be responsible for REP sequence proliferation. These proteins share a conserved HuH/Tyrosine core domain responsible for catalysis and are involved in processes of ssDNA cleavage and ligation. Our goal is to characterize the diversity of these proteins collectively referred as the TnpAY1 family. Results A genome-wide analysis of sequences similar to TnpAIS200 and TnpAREP in prokaryotes revealed a large number of family members with a wide taxonomic distribution. These can be arranged into three distinct classes and 12 subclasses based on sequence similarity. One subclass includes sequences similar to TnpAIS200. Proteins from other subclasses are not associated with typical insertion sequence features. These are characterized by specific additional domains possibly involved in protein/DNA or protein/protein interactions. Their genes are found in more than 25% of species analyzed. They exhibit a patchy taxonomic distribution consistent with dissemination by horizontal gene transfers followed by loss. The tnpAREP genes of five subclasses are flanked by typical REP sequences in a REPtron-like arrangement. Four distinct REP types were characterized with a subclass specific distribution. Other subclasses are not associated with REP sequences but have a large conserved domain located in C-terminal end of their sequence. This unexpected diversity suggests that, while most likely involved in processing single-strand DNA, proteins from different subfamilies may play a number of different roles. Conclusions We established a detailed classification of TnpAY1 proteins, consolidated by the analysis of the conserved core domains and the characterization of additional domains. The data obtained illustrate the unexpected diversity of the TnpAY1 family and provide a strong framework for future evolutionary and functional studies. By their potential function in ssDNA editing, they may confer adaptive responses to host cell physiology and metabolism. Electronic supplementary material The online version of this article (10.1186/s12864-018-4836-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yves Quentin
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31062, Toulouse, France.
| | - Patricia Siguier
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31062, Toulouse, France
| | - Mick Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31062, Toulouse, France.
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31062, Toulouse, France
| |
Collapse
|
13
|
Vergnaud G, Midoux C, Blouin Y, Bourkaltseva M, Krylov V, Pourcel C. Transposition Behavior Revealed by High-Resolution Description of Pseudomonas Aeruginosa Saltovirus Integration Sites. Viruses 2018; 10:v10050245. [PMID: 29735891 PMCID: PMC5977238 DOI: 10.3390/v10050245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023] Open
Abstract
Transposable phages, also called saltoviruses, of which the Escherichia coli phage Mu is the reference, are temperate phages that multiply their genome through replicative transposition at multiple sites in their host chromosome. The viral genome is packaged together with host DNA at both ends. In the present work, genome sequencing of three Pseudomonas aeruginosa transposable phages, HW12, 2P1, and Ab30, incidentally gave us access to the location of thousands of replicative integration sites and revealed the existence of a variable number of hotspots. Taking advantage of deep sequencing, we then designed an experiment to study 13,000,000 transposon integration sites of bacteriophage Ab30. The investigation revealed the presence of 42 transposition hotspots adjacent to bacterial interspersed mosaic elements (BIME) accounting for 5% of all transposition sites. The rest of the sites appeared widely distributed with the exception of coldspots associated with low G-C content segments, including the putative O-antigen biosynthesis cluster. Surprisingly, 0.4% of the transposition events occurred in a copy of the phage genome itself, indicating that the previously described immunity against such events is slightly leaky. This observation allowed drawing an image of the phage chromosome supercoiling into four loops.
Collapse
Affiliation(s)
- Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| | - Cédric Midoux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| | - Yann Blouin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| | - Maria Bourkaltseva
- I. I. Mechnikov Research Institute for Vaccines & Sera, Moscow 105064, Russia.
| | - Victor Krylov
- I. I. Mechnikov Research Institute for Vaccines & Sera, Moscow 105064, Russia.
