1
|
Jiao W, Lei T, Duan Q, Wang J, Yang Y, Li G, Zhang R, Pan H, Zhang Y. Transcription Factor SsNdt80b Maintains Optimal Expression of SsSNF1 to Modulate Growth and Pathogenicity in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2025; 26:e70088. [PMID: 40251990 PMCID: PMC12008772 DOI: 10.1111/mpp.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Microorganisms use versatile strategies to facilitate the colonisation of hosts, through remodelling transcription and metabolism to accommodate growth under harsh and hostile environments. Sclerotinia sclerotiorum is a typical necrotrophic pathogen that causes Sclerotinia stem rot in more than 700 species, resulting in serious economic losses. How S. sclerotiorum integrates mechanisms for nutrient acquisition and utilisation to maintain optimal growth and pathogenicity is still indistinct. Here, we demonstrate that Ndt80 family transcription factors (SsNdt80a,b,c) are involved in carbon source utilisation and have different roles in the growth, sclerotia formation, infection cushion development, and the virulence of S. sclerotiorum. SsNdt80b could bind the promoter of SsSNF1 and modulate the transcriptional activity of SsSNF1. Silencing SsSNF1 resulted in defects in hyphal growth and infection cushion formation, reduced cell wall-degrading enzymes, and reduced pathogenicity of S. sclerotiorum. A model is proposed in which SsNdt80b responds to carbon sources and modulates SsSnf1 to regulate the development and pathogenicity of S. sclerotiorum.
Collapse
Affiliation(s)
- Wenli Jiao
- College of Plant SciencesJilin UniversityChangchunChina
| | - Tianyi Lei
- College of Plant SciencesJilin UniversityChangchunChina
| | - Qingyu Duan
- College of Plant SciencesJilin UniversityChangchunChina
| | - Jingyuan Wang
- College of Plant SciencesJilin UniversityChangchunChina
| | - Yushan Yang
- College of Plant SciencesJilin UniversityChangchunChina
| | - Guang Li
- Baicheng Academy of Agricultural SciencesBaichengChina
| | - Rongbao Zhang
- Jilin Province Bada Pesticide Co. Ltd.GongzhulingChina
| | - Hongyu Pan
- College of Plant SciencesJilin UniversityChangchunChina
| | - Yanhua Zhang
- College of Plant SciencesJilin UniversityChangchunChina
| |
Collapse
|
2
|
Xu S, Li Q, Jin H, Li A, Wang Y. Trehalose Biosynthetic Genes Are Involved in the Development and Pathogenesis in the Poplar Canker Fungus Cytospora chrysosperma. PHYTOPATHOLOGY 2025; 115:260-268. [PMID: 39499502 DOI: 10.1094/phyto-05-24-0160-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Poplar Cytospora canker, caused by Cytospora chrysosperma, is one of the most destructive and widespread poplar diseases worldwide, especially in northern China. However, our current understanding of its pathogenic mechanisms remains limited. Here, we show that trehalose biosynthetic genes, such as trehalose-6-phosphate synthase 1 (CcTps1), trehalose-6-phosphate phosphatase (CcTps2), and the regulatory subunit (CcTps3), play important roles in the development and virulence of C. chrysosperma. The targeted deletion mutants showed reduced trehalose synthesis and were defective in hyphal growth and conidiation. Deletion of any of the three genes attenuated virulence in poplar twigs, and stronger poplar defense responses were triggered after inoculated by the mutants. Additionally, the mutants exhibited increased sensitivity to H2O2 and cell wall stressors. Taken together, the findings suggest that trehalose biosynthetic genes contribute to fungal development, stress responses, and full virulence in C. chrysosperma.
Collapse
Affiliation(s)
- Siying Xu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Quansheng Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Haojie Jin
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Aining Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Yonglin Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
3
|
Huang Z, Wang Q, Li Y, Huang P, Liao J, Wang J, Li H, Cai Y, Wang J, Liu X, Lin FC, Lu J. A multilayered regulatory network mediated by protein phosphatase 4 controls carbon catabolite repression and de-repression in Magnaporthe oryzae. Commun Biol 2025; 8:130. [PMID: 39875495 PMCID: PMC11775291 DOI: 10.1038/s42003-025-07581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Carbon catabolite repression (CCR) and de-repression (CCDR) are critical for fungal development and pathogenicity, yet the underlying regulatory mechanisms remain poorly understood in pathogenic fungi. Here, we identify a serine/threonine protein phosphatase catalytic subunit, Pp4c, as essential for growth, conidiation, virulence, and the utilization of carbohydrates and lipids in Magnaporthe oryzae. We demonstrate that the protein phosphatase 4 complex (Pp4c and Smek1 subunits), the AMP-activated protein kinase (AMPK) Snf1, and the transcriptional regulators CreA (repressor) and Crf1 (activator) collaboratively regulate the utilization of non-preferred carbon sources. Protein interaction and phosphorylation analyses reveal that under glucose-rich conditions, Snf1 and Smek1 directly regulate the phosphorylation status of CreA and Crf1. In contrast, under L-arabinose-rich conditions, Snf1 indirectly modulates the dephosphorylation of these transcription factors via Pp4c and Smek1. Phosphorylation-mediated activation or inactivation of CreA and Crf1 drives CCR and CCDR, thereby governing the metabolism of carbon sources derived from plant cell walls and contributing to fungal pathogenicity. These findings provide deep insights into the regulation of CCR and CCDR, emphasizing their significance in carbon metabolism and pathogenicity in phytopathogenic fungi.