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
14
|
Bertels F, Gallie J, Rainey PB. Identification and Characterization of Domesticated Bacterial Transposases. Genome Biol Evol 2017; 9:2110-2121. [PMID: 28910967 PMCID: PMC5581495 DOI: 10.1093/gbe/evx146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 12/26/2022] Open
Abstract
Selfish genetic elements, such as insertion sequences and transposons are found in most genomes. Transposons are usually identifiable by their high copy number within genomes. In contrast, REP-associated tyrosine transposases (RAYTs), a recently described class of bacterial transposase, are typically present at just one copy per genome. This suggests that RAYTs no longer copy themselves and thus they no longer function as a typical transposase. Motivated by this possibility we interrogated thousands of fully sequenced bacterial genomes in order to determine patterns of RAYT diversity, their distribution across chromosomes and accessory elements, and rate of duplication. RAYTs encompass exceptional diversity and are divisible into at least five distinct groups. They possess features more similar to housekeeping genes than insertion sequences, are predominantly vertically transmitted and have persisted through evolutionary time to the point where they are now found in 24% of all species for which at least one fully sequenced genome is available. Overall, the genomic distribution of RAYTs suggests that they have been coopted by host genomes to perform a function that benefits the host cell.
Collapse
Affiliation(s)
- Frederic Bertels
- New Zealand Institute for Advanced Study, Massey University at Albany, Auckland, New Zealand.,Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University at Albany, Auckland, New Zealand.,Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Laboratoire de Génétique de l'Evolution, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), PSL Research University, Paris, France
| |
Collapse
|
15
|
Garbisu C, Garaiyurrebaso O, Epelde L, Grohmann E, Alkorta I. Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils. Front Microbiol 2017; 8:1966. [PMID: 29062312 PMCID: PMC5640721 DOI: 10.3389/fmicb.2017.01966] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022] Open
Abstract
Bioaugmentation, or the inoculation of microorganisms (e.g., bacteria harboring the required catabolic genes) into soil to enhance the rate of contaminant degradation, has great potential for the bioremediation of soils contaminated with organic compounds. Regrettably, cell bioaugmentation frequently turns into an unsuccessful initiative, owing to the rapid decrease of bacterial viability and abundance after inoculation, as well as the limited dispersal of the inoculated bacteria in the soil matrix. Genes that encode the degradation of organic compounds are often located on plasmids and, consequently, they can be spread by horizontal gene transfer into well-established, ecologically competitive, indigenous bacterial populations. Plasmid-mediated bioaugmentation aims to stimulate the spread of contaminant degradation genes among indigenous soil bacteria by the introduction of plasmids, located in donor cells, harboring such genes. But the acquisition of plasmids by recipient cells can affect the host’s fitness, a crucial aspect for the success of plasmid-mediated bioaugmentation. Besides, environmental factors (e.g., soil moisture, temperature, organic matter content) can play important roles for the transfer efficiency of catabolic plasmids, the expression of horizontally acquired genes and, finally, the contaminant degradation activity. For plasmid-mediated bioaugmentation to be reproducible, much more research is needed for a better selection of donor bacterial strains and accompanying plasmids, together with an in-depth understanding of indigenous soil bacterial populations and the environmental conditions that affect plasmid acquisition and the expression and functioning of the catabolic genes of interest.
Collapse
Affiliation(s)
- Carlos Garbisu
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Neiker Tecnalia, Derio, Spain
| | - Olatz Garaiyurrebaso
- Instituto Biofisika (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Lur Epelde
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Neiker Tecnalia, Derio, Spain
| | | | - Itziar Alkorta
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Neiker Tecnalia, Derio, Spain
| |
Collapse
|
16
|
Bertels F, Gokhale CS, Traulsen A. Discovering Complete Quasispecies in Bacterial Genomes. Genetics 2017; 206:2149-2157. [PMID: 28630115 PMCID: PMC5560812 DOI: 10.1534/genetics.117.201160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/08/2017] [Indexed: 01/15/2023] Open
Abstract
Mobile genetic elements can be found in almost all genomes. Possibly the most common nonautonomous mobile genetic elements in bacteria are repetitive extragenic palindromic doublets forming hairpins (REPINs) that can occur hundreds of times within a genome. The sum of all REPINs in a genome can be viewed as an evolving population because REPINs replicate and mutate. In contrast to most other biological populations, we know the exact composition of the REPIN population and the sequence of each member of the population. Here, we model the evolution of REPINs as quasispecies. We fit our quasispecies model to 10 different REPIN populations from 10 different bacterial strains and estimate effective duplication rates. Our estimated duplication rates range from ∼5 × 10-9 to 15 × 10-9 duplications per bacterial generation per REPIN. The small range and the low level of the REPIN duplication rates suggest a universal trade-off between the survival of the REPIN population and the reduction of the mutational load for the host genome. The REPIN populations we investigated also possess features typical of other natural populations. One population shows hallmarks of a population that is going extinct, another population seems to be growing in size, and we also see an example of competition between two REPIN populations.
Collapse
Affiliation(s)
- Frederic Bertels
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Chaitanya S Gokhale
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
17
|
Patel S. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance. INFECTION GENETICS AND EVOLUTION 2016; 45:151-164. [DOI: 10.1016/j.meegid.2016.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
|
18
|
Charnavets T, Nunvar J, Nečasová I, Völker J, Breslauer KJ, Schneider B. Conformational diversity of single-stranded DNA from bacterial repetitive extragenic palindromes: Implications for the DNA recognition elements of transposases. Biopolymers 2016; 103:585-96. [PMID: 25951997 PMCID: PMC4690160 DOI: 10.1002/bip.22666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 01/19/2023]
Abstract
Repetitive extragenic palindrome (REP)—associated tyrosine transposase enzymes (RAYTs) bind REP DNA domains and catalyze their cleavage. Genomic sequence analyses identify potential noncoding REP sequences associated with RAYT-encoding genes. To probe the conformational space of potential RAYT DNA binding domains, we report here spectroscopic and calorimetric measurements that detect and partially characterize the solution conformational heterogeneity of REP oligonucleotides from six bacterial species. Our data reveal most of these REP oligonucleotides adopt multiple conformations, suggesting that RAYTs confront a landscape of potential DNA substrates in dynamic equilibrium that could be selected, enriched, and/or induced via differential binding. Thus, the transposase-bound DNA motif may not be the predominant conformation of the isolated REP domain. Intriguingly, for several REPs, the circular dichroism spectra suggest guanine tetraplexes as potential alternative or additional RAYT recognition elements, an observation consistent with these REP domains being highly nonrandom, with tetraplex-favoring 5′-G and 3′-C-rich segments. In fact, the conformational heterogeneity of REP domains detected and reported here, including the formation of noncanonical DNA secondary structures, may reflect a general feature required for recognition by RAYT transposases. Based on our biophysical data, we propose guanine tetraplexes as an additional DNA recognition element for binding by RAYT transposase enzymes. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 585–596, 2015.
Collapse
Affiliation(s)
- Tatsiana Charnavets
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Jaroslav Nunvar
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Iva Nečasová
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Rd., Piscataway, NJ, 08854
| | - Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Rd., Piscataway, NJ, 08854.,Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903
| | - Bohdan Schneider
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
19
|
Klein BA, Chen T, Scott JC, Koenigsberg AL, Duncan MJ, Hu LT. Identification and characterization of a minisatellite contained within a novel miniature inverted-repeat transposable element (MITE) of Porphyromonas gingivalis. Mob DNA 2015; 6:18. [PMID: 26448788 PMCID: PMC4596501 DOI: 10.1186/s13100-015-0049-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022] Open
Abstract
Background Repetitive regions of DNA and transposable elements have been found to constitute large percentages of eukaryotic and prokaryotic genomes. Such elements are known to be involved in transcriptional regulation, host-pathogen interactions and genome evolution. Results We identified a minisatellite contained within a miniature inverted-repeat transposable element (MITE) in Porphyromonas gingivalis. The P. gingivalis minisatellite and associated MITE, named ‘BrickBuilt’, comprises a tandemly repeating twenty-three nucleotide DNA sequence lacking spacer regions between repeats, and with flanking ‘leader’ and ‘tail’ subunits that include small inverted-repeat ends. Forms of the BrickBuilt MITE are found 19 times in the genome of P. gingivalis strain ATCC 33277, and also multiple times within the strains W83, TDC60, HG66 and JCVI SC001. BrickBuilt is always located intergenically ranging between 49 and 591 nucleotides from the nearest upstream and downstream coding sequences. Segments of BrickBuilt contain promoter elements with bidirectional transcription capabilities. Conclusions We performed a bioinformatic analysis of BrickBuilt utilizing existing whole genome sequencing, microarray and RNAseq data, as well as performing in vitro promoter probe assays to determine potential roles, mechanisms and regulation of the expression of these elements and their affect on surrounding loci. The multiplicity, localization and limited host range nature of MITEs and MITE-like elements in P. gingivalis suggest that these elements may play an important role in facilitating genome evolution as well as modulating the transcriptional regulatory system. Electronic supplementary material The online version of this article (doi:10.1186/s13100-015-0049-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brian A Klein
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111 USA ; Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Jodie C Scott
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Andrea L Koenigsberg
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111 USA
| | - Margaret J Duncan
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111 USA
| |
Collapse
|
20
|
Abstract
Repetitive extragenic palindromic (REP) sequences are a ubiquitous feature of bacterial genomes. Recent work shows that REPs are remnants of a larger mobile genetic element termed a REPIN. REPINs consists of two REP sequences in inverted orientation separated by a spacer region and are thought to be non-autonomous mobile genetic elements that exploit the transposase encoded by REP-Associated tYrosine Transposases (RAYTs). Complimentarity between the two ends of the REPIN suggests that the element forms hairpin structures in single stranded DNA or RNA. In addition to REPINs, other more complex arrangements of REPs have been identified in bacterial genomes, including the genome of the model organism Pseudomonas fluorescens SBW25. Here, we summarize existing knowledge and present new data concerning REPIN diversity. We also consider factors affecting the evolution of REPIN diversity, the ease with which REPINs might be co-opted by host genomes and the consequences of REPIN activity for the structure of bacterial genomes.
Collapse
|
21
|
Abstract
A previous study of prokaryotic genomes identified large reservoirs of putative mobile promoters (PMPs), that is, homologous promoter sequences associated with nonhomologous coding sequences. Here we extend this data set to identify the full complement of mobile promoters in sequenced prokaryotic genomes. The expanded search identifies nearly 40,000 PMP sequences, 90% of which occur in noncoding regions of the genome. To gain further insight from this data set, we develop a birth-death-diversification model for mobile genetic elements subject to sequence diversification; applying the model to PMPs we are able to quantify the relative importance of duplication, loss, horizontal gene transfer (HGT), and diversification to the maintenance of the PMP reservoir. The model predicts low rates of HGT relative to the duplication and loss of PMP copies, rapid dynamics of PMP families, and a pool of PMPs that exist as a single copy in a genome at any given time, despite their mobility. We report evidence of these "singletons" at high frequencies in prokaryotic genomes. We also demonstrate that including selection, either for or against PMPs, was not necessary to describe the observed data.