Collapse
Affiliation(s)
- Zhicheng Huang
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qing Wang
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Li
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | - Jian Liao
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hui Li
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yingying Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Lu
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Mmbando GS. The link between changing in host carbon allocation and resistance to Magnaporthe oryzae: a possible tactic for mitigating the rice blast fungus. PLANT SIGNALING & BEHAVIOR 2024; 19:2326870. [PMID: 38465846 PMCID: PMC10936674 DOI: 10.1080/15592324.2024.2326870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
One of the most destructive diseases affecting rice is rice blast, which is brought on by the rice blast fungus Magnaporthe oryzae. The preventive measures, however, are not well established. To effectively reduce the negative effects of rice blasts on crop yields, it is imperative to comprehend the dynamic interactions between pathogen resistance and patterns of host carbon allocation. This review explores the relationship between variations in carbon allocation and rice plants' ability to withstand the damaging effects of M. oryzae. The review highlights potential strategies for altering host carbon allocation including transgenic, selective breeding, crop rotation, and nutrient management practices as a promising avenue for enhancing rice blast resistance. This study advances our knowledge of the interaction between plants' carbon allocation and M. oryzae resistance and provides stakeholders and farmers with practical guidance on mitigating the adverse effects of the rice blast globally. This information may be used in the future to create varieties that are resistant to M. oryzae.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
5
|
Wang Y, Xu D, Yu B, Lian Q, Huang J. Combined Transcriptome and Metabolome Analysis Reveals That Carbon Catabolite Repression Governs Growth and Pathogenicity in Verticillium dahliae. Int J Mol Sci 2024; 25:11575. [PMID: 39519126 PMCID: PMC11546859 DOI: 10.3390/ijms252111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Carbon catabolite repression (CCR) is a common transcriptional regulatory mechanism that microorganisms use to efficiently utilize carbon nutrients, which is critical for the fitness of microorganisms and for pathogenic species to cause infection. Here, we characterized two CCR genes, VdCreA and VdCreC, in Verticillium dahliae that cause cotton Verticillium wilt disease. The VdCreA and VdCreC knockout mutants displayed slow growth with decreased conidiation and microsclerotium production and reduced virulence to cotton, suggesting that VdCreA and VdCreC are involved in growth and pathogenicity in V. dahliae. We further generated 36 highly reliable and stable ΔVdCreA and ΔVdCreC libraries to comprehensively explore the dynamic expression of genes and metabolites when grown under different carbon sources and CCR conditions. Based on the weighted gene co-expression network analysis (WGCNA) and correlation networks, VdCreA is co-expressed with a multitude of downregulated genes. These gene networks span multiple functional pathways, among which seven genes, including PYCR (pyrroline-5-carboxylate reductase), are potential target genes of VdCreA. Different carbon source conditions triggered entirely distinct gene regulatory networks, yet they exhibited similar changes in metabolic pathways. Six genes, including 6-phosphogluconolactonase and 2-ODGH (2-oxoglutarate dehydrogenase E1), may serve as hub genes in this process. Both VdCreA and VdCreC could comprehensively influence the expression of plant cell wall-degrading enzyme (PCWDE) genes, suggesting that they have a role in pathogenicity in V. dahliae. The integrated expression profiles of the genes and metabolites involved in the glycolysis/gluconeogenesis and pentose phosphate pathways showed that the two major sugar metabolism-related pathways were completely changed, and GADP (glyceraldehyde-3-phosphate) may be a pivotal factor for CCR under different carbon sources. All these results provide a more comprehensive perspective for further analyzing the role of Cre in CCR.
Collapse
Affiliation(s)
| | | | | | - Qinggui Lian
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (Y.W.); (D.X.); (B.Y.)
| | - Jiafeng Huang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (Y.W.); (D.X.); (B.Y.)
| |
Collapse
|
6
|
Pu X, Lin A, Wang C, Jibril SM, Yang X, Yang K, Li C, Wang Y. MoHG1 Regulates Fungal Development and Virulence in Magnaporthe oryzae. J Fungi (Basel) 2024; 10:663. [PMID: 39330422 PMCID: PMC11433375 DOI: 10.3390/jof10090663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Magnaporthe oryzae causes rice blast disease, which threatens global rice production. The interaction between M. oryzae and rice is regarded as a classic model for studying the relationship between the pathogen and the host. In this study, we found a gene, MoHG1, regulating fungal development and virulence in M. oryzae. The ∆Mohg1 mutants showed more sensitivity to cell wall integrity stressors and their cell wall is more easily degraded by enzymes. Moreover, a decreased content of chitin but higher contents of arabinose, sorbitol, lactose, rhamnose, and xylitol were found in the ∆Mohg1 mutant. Combined with transcriptomic results, many genes in MAPK and sugar metabolism pathways are significantly regulated in the ∆Mohg1 mutant. A hexokinase gene, MGG_00623 was downregulated in ∆Mohg1, according to transcriptome results. We overexpressed MGG_00623 in a ∆Mohg1 mutant. The results showed that fungal growth and chitin contents in MGG_00623-overexpressing strains were restored significantly compared to the ∆Mohg1 mutant. Furthermore, MoHG1 could interact with MGG_00623 directly through the yeast two-hybrid and BiFC. Overall, these results suggest that MoHG1 coordinating with hexokinase regulates fungal development and virulence by affecting chitin contents and cell wall integrity in M. oryzae, which provides a reference for studying the functions of MoHG1-like genes.
Collapse
Affiliation(s)
- Xin Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Aijia Lin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Chun Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Sauban Musa Jibril
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Xinyun Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Kexin Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
7
|
Zhang X, Yang Y, Liu L, Sui X, Bermudez RS, Wang L, He W, Xu H. Insights into the efficient degradation mechanism of extracellular proteases mediated by Purpureocillium lilacinum. Front Microbiol 2024; 15:1404439. [PMID: 39040909 PMCID: PMC11260826 DOI: 10.3389/fmicb.2024.1404439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Protease secretion is crucial for degrading nematode cuticles using nematophagous fungus Purpureocillium lilacinum, but the secretion pattern of protease remains poorly understood. This study aimed to explore the degradation mechanism of proteases by investigating the characteristics of protease secretion under various carbon and nitrogen sources, and different carbon to nitrogen (C:N) ratios in P. lilacinum. The results showed that corn flour as a carbon source and yeast extract as a nitrogen source specifically induced protease secretion in P. lilacinum. P. lilacinum produced significant amounts of gelatinase and casein enzyme at C:N ratios of 10:1, 20:1, and 40:1, indicating that higher C:N ratios were more beneficial for secreting extracellular proteases. Proteomic analysis revealed 14 proteases, including 4 S8 serine endopeptidases and one M28 aminopeptidase. Among four S8 serine peptidases, Alp1 exhibited a high secretion level at C:N ratio less than 5:1, whereas PR1C, PR1D, and P32 displayed higher secretion levels at higher C:N ratios. In addition, the transcription levels of GATA transcription factors were investigated, revealing that Asd-4, A0A179G170, and A0A179HGL4 were more prevalent at a C:N ratio of 40:1. In contrast, the transcription levels of SREP, AreA, and NsdD were higher at lower C:N ratios. The putative regulatory profile of extracellular protease production in P. lilacinum, induced by different C:N ratios, was analyzed. The findings offered insights into the complexity of protease production and aided in the hydrolytic degradation of nematode cuticles.
Collapse
Affiliation(s)
- Xiujun Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuhong Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Li Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xin Sui
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | | | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Huilian Xu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
8
|
Su J, Xu Y, Lei M, Meng Y, Zhang S, Liu H, Zhu C, Chen J, Zhang T, Liu J, Lin Y, Yan Z, Li W, Wang J, Chen X, He M. A fatty acid elongase complex regulates cell membrane integrity and septin-dependent host infection by the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2024; 25:e13494. [PMID: 39003585 PMCID: PMC11246601 DOI: 10.1111/mpp.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024]
Abstract
Very-long-chain fatty acids (VLCFAs) regulate biophysical properties of cell membranes to determine growth and development of eukaryotes, such as the pathogenesis of the rice blast fungus Magnaporthe oryzae. The fatty acid elongase Elo1 regulates pathogenesis of M. oryzae by modulating VLCFA biosynthesis. However, it remains unknown whether and how Elo1 associates with other factors to regulate VLCFA biosynthesis in fungal pathogens. Here, we identified Ifa38, Phs1 and Tsc13 as interacting proteins of Elo1 by proximity labelling in M. oryzae. Elo1 associated with Ifa38, Phs1 and Tsc13 on the endoplasmic reticulum (ER) membrane to control VLCFA biosynthesis. Targeted gene deletion mutants Δifa38, Δphs1 and Δtsc13 were all similarly impaired as Δelo1 in vegetative growth, conidial morphology, stress responses in ER, cell wall and membrane. These deletion mutants also displayed severe damage in cell membrane integrity and failed to organize the septin ring that is essential for penetration peg formation and pathogenicity. Our study demonstrates that M. oryzae employs a fatty acid elongase complex to regulate VLCFAs for maintaining or remodelling cell membrane structure, which is important for septin-mediated host penetration.
Collapse
Affiliation(s)
- Jia Su
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Youpin Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Mingliang Lei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yingying Meng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Siqi Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hongrui Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Caicun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinhua Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tianxin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiawei Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunxiang Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhaorui Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Díaz-Tapia KM, Zavala-Páramo MG, Villa-Rivera MG, Morelos-Martínez MI, López-Romero E, Simpson J, Bolaños-Rebolledo J, Cano-Camacho H. Differential Carbon Catabolite Repression and Hemicellulolytic Ability among Pathotypes of Colletotrichum lindemuthianum against Natural Plant Substrates. J Fungi (Basel) 2024; 10:406. [PMID: 38921392 PMCID: PMC11204554 DOI: 10.3390/jof10060406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Colletotrichum lindemuthianum is a phytopathogenic fungus that causes anthracnose in common beans (Phaseolus vulgaris) and presents a great diversity of pathotypes with different levels of virulence against bean varieties worldwide. The purpose of this study was to establish whether pathotypic diversity is associated with differences in the mycelial growth and secretion of plant-cell-wall-degrading enzymes (PCWDEs). We evaluated growth, hemicellulase and cellulase activity, and PCWDE secretion in four pathotypes of C. lindemuthianum in cultures with glucose, bean hypocotyls and green beans of P. vulgaris, and water hyacinth (Eichhornia crassipes). The results showed differences in the mycelial growth, hemicellulolytic activity, and PCWDE secretion among the pathotypes. Glucose was not the preferred carbon source for the best mycelial growth in all pathotypes, each of which showed a unique PCWDE secretion profile, indicating different levels of carbon catabolite regulation (CCR). The pathotypes showed a high differential hemicellulolytic capacity to degrade host and water hyacinth tissues, suggesting CCR by pentoses and that there are differences in the absorption and metabolism of different monosaccharides and/or disaccharides. We propose that different levels of CCR could optimize growth in different host tissues and could allow for consortium behavior in interactions with bean crops.
Collapse
Affiliation(s)
- Karla Morelia Díaz-Tapia
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico; (K.M.D.-T.); (M.I.M.-M.); (J.B.-R.)
| | - María Guadalupe Zavala-Páramo
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico; (K.M.D.-T.); (M.I.M.-M.); (J.B.-R.)
| | - Maria Guadalupe Villa-Rivera
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Morelia 58190, Michoacán, Mexico;
| | - Ma. Irene Morelos-Martínez
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico; (K.M.D.-T.); (M.I.M.-M.); (J.B.-R.)
| | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta SN, Guanajuato 36030, Guanajuato, Mexico;
| | - June Simpson
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36821, Guanajuato, Mexico;
| | - Jeni Bolaños-Rebolledo
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico; (K.M.D.-T.); (M.I.M.-M.); (J.B.-R.)
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico; (K.M.D.-T.); (M.I.M.-M.); (J.B.-R.)
| |
Collapse
|
10
|
Huang Z, Cao H, Wang H, Huang P, Wang J, Cai Y, Wang Q, Li Y, Wang J, Liu X, Lin F, Lu J. The triglyceride catabolism regulated by a serine/threonine protein phosphatase, Smek1, is required for development and plant infection in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2023; 24:1256-1272. [PMID: 37357820 PMCID: PMC10502837 DOI: 10.1111/mpp.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Magnaporthe oryzae is a pathogenic fungus that seriously harms rice production. Phosphatases and carbon metabolism play crucial roles in the growth and development of eukaryotes. However, it remains unclear how serine/threonine phosphatases regulate the catabolism of triglycerides, a major form of stored lipids. In this study, we identified a serine/threonine protein phosphatase regulatory subunit, Smek1, which is required for the growth, conidiation, and virulence of M. oryzae. Deletion of SMEK1 led to defects in the utilization of lipids, arabinose, glycerol, and ethanol. In glucose medium, the expression of genes involved in lipolysis, long-chain fatty acid degradation, β-oxidation, and the glyoxylate cycle increased in the Δsmek1 mutant, which is consistent with ΔcreA in which a carbon catabolite repressor CREA was deleted. In lipid medium, the expression of genes involved in long-chain fatty acid degradation, β-oxidation, the glyoxylate cycle, and utilization of arabinose, ethanol, or glycerol decreased in the Δsmek1 mutant, which is consistent with Δcrf1 in which a transcription activator CRF1 required for carbon metabolism was deleted. Lipase activity, however, increased in the Δsmek1 mutant in both glucose and lipid media. Moreover, Smek1 directly interacted with CreA and Crf1, and dephosphorylated CreA and Crf1 in vivo. The phosphatase Smek1 is therefore a dual-function regulator of the lipid and carbohydrate metabolism, and controls fungal development and virulence by coordinating the functions of CreA and Crf1 in carbon catabolite repression (CCR) and derepression (CCDR).
Collapse
Affiliation(s)
- Zhicheng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Huijuan Cao
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | | | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Ying‐Ying Cai
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Qing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Yan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xiao‐Hong Liu
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Fu‐Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Jianping Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
11
|
Li G, Gong Z, Dulal N, Marroquin-Guzman M, Rocha RO, Richter M, Wilson RA. A protein kinase coordinates cycles of autophagy and glutaminolysis in invasive hyphae of the fungus Magnaporthe oryzae within rice cells. Nat Commun 2023; 14:4146. [PMID: 37438395 DOI: 10.1038/s41467-023-39880-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
The blast fungus Magnaporthe oryzae produces invasive hyphae in living rice cells during early infection, separated from the host cytoplasm by plant-derived interfacial membranes. However, the mechanisms underpinning this intracellular biotrophic growth phase are poorly understood. Here, we show that the M. oryzae serine/threonine protein kinase Rim15 promotes biotrophic growth by coordinating cycles of autophagy and glutaminolysis in invasive hyphae. Alongside inducing autophagy, Rim15 phosphorylates NAD-dependent glutamate dehydrogenase, resulting in increased levels of α-ketoglutarate that reactivate target-of-rapamycin (TOR) kinase signaling, which inhibits autophagy. Deleting RIM15 attenuates invasive hyphal growth and triggers plant immunity; exogenous addition of α-ketoglutarate prevents these effects, while glucose addition only suppresses host defenses. Our results indicate that Rim15-dependent cycles of autophagic flux liberate α-ketoglutarate - via glutaminolysis - to reactivate TOR signaling and fuel biotrophic growth while conserving glucose for antioxidation-mediated host innate immunity suppression.