Collapse
|
22
|
Di Nocera PP, De Gregorio E, Rocco F. GTAG- and CGTC-tagged palindromic DNA repeats in prokaryotes. BMC Genomics 2013; 14:522. [PMID: 23902135 PMCID: PMC3733652 DOI: 10.1186/1471-2164-14-522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND REPs (Repetitive Extragenic Palindromes) are small (20-40 bp) palindromic repeats found in high copies in some prokaryotic genomes, hypothesized to play a role in DNA supercoiling, transcription termination, mRNA stabilization. RESULTS We have monitored a large number of REP elements in prokaryotic genomes, and found that most can be sorted into two large DNA super-families, as they feature at one end unpaired motifs fitting either the GTAG or the CGTC consensus. Tagged REPs have been identified in >80 species in 8 different phyla. GTAG and CGTC repeats reside predominantly in microorganisms of the gamma and alpha division of Proteobacteria, respectively. However, the identification of members of both super- families in deeper branching phyla such Cyanobacteria and Planctomycetes supports the notion that REPs are old components of the bacterial chromosome. On the basis of sequence content and overall structure, GTAG and CGTC repeats have been assigned to 24 and 4 families, respectively. Of these, some are species-specific, others reside in multiple species, and several organisms contain different REP types. In many families, most units are close to each other in opposite orientation, and may potentially fold into larger secondary structures. In different REP-rich genomes the repeats are predominantly located between unidirectionally and convergently transcribed ORFs. REPs are predominantly located downstream from coding regions, and many are plausibly transcribed and function as RNA elements. REPs located inside genes have been identified in several species. Many lie within replication and global genome repair genes. It has been hypothesized that GTAG REPs are miniature transposons mobilized by specific transposases known as RAYTs (REP associated tyrosine transposases). RAYT genes are flanked either by GTAG repeats or by long terminal inverted repeats (TIRs) unrelated to GTAG repeats. Moderately abundant families of TIRs have been identified in multiple species. CONCLUSIONS CGTC REPs apparently lack a dedicated transposase. Future work will clarify whether these elements may be mobilized by RAYTs or other transposases, and assess if de-novo formation of either GTAG or CGTC repeats type still occurs.
Collapse
Affiliation(s)
- Pier Paolo Di Nocera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Napoli, Via S, Pansini 5 80131, Naples, Italy.
| | | | | |
Collapse
|
23
|
Abstract
HUH endonucleases are numerous and widespread in all three domains of life. The major function of these enzymes is processing a range of mobile genetic elements by catalysing cleavage and rejoining of single-stranded DNA using an active-site Tyr residue to make a transient 5'-phosphotyrosine bond with the DNA substrate. These enzymes have a key role in rolling-circle replication of plasmids and bacteriophages, in plasmid transfer, in the replication of several eukaryotic viruses and in various types of transposition. They have also been appropriated for cellular processes such as intron homing and the processing of bacterial repeated extragenic palindromes. Here, we provide an overview of these fascinating enzymes and their functions, using well-characterized examples of Rep proteins, relaxases and transposases, and we explore the molecular mechanisms used in their diverse activities.
Collapse
|
24
|
Nunvar J, Licha I, Schneider B. Evolution of REP diversity: a comparative study. BMC Genomics 2013; 14:385. [PMID: 23758774 PMCID: PMC3686654 DOI: 10.1186/1471-2164-14-385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/03/2013] [Indexed: 12/05/2022] Open
Abstract
Background Repetitive extragenic palindromic elements (REPs) constitute a group of bacterial genomic repeats known for their high abundance and several roles in host cells´ physiology. We analyzed the phylogenetic distribution of particular REP classes in genomic sequences of sixty-three bacterial strains belonging to the Pseudomonas fluorescens species complex and ten strains of Stenotrophomonas sp., in order to assess intraspecific REP diversity and to gain insight into long-term REP evolution. Results Based on proximity to RAYT (REP-associated tyrosine transposase) genes, twenty-two and thirteen unique REP classes were determined in fluorescent pseudomonads and stenotrophomonads, respectively. In stenotrophomonads, REP elements were typically found in tens or a few hundred copies per genome. REPs of fluorescent pseudomonads were generally more numerous, occurring in hundreds or even over a thousand perfect copies of particular REP class per genome. REP sequences showed highly heterogeneous distribution. The abundances of REP classes roughly followed host strains´ phylogeny, differing markedly among individual clades. High abundances of particular REP classes appeared to depend on the presence of the cognate RAYT gene, and deviations from this state could be attributed to recent or ancient mutations of rayt-flanking REPs, or RAYT loss. RAYTs of both studied bacterial groups are monophyletic, and their cognate REPs show species-specific characteristics, suggesting shared evolutionary history of REPs, RAYTs and their hosts. Conclusions The results of our large-scale analysis show that REP elements constitute intriguingly dynamic components of genomes of fluorescent pseudomonads and stenotrophomonads, and indicate that REP diversification and proliferation are ongoing processes. High numbers of REPs have apparently been retained during the entire evolutionary time since the establishment of these two bacterial lineages, probably because of their beneficial effect on host long-term fitness. REP elements in these bacteria represent a suitable platform to study the interplay between repeated elements, their mobilizers and host bacterial cells.