Collapse
Affiliation(s)
- Gang Li
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ziwen Gong
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nawaraj Dulal
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Margarita Marroquin-Guzman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Bayer CropScience, Chesterfield, MO, USA
| | - Raquel O Rocha
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Michael Richter
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
12
|
Yan X, Tang B, Ryder LS, MacLean D, Were VM, Eseola AB, Cruz-Mireles N, Ma W, Foster AJ, Osés-Ruiz M, Talbot NJ. The transcriptional landscape of plant infection by the rice blast fungus Magnaporthe oryzae reveals distinct families of temporally co-regulated and structurally conserved effectors. THE PLANT CELL 2023; 35:1360-1385. [PMID: 36808541 PMCID: PMC10118281 DOI: 10.1093/plcell/koad036] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 05/04/2023]
Abstract
The rice blast fungus Magnaporthe oryzae causes a devastating disease that threatens global rice (Oryza sativa) production. Despite intense study, the biology of plant tissue invasion during blast disease remains poorly understood. Here we report a high-resolution transcriptional profiling study of the entire plant-associated development of the blast fungus. Our analysis revealed major temporal changes in fungal gene expression during plant infection. Pathogen gene expression could be classified into 10 modules of temporally co-expressed genes, providing evidence for the induction of pronounced shifts in primary and secondary metabolism, cell signaling, and transcriptional regulation. A set of 863 genes encoding secreted proteins are differentially expressed at specific stages of infection, and 546 genes named MEP (Magnaportheeffector protein) genes were predicted to encode effectors. Computational prediction of structurally related MEPs, including the MAX effector family, revealed their temporal co-regulation in the same co-expression modules. We characterized 32 MEP genes and demonstrate that Mep effectors are predominantly targeted to the cytoplasm of rice cells via the biotrophic interfacial complex and use a common unconventional secretory pathway. Taken together, our study reveals major changes in gene expression associated with blast disease and identifies a diverse repertoire of effectors critical for successful infection.
Collapse
Affiliation(s)
- Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lauren S Ryder
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent M Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alice Bisola Eseola
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Neftaly Cruz-Mireles
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Andrew J Foster
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
13
|
Zhang T, Wang X, Li X, Li YN, Li Y, Wu S, Xu L, Zhou R, Yang J, Li G, Liu X, Zheng X, Zhang Z, Zhang H. MoLrp1-mediated signaling induces nuclear accumulation of MoMsn2 to facilitate fatty acid oxidation for infectious growth of the rice blast fungus. PLANT COMMUNICATIONS 2023:100561. [PMID: 36774535 PMCID: PMC10363509 DOI: 10.1016/j.xplc.2023.100561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Fatty acid β-oxidation is critical for fatty acid degradation and cellular development. In the rice blast fungus Magnaporthe oryzae, fatty acid β-oxidation is reported to be important mainly for turgor generation in the appressorium. However, the role of fatty acid β-oxidation during invasive hyphal growth is rarely documented. We demonstrated that blocking peroxisomal fatty acid β-oxidation impaired lipid droplet (LD) degradation and infectious growth of M. oryzae. We found that the key regulator of pathogenesis, MoMsn2, which we identified previously, is involved in fatty acid β-oxidation by targeting MoDCI1 (encoding dienoyl-coenzyme A [CoA] isomerase), which is also important for LD degradation and infectious growth. Cytological observations revealed that MoMsn2 accumulated from the cytosol to the nucleus during early infection or upon treatment with oleate. We determined that the low-density lipoprotein receptor-related protein MoLrp1, which is also involved in fatty acid β-oxidation and infectious growth, plays a critical role in the accumulation of MoMsn2 from the cytosol to the nucleus by activating the cyclic AMP signaling pathway. Our results provide new insights into the importance of fatty acid oxidation during invasive hyphal growth, which is modulated by MoMsn2 and its related signaling pathways in M. oryzae.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xingyu Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xue Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ya-Nan Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yuhe Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Shuang Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Lele Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ruiwen Zhou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jing Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
14
|
Iwama R, Sasano Y, Hiramatsu T, Otake S, Suzuki E, Hasumi K. Amine-Regulated pri-SMTP Oxidation in SMTP Biosynthesis in Stachybotrys: Possible Implication in Nitrogen Acquisition. J Fungi (Basel) 2022; 8:jof8090975. [PMID: 36135700 PMCID: PMC9502257 DOI: 10.3390/jof8090975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2022] Open
Abstract
SMTP (the name SMTP is derived from Stachybotrys microspora triprenyl phenol) is a family of triprenyl phenol secondary metabolites from a black mold, Stachybotrys microspora. Some SMTP congeners exhibit anti-inflammatory and profibrinolytic activities that, in combination, contribute to the treatment of ischemic stroke. The final step in the SMTP biosynthesis is a non-enzymatic amine conjugation with an o-phthalaldehyde moiety of the precursor pre-SMTP, which can form adducts with proteins and nucleic acids. Thus, pre-SMTP formation should be a precisely regulated, rate-limiting step in the SMTP biosynthesis. To address the mechanism backing this regulation, we purified a metabolite that rapidly disappeared following amine feeding, identifying a novel compound, pri-SMTP. Furthermore, an enzyme, designated as pri-SMTP oxidase, responsible for pri-SMTP conversion to pre-SMTP, was purified. The formation of pri-SMTP, which is regulated by nitrogen and carbon nutrients, occurred in particular septate mycelia. Although pri-SMTP oxidase was expressed constitutively, the consumption of pri-SMTP was accelerated only when a primary amine was fed. Thus, SMTP biosynthesis is regulated by at least three mechanisms: (i) pri-SMTP formation affected by nutrients, (ii) the compartmentalization of pri-SMTP formation/storage, and (iii) amine-regulated pri-SMTP oxidation. Amine-regulated SMTP formation (i.e., amine-capturing with pre-SMTP) may play a role in the nitrogen acquisition/assimilation strategy in S. microspora, since pri-SMTP synthesis occurs on non-preferred nitrogen.
Collapse
Affiliation(s)
- Ryota Iwama
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yu Sasano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Taichi Hiramatsu
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Shinya Otake
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Eriko Suzuki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Department of Research and Development, TMS Co., Fuchu, Tokyo 183-0055, Japan
- Correspondence:
| |
Collapse
|
15
|
Aron O, Otieno FJ, Tijjani I, Yang Z, Xu H, Weng S, Guo J, Lu S, Wang Z, Tang W. De novo purine nucleotide biosynthesis mediated by MoAde4 is required for conidiation, host colonization and pathogenicity in Magnaporthe oryzae. Appl Microbiol Biotechnol 2022; 106:5587-5602. [PMID: 35918446 DOI: 10.1007/s00253-022-12100-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Amidophosphoribosyltransferase catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate into 5-phosphoribosyl-1-amine in the de novo purine biosynthetic pathway. Herein, we identified and characterized the functions of MoAde4, an orthologue of yeast Ade4 in Magnaporthe oryzae. MoAde4 is a 537-amino acid protein containing GATase_6 and pribosyltran domains. MoADE4 transcripts were highly expressed during the conidiation, early-infection, and late-infection stages of the fungus. Disruption of the MoADE4 gene resulted in ΔMoade4 exhibiting adenine, adenosine, and hypoxanthine auxotrophy on minimal medium. Conidia quantification assays showed that sporulation was significantly reduced in the ΔMoade4 mutant. The conidia of ΔMoade4 could still form appressoria but mostly failed to penetrate the rice cuticle. Pathogenicity tests showed that ΔMoade4 was completely nonpathogenic on rice and barley leaves, which was attributed to restricted infectious hyphal growth within the primary cells. The ΔMoade4 mutant was defective in the induction of strong host immunity. Exogenous adenine partially rescued conidiation, infectious hyphal growth, and the pathogenicity defects of the ΔMoade4 mutant on barley and rice leaves. Taken together, our results demonstrated that purine nucleotide biosynthesis orchestrated by MoAde4 is required for fungal development and pathogenicity in M. oryzae. These findings therefore act as a suitable target for antifungal development against recalcitrant plant fungal pathogens. KEY POINTS: • MoAde4 is crucial for de novo purine nucleotide biosynthesis. • MoAde4 is pivotal for conidiogenesis and appressorium development of M. oryzae. • MoAde4 is involoved in the pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Osakina Aron
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Frankine Jagero Otieno
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ibrahim Tijjani
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zifeng Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huxiao Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuning Weng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiayuan Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Songmao Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Wei Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, 350013, China.
| |
Collapse
|
16
|
Adenylsuccinate Synthetase MoADE12 Plays Important Roles in the Development and Pathogenicity of the Rice Blast Fungus. J Fungi (Basel) 2022; 8:jof8080780. [PMID: 35893147 PMCID: PMC9330342 DOI: 10.3390/jof8080780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
Purines are basic components of nucleotides in living organisms. In this study, we identified the ortholog of adenylosuccinate synthase MoADE12 in Magnaporthe oryzae by screening for growth-defective T-DNA insertional mutants. Gene replacement was performed to investigate the biological role of MoADE12. Δmoade12 mutants were adenine auxotrophs that failed to produce conidia, and showed reduced perithecia formation and pathogenicity. Moreover, the Δmoade12 mutant was hypersensitive to Congo red and oxidants, indicating that MoADE12 was required for cell wall integrity and oxidative stress resistance. Transcriptomic analysis identified the underlying mechanisms and indicated that several pathogenicity-related genes were regulated in the Δmoade12 mutant. Therefore, our data suggest that the adenylosuccinate synthase MoADE12 is involved in the de novo AMP biosynthesis pathway and is important for conidiation and pathogenicity in the rice blast fungus.
Collapse
|
17
|
Li C, Xu D, Hu M, Zhang Q, Xia Y, Jin K. MaNCP1, a C2H2 Zinc Finger Protein, Governs the Conidiation Pattern Shift through Regulating the Reductive Pathway for Nitric Oxide Synthesis in the Filamentous Fungus Metarhizium acridum. Microbiol Spectr 2022; 10:e0053822. [PMID: 35536030 PMCID: PMC9241723 DOI: 10.1128/spectrum.00538-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
Asexual sporulation is the most common reproduction mode of fungi. Most filamentous fungi have two conidiation patterns, normal conidiation and microcycle conidiation, which may be regulated by nutritional conditions. Nitrogen source can affect the fungal conidiation pattern, but the regulatory mechanism is not fully understood. In this study, we report a C2H2 zinc finger protein, MaNCP1, which has typical transcription factor characteristics and is screened from the subtractive library regulated by nitrate in the entomopathogenic fungus Metarhizium acridum. MaNCP1 and its N-terminal play critical roles in the conidiation pattern shift. Further study shows that MaNCP1 interacts with MaNmrA, which also contributes to the conidiation pattern shift and is involved in the reductive pathway of nitric oxide (NO) synthesis. Intriguingly, the conidiation pattern of the MaNCP1-disruption strain (ΔMaNCP1) can be restored to microcycle conidiation when grown on the microcycle conidiation medium, SYA, supplemented with NO donor or overexpressing MaNmrA in ΔMaNCP1. Here, we reveal that MaNCP1 governs the conidiation pattern shift through regulating the reductive synthesis of NO by physically targeting MaNmrA in M. acridum. This work provides new mechanistic insights into how changes in nitrogen utilization are linked to the regulation of fungal morphological changes. IMPORTANCE Fungal conidia play important roles in the response to environmental stimuli and evasion of the host immune system. The nitrogen source is one of the main factors affecting shifts in fungal conidiation patterns, but the regulatory mechanism involved is not fully understood. In this work, we report that the C2H2 zinc finger protein, MaNCP1, governs the conidiation pattern shift in M. acridum by targeting the MaNmrA gene, thereby altering the regulation of the reductive pathway for NO synthesis. This work provides further insights into how the nutritional environment can regulate the morphogenesis of filamentous fungi.