Collapse
Affiliation(s)
- Jaroslav Nunvar
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague 2, Czech Republic.
| | | | | |
Collapse
|
25
|
Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 2013; 4:15. [PMID: 23508522 PMCID: PMC3589745 DOI: 10.3389/fmicb.2013.00015] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022] Open
Abstract
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Ana P. Tedim
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
26
|
Abstract
Anecdotal evidence shows promoters being reused separate from their downstream gene, thus providing a mechanism for the efficient and rapid rewiring of a gene’s transcriptional regulation. We have identified over 4000 groups of highly similar promoters using a conservative sequence similarity search in all fully sequenced prokaryotic genomes. About 6% of those groups are shared between bacteria from different taxonomic depth, including different genera, families, orders, classes and even phyla. Database searches against known mobile elements and RNA motifs have indicated that regulatory motifs such as riboswitches could be moved around on putative mobile promoters.
Collapse
Affiliation(s)
- Harm Nijveen
- Laboratory of Bioinformatics; Wageningen University; Wageningen, The Netherlands
| | | | | |
Collapse
|
27
|
Messing SAJ, Ton-Hoang B, Hickman AB, McCubbin AJ, Peaslee GF, Ghirlando R, Chandler M, Dyda F. The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic palindrome bound to its associated nuclease. Nucleic Acids Res 2012; 40:9964-79. [PMID: 22885300 PMCID: PMC3479197 DOI: 10.1093/nar/gks741] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Extragenic sequences in genomes, such as microRNA and CRISPR, are vital players in the cell. Repetitive extragenic palindromic sequences (REPs) are a class of extragenic sequences, which form nucleotide stem-loop structures. REPs are found in many bacterial species at a high copy number and are important in regulation of certain bacterial functions, such as Integration Host Factor recruitment and mRNA turnover. Although a new clade of putative transposases (RAYTs or TnpAREP) is often associated with an increase in these repeats, it is not clear how these proteins might have directed amplification of REPs. We report here the structure to 2.6 Å of TnpAREP from Escherichia coli MG1655 bound to a REP. Sequence analysis showed that TnpAREP is highly related to the IS200/IS605 family, but in contrast to IS200/IS605 transposases, TnpAREP is a monomer, is auto-inhibited and is active only in manganese. These features suggest that, relative to IS200/IS605 transposases, it has evolved a different mechanism for the movement of discrete segments of DNA and has been severely down-regulated, perhaps to prevent REPs from sweeping through genomes.
Collapse
Affiliation(s)
- Simon A J Messing
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, Shaffer BT, Elbourne LDH, Stockwell VO, Hartney SL, Breakwell K, Henkels MD, Tetu SG, Rangel LI, Kidarsa TA, Wilson NL, van de Mortel JE, Song C, Blumhagen R, Radune D, Hostetler JB, Brinkac LM, Durkin AS, Kluepfel DA, Wechter WP, Anderson AJ, Kim YC, Pierson LS, Pierson EA, Lindow SE, Kobayashi DY, Raaijmakers JM, Weller DM, Thomashow LS, Allen AE, Paulsen IT. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 2012; 8:e1002784. [PMID: 22792073 PMCID: PMC3390384 DOI: 10.1371/journal.pgen.1002784] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/10/2012] [Indexed: 12/11/2022] Open
Abstract
We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45–52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire. We sequenced the genomes of seven strains of the Pseudomonas fluorescens group that colonize plant surfaces and function as biological control agents, protecting plants from disease. In this study, we demonstrated the genomic diversity of the group by comparing these strains to each other and to three other strains that were sequenced previously. Only about half of the genes in each strain are present in all of the other strains, and each strain has hundreds of unique genes that are not present in the other genomes. We mapped the genes that contribute to biological control in each genome and found that most of the biological control genes are in the variable regions of the genome, which are not shared by all of the other strains. This finding is consistent with our knowledge of the distinctive biology of each strain. Finally, we looked for new genes that are likely to confer antimicrobial traits needed to suppress plant pathogens, but have not been identified previously. In each genome, we discovered many of these new genes, which provide avenues for future discovery of new traits with the potential to manage plant diseases in agriculture or natural ecosystems.