Collapse
Affiliation(s)
- Chaochuang Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Dingxiang Xu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Meiwen Hu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Qipei Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| |
Collapse
|
18
|
Zhang P, Fang Z, Song Y, Wang S, Bao L, Liu M, Dang Y, Wei Y, Zhang SH. Aspartate Transaminase AST2 Involved in Sporulation and Necrotrophic Pathogenesis in the Hemibiotrophs Magnaporthe oryzae and Colletotrichum graminicola. Front Microbiol 2022; 13:864866. [PMID: 35479642 PMCID: PMC9037547 DOI: 10.3389/fmicb.2022.864866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Aspartate family includes five additional amino acids other than aspartate, among which most except aspartate have been reported for their action in pathogenesis by amino acid biosynthesis. However, how aspartate, the initial substrate of this family metabolic pathway, is involved in pathogenesis remains unknown. Here, we focused on aspartate transaminase (AST) that catalyzes transamination reaction between glutamate-aspartate in Magnaporthe oryzae. Three MoAST genes were bioinformatically analyzed, of which MoAST2 was uniquely upregulated when invasive hyphae switched to necrotrophic pathogenesis. MoAST2 deletion (ΔMoast2) caused a drastic reduction in conidiogenesis and appressorium formation. Particularly, ΔMoast2 was observed to be proliferated at the biotrophic phase but inhibited at the necrotrophic stage, and with invisible symptoms detected, suggesting a critical role in necrotrophic phase. Glutamate family restored the ΔMoast2 defects but aspartate family did not, inferring that transamination occurs from aspartate to glutamine. MoAST2 is cytosolic and possessed H2O2 stress tolerance. In parallel, Colletotrichum graminicola AST2, CgAST2 was proven to be a player in necrotrophic anthracnose development. Therefore, conserved AST2 is qualified to be a drug target for disease control.
Collapse
Affiliation(s)
- Penghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Zhenyu Fang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanyue Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shaowei Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Lina Bao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Mingyu Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yuejia Dang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yi Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China.,College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
19
|
Durán-Sequeda D, Suspes D, Maestre E, Alfaro M, Perez G, Ramírez L, Pisabarro AG, Sierra R. Effect of Nutritional Factors and Copper on the Regulation of Laccase Enzyme Production in Pleurotus ostreatus. J Fungi (Basel) 2021; 8:jof8010007. [PMID: 35049947 PMCID: PMC8780821 DOI: 10.3390/jof8010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 01/02/2023] Open
Abstract
This research aimed to establish the relationship between carbon–nitrogen nutritional factors and copper sulfate on laccase activity (LA) by Pleurotus ostreatus. Culture media composition was tested to choose the nitrogen source. Yeast extract (YE) was selected as a better nitrogen source than ammonium sulfate. Then, the effect of glucose and YE concentrations on biomass production and LA as response variables was evaluated using central composite experimental designs with and without copper. The results showed that the best culture medium composition was glucose 45 gL−1 and YE 15 gL−1, simultaneously optimizing these two response variables. The fungal transcriptome was obtained in this medium with or without copper, and the differentially expressed genes were found. The main upregulated transcripts included three laccase genes (lacc2, lacc6, and lacc10) regulated by copper, whereas the principal downregulated transcripts included a copper transporter (ctr1) and a regulator of nitrogen metabolism (nmr1). These results suggest that Ctr1, which facilitates the entry of copper into the cell, is regulated by nutrient-sufficiency conditions. Once inside, copper induces transcription of laccase genes. This finding could explain why a 10–20-fold increase in LA occurs with copper compared to cultures without copper when using the optimal concentration of YE as nitrogen sources.
Collapse
Affiliation(s)
- Dinary Durán-Sequeda
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
- Correspondence: (D.D.-S.); (A.G.P.)
| | - Daniela Suspes
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
| | - Estibenson Maestre
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
| | - Manuel Alfaro
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
| | - Gumer Perez
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
| | - Antonio G. Pisabarro
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
- Correspondence: (D.D.-S.); (A.G.P.)
| | - Rocío Sierra
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
| |
Collapse
|
20
|
MaNmrA, a Negative Transcription Regulator in Nitrogen Catabolite Repression Pathway, Contributes to Nutrient Utilization, Stress Resistance, and Virulence in Entomopathogenic Fungus Metarhizium acridum. BIOLOGY 2021; 10:biology10111167. [PMID: 34827160 PMCID: PMC8615229 DOI: 10.3390/biology10111167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Nutrient metabolism is closely related to the growth, development, and pathogenicity of pathogenic fungi. The nitrogen catabolite repression (NCR) pathway is a well-known fungal nitrogen source regulation path, in which NmrA plays an important regulatory role. Here, we reported a negative regulatory protein MaNmrA, the NmrA homologous protein, in the entomopathogenic fungus Metarhizium acridum, and found that it played important roles in carbon and nitrogen metabolism, growth, stress tolerance, and virulence of M. acridum. Our work will provide a theoretical basis for further exploring the functions of NCR pathway related genes in entomopathogenic fungi. Abstract The NCR pathway plays an important regulatory role in the nitrogen metabolism of filamentous fungi. NmrA, a central negative regulatory protein in the NCR pathway and a key factor in sensing to the carbon metabolism, plays important roles in pathogenic fungal nutrition metabolism. In this study, we characterized the functions of MaNmrA in the insect pathogenic fungus M. acridum. Multiple sequence alignments found that the conserved domain (NAD/NADP binding domain) of MaNmrA was highly conservative with its homologues proteins. Deletion of MaNmrA improved the utilization of multiple carbon sources (such as glucose, mannose, sucrose, and trehalose) and non-preferred nitrogen sources (such as NaNO3 and urea), significantly delayed the conidial germination rate and reduced the conidial yield. The MaNmrA-disruption strain (ΔMaNmrA) significantly decreased tolerances to UV-B and heat-shock, and it also increased the sensitivity to the hypertonic substance sorbitol, oxygen stress substance H2O2, and cell wall destroyer calcofluor white, indicating that loss of MaNmrA affected cell wall integrity, tolerances to hypertonic and oxidative stress. Bioassays demonstrated that disruption of MaNmrA decreased the virulence in both topical inoculation and intrahemocoel injection tests. Further studies revealed that the appressorium formation, turgor pressure, and colonization in hemolymph were significantly reduced in the absence of MaNmrA. Our work will deepen the functional cognition of MaNmrA and make a contribution to the study of its homologous proteins.
Collapse
|
21
|
Trehalose Phosphate Synthase Complex-Mediated Regulation of Trehalose 6-Phosphate Homeostasis Is Critical for Development and Pathogenesis in Magnaporthe oryzae. mSystems 2021; 6:e0046221. [PMID: 34609170 PMCID: PMC8547450 DOI: 10.1128/msystems.00462-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Trehalose biosynthesis pathway is a potential target for antifungal drug development, and trehalose 6-phosphate (T6P) accumulation is widely known to have toxic effects on cells. However, how organisms maintain a safe T6P level and cope with its cytotoxicity effects when accumulated have not been reported. Herein, we unveil the mechanism by which the rice blast fungus Magnaporthe oryzae avoids T6P accumulation and the genetic and physiological adjustments it undergoes to self-adjust the metabolite level when it is unavoidably accumulated. We found that T6P accumulation leads to defects in fugal development and pathogenicity. The accumulated T6P impairs cell wall assembly by disrupting actin organization. The disorganization of actin impairs the distribution of chitin synthases, thereby disrupting cell wall polymer distribution. Additionally, accumulation of T6P compromise energy metabolism. M. oryzae was able to overcome the effects of T6P accumulation by self-mutation of its MoTPS3 gene at two different mutation sites. We further show that mutation of MoTPS3 suppresses MoTps1 activity to reduce the intracellular level of T6P and partially restore ΔMotps2 defects. Overall, our results provide insights into the cytotoxicity effects of T6P accumulation and uncover a spontaneous mutation strategy to rebalance accumulated T6P in M. oryzae. IMPORTANCEM. oryzae, the causative agent of the rice blast disease, threatens rice production worldwide. Our results revealed that T6P accumulation, caused by the disruption of MoTPS2, has toxic effects on fugal development and pathogenesis in M. oryzae. The accumulated T6P impairs the distribution of cell wall polymers via actin organization and therefore disrupts cell wall structure. M. oryzae uses a spontaneous mutation to restore T6P cytotoxicity. Seven spontaneous mutation sites were found, and a mutation in MoTPS3 was further identified. The spontaneous mutation in MoTPS3 can partially rescue ΔMotps2 defects by suppressing MoTps1 activity to alleviate T6P cytotoxicity. This study provides clear evidence for better understanding of T6P cytotoxicity and how the fungus protects itself from T6P’s toxic effects when it has accumulated to severely high levels.