Collapse
Affiliation(s)
- Joyce E Loper
- Agricultural Research Service, US Department of Agriculture, Corvallis, Oregon, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Saum SH, Pfeiffer F, Palm P, Rampp M, Schuster SC, Müller V, Oesterhelt D. Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacteriumHalobacillus halophilus. Environ Microbiol 2012; 15:1619-33. [DOI: 10.1111/j.1462-2920.2012.02770.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Stalder T, Barraud O, Casellas M, Dagot C, Ploy MC. Integron involvement in environmental spread of antibiotic resistance. Front Microbiol 2012; 3:119. [PMID: 22509175 PMCID: PMC3321497 DOI: 10.3389/fmicb.2012.00119] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/13/2012] [Indexed: 11/13/2022] Open
Abstract
The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons - genetic elements that acquire, exchange, and express genes embedded within gene cassettes (GC) - are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids, and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic-resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc.).
Collapse
|
31
|
Ton-Hoang B, Siguier P, Quentin Y, Onillon S, Marty B, Fichant G, Chandler M. Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences. Nucleic Acids Res 2011; 40:3596-609. [PMID: 22199259 PMCID: PMC3333891 DOI: 10.1093/nar/gkr1198] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
REPs are highly repeated intergenic palindromic sequences often clustered into structures called BIMEs including two individual REPs separated by short linker of variable length. They play a variety of key roles in the cell. REPs also resemble the sub-terminal hairpins of the atypical IS200/605 family of insertion sequences which encode Y1 transposases (TnpA(IS200/IS605)). These belong to the HUH endonuclease family, carry a single catalytic tyrosine (Y) and promote single strand transposition. Recently, a new clade of Y1 transposases (TnpA(REP)) was found associated with REP/BIME in structures called REPtrons. It has been suggested that TnpA(REP) is responsible for REP/BIME proliferation over genomes. We analysed and compared REP distribution and REPtron structure in numerous available E. coli and Shigella strains. Phylogenetic analysis clearly indicated that tnpA(REP) was acquired early in the species radiation and was lost later in some strains. To understand REP/BIME behaviour within the host genome, we also studied E. coli K12 TnpA(REP) activity in vitro and demonstrated that it catalyses cleavage and recombination of BIMEs. While TnpA(REP) shared the same general organization and similar catalytic characteristics with TnpA(IS200/IS605) transposases, it exhibited distinct properties potentially important in the creation of BIME variability and in their amplification. TnpA(REP) may therefore be one of the first examples of transposase domestication in prokaryotes.
Collapse
Affiliation(s)
- Bao Ton-Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, 118, Route de Narbonne, 31062 Toulouse Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Nunvar J, Drevinek P, Licha I. DNA profiling of Stenotrophomonas maltophilia by PCR targeted to its species-specific repetitive palindromic sequences. Lett Appl Microbiol 2011; 54:59-66. [DOI: 10.1111/j.1472-765x.2011.03172.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Miniature transposable sequences are frequently mobilized in the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola. PLoS One 2011; 6:e25773. [PMID: 22016774 PMCID: PMC3189936 DOI: 10.1371/journal.pone.0025773] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/09/2011] [Indexed: 01/01/2023] Open
Abstract
Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10−5 and 1.1×10−6, depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total number of insertions entrapped in sacB, demonstrating for the first time the mobilization of a MITE in bacteria.
Collapse
|