Collapse
|
22
|
Tang C, Li W, Klosterman SJ, Wang Y. Transcriptome Variations in Verticillium dahliae in Response to Two Different Inorganic Nitrogen Sources. Front Microbiol 2021; 12:712701. [PMID: 34394062 PMCID: PMC8355529 DOI: 10.3389/fmicb.2021.712701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on hundreds of plant species. The main focus of the research to control this fungus has been aimed at infection processes such as penetration peg formation and effector secretion, but the ability of the fungus to acquire and utilize nutrients are often overlooked and may hold additional potential to formulate new disease control approaches. Little is known about the molecular mechanisms of nitrogen acquisition and assimilation processes in V. dahliae. In this present study, RNA sequencing and gene expression analysis were used to examine differentially expressed genes in response to the different nitrogen sources, nitrate and ammonium, in V. dahliae. A total of 3244 and 2528 differentially expressed genes were identified in response to nitrate and ammonium treatments, respectively. The data indicated nitrate metabolism requires additional energy input while ammonium metabolism is accompanied by reductions in particular cellular processes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of DEGs during nitrate metabolism revealed that many of the genes encoded those involved in protein biosynthetic and metabolic processes, especially ribosome and RNA polymerase biosynthesis, but also other processes including transport and organonitrogen compound metabolism. Analysis of DEGs in the ammonium treatment indicated that cell cycle, oxidoreductase, and certain metabolic activities were reduced. In addition, DEGs participating in the utilization of both nitrate and ammonium were related to L-serine biosynthesis, energy-dependent multidrug efflux pump activity, and glycerol transport. We further showed that the mutants of three differentially expressed transcription factors (VdMcm1, VdHapX, and VDAG_08640) exhibited abnormal phenotypes under nitrate and ammonium treatment compared with the wild type strain. Deletion of VdMcm1 displayed slower growth when utilizing both nitrogen sources, while deletion of VdHapX and VDAG_08640 only affected nitrate metabolism, inferring that nitrogen assimilation required regulation of bZIP transcription factor family and participation of cell cycle. Taken together, our findings illustrate the convergent and distinctive regulatory mechanisms between preferred (ammonium) and alternative nitrogen (nitrate) metabolism at the transcriptome level, leading to better understanding of inorganic nitrogen metabolism in V. dahliae.
Collapse
Affiliation(s)
- Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Wenwen Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- Agricultural Research Service, United States Department of Agriculture, Salinas, CA, United States
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
23
|
A Novel Nitrogen and Carbon Metabolism Regulatory Cascade Is Implicated in Entomopathogenicity of the Fungus Metarhizium robertsii. mSystems 2021; 6:e0049921. [PMID: 34156296 PMCID: PMC8269237 DOI: 10.1128/msystems.00499-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The entomopathogenic fungus Metarhizium robertsii can switch among parasitic, saprophytic, and symbiotic lifestyles in response to changing nutritional conditions, which is attributed to its extremely versatile metabolism. Here, we found that the Fus3–mitogen-activated protein kinase (MAPK) and the transcription factor regulator of nutrient selection 1 (RNS1) constitute a novel fungal cascade that regulates the degradation of insect cuticular lipids, proteins, and chitin to obtain nutrients for hyphal growth and enter the insect hemocoel for subsequent colonization. On the insect cuticle, Fus3-MAPK physically contacts and phosphorylates RNS1, which facilitates the entry of RNS1 into nuclei. The phosphorylated RNS1 binds to the DNA motif BM2 (ACCAGAC) in its own promoter to self-induce expression, which then activates the expression of genes for degrading cuticular proteins, chitin, and lipids. We further found that the Fus3-MAPK/RNS1 cascade also activates genes for utilizing complex and less-favored nitrogen and carbon sources (casein, colloid chitin, and hydrocarbons) that were not derived from insects, which is repressed by favored organic carbon and nitrogen nutrients, including glucose and glutamine. In conclusion, we discovered a novel regulatory cascade that controls fungal nitrogen and carbon metabolism and is implicated in the entomopathogenicity of M. robertsii. IMPORTANCE Penetration of the cuticle, the first physical barrier to pathogenic fungi, is the prerequisite for fungal infection of insects. In the entomopathogenic fungus Metarhizium robertsii, we found that the Fus3–mitogen-activated protein kinase (MAPK) and the transcription factor regulator of nutrient selection 1 (RNS1) constitute a novel cascade that controls cuticle penetration by regulating degradation of cuticular lipids, proteins, and chitin to obtain nutrients for hyphal growth and entry into the insect hemocoel. In addition, during saprophytic growth, the Fus3-MAPK/RNS1 cascade also activates utilization of complex and less-favored carbon and nitrogen sources that are not derived from insects. The homologs of Fus3-MAPK and RNS1 are widely found in ascomycete filamentous fungi, including saprophytes and pathogens with diverse hosts, suggesting that the regulation of utilization of nitrogen and carbon sources by the Fus3-MAPK/RNS1 cascade could be widespread. Our work provides significant insights into regulation of carbon and nitrogen metabolism in fungi and fungal pathogenesis in insects.
Collapse
|
24
|
Yan ZY, Zhao MR, Huang CY, Zhang LJ, Zhang JX. Trehalose alleviates high-temperature stress in Pleurotus ostreatus by affecting central carbon metabolism. Microb Cell Fact 2021; 20:82. [PMID: 33827585 PMCID: PMC8028756 DOI: 10.1186/s12934-021-01572-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background Trehalose, an intracellular protective agent reported to mediate defense against many stresses, can alleviate high-temperature-induced damage in Pleurotus ostreatus. In this study, the mechanism by which trehalose relieves heat stress was explored by the addition of exogenous trehalose and the use of trehalose-6-phosphate synthase 1 (tps1) overexpression transformants. Results The results suggested that treatment with exogenous trehalose or overexpression of tps1 alleviated the accumulation of lactic acid under heat stress and downregulated the expression of the phosphofructokinase (pfk) and pyruvate kinase (pk) genes, suggesting an ameliorative effect of trehalose on the enhanced glycolysis in P. ostreatus under heat stress. However, the upregulation of hexokinase (hk) gene expression by trehalose indicated the involvement of the pentose phosphate pathway (PPP) in heat stress resistance. Moreover, treatment with exogenous trehalose or overexpression of tps1 increased the gene expression level and enzymatic activity of glucose-6-phosphate dehydrogenase (g6pdh) and increased the production of both the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), confirming the effect of trehalose on alleviating oxidative damage by enhancing PPP in P. ostreatus under heat stress. Furthermore, treatment with exogenous trehalose or overexpression of tps1 ameliorated the decrease in the oxygen consumption rate (OCR) caused by heat stress, suggesting a relationship between trehalose and mitochondrial function under heat stress. Conclusions Trehalose alleviates high-temperature stress in P. ostreatus by inhibiting glycolysis and stimulating PPP activity. This study may provide further insights into the heat stress defense mechanism of trehalose in edible fungi from the perspective of intracellular metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01572-9.
Collapse
Affiliation(s)
- Zhi-Yu Yan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Meng-Ran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Chen-Yang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Li-Jiao Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Jin-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
25
|
Peng M, Khosravi C, Lubbers RJM, Kun RS, Aguilar Pontes MV, Battaglia E, Chen C, Dalhuijsen S, Daly P, Lipzen A, Ng V, Yan J, Wang M, Visser J, Grigoriev IV, Mäkelä MR, de Vries RP. CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner. ACTA ACUST UNITED AC 2021; 7:100050. [PMID: 33778219 PMCID: PMC7985698 DOI: 10.1016/j.tcsw.2021.100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Carbon catabolite repression enables fungi to utilize the most favourable carbon source in the environment, and is mediated by a key regulator, CreA, in most fungi. CreA-mediated regulation has mainly been studied at high monosaccharide concentrations, an uncommon situation in most natural biotopes. In nature, many fungi rely on plant biomass as their major carbon source by producing enzymes to degrade plant cell wall polysaccharides into metabolizable sugars. To determine the role of CreA when fungi grow in more natural conditions and in particular with respect to degradation and conversion of plant cell walls, we compared transcriptomes of a creA deletion and reference strain of the ascomycete Aspergillus niger during growth on sugar beet pulp and wheat bran. Transcriptomics, extracellular sugar concentrations and growth profiling of A. niger on a variety of carbon sources, revealed that also under conditions with low concentrations of free monosaccharides, CreA has a major effect on gene expression in a strong time and substrate composition dependent manner. In addition, we compared the CreA regulon from five fungi during their growth on crude plant biomass or cellulose. It showed that CreA commonly regulated genes related to carbon metabolism, sugar transport and plant cell wall degrading enzymes across different species. We therefore conclude that CreA has a crucial role for fungi also in adapting to low sugar concentrations as occurring in their natural biotopes, which is supported by the presence of CreA orthologs in nearly all fungi.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Roland S Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Maria Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Cindy Chen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Sacha Dalhuijsen
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Paul Daly
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Anna Lipzen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Vivian Ng
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Juying Yan
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Mei Wang
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Igor V Grigoriev
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States.,Department of Plant and Microbial Biology, University of California Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
26
|
Abstract
This introductory chapter describes the life cycle of Magnaporthe oryzae, the causal agent of rice blast disease. During plant infection, M. oryzae forms a specialized infection structure called an appressorium, which generates enormous turgor, applied as a mechanical force to breach the rice cuticle. Appressoria form in response to physical cues from the hydrophobic rice leaf cuticle and nutrient availability. The signaling pathways involved in perception of surface signals are described and the mechanism by which appressoria function is also introduced. Re-polarization of the appressorium requires a septin complex to organize a toroidal F-actin network at the base of the cell. Septin aggregation requires a turgor-dependent sensor kinase, Sln1, necessary for re-polarization of the appressorium and development of a rigid penetration hypha to rupture the leaf cuticle. Once inside the plant, the fungus undergoes secretion of a large set of effector proteins, many of which are directed into plant cells using a specific secretory pathway. Here they suppress plant immunity, but can also be perceived by rice immune receptors, triggering resistances. M. oryzae then manipulates pit field sites, containing plasmodesmata, to facilitate rapid spread from cell to cell in plant tissue, leading to disease symptom development.
Collapse
|
27
|
Hong Y, Cai R, Guo J, Zhong Z, Bao J, Wang Z, Chen X, Zhou J, Lu GD. Carbon catabolite repressor MoCreA is required for the asexual development and pathogenicity of the rice blast fungus. Fungal Genet Biol 2020; 146:103496. [PMID: 33290821 DOI: 10.1016/j.fgb.2020.103496] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022]
Abstract
During the infection and colonization process, the rice blast fungus Magnaporthe oryzae faces various challenges from hostile environment, such as nutrient limitation and carbon stress, while carbon catabolite repression (CCR) mechanism would facilitate the fungus to shrewdly and efficiently utilize carbon nutrients under fickle nutritional conditions since it ensures the preferential utilization of most preferred carbon sources through repressing the expression of enzymes required for the utilization of less preferred carbon sources. Researches on M. oryzae CCR have made some progress, however the involved regulation mechanism is still largely obscured, especially, little is known about the key carbon catabolite repressor CreA. Here we identified and characterized the biological functions of the CreA homolog MoCreA in M. oryzae. MoCreA is constitutively expressed throughout all the life stages of the fungus, and it can shuttle between nucleus and cytoplasm which is induced by glucose. Following functional analyses of MoCreA suggested that it was required for the vegetative growth, conidiation, appressorium formation and pathogenicity of M. oryzae. Moreover, comparative transcriptomic analysis revealed that disruption of MoCreA resulted in the extensive gene expression variations, including a large number of carbon metabolism enzymes, transcription factors and pathogenicity-related genes. Taken together, our results demonstrated that, as a key regulator of CCR, MoCreA plays a vital role in precise regulation of the asexual development and pathogenicity of the rice blast fungus.
Collapse
Affiliation(s)
- Yonghe Hong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renli Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayuan Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiandong Bao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaofeng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
28
|
Rocha RO, Wilson RA. Magnaporthe oryzae nucleoside diphosphate kinase is required for metabolic homeostasis and redox-mediated host innate immunity suppression. Mol Microbiol 2020; 114:789-807. [PMID: 32936940 DOI: 10.1111/mmi.14580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 07/19/2020] [Indexed: 12/25/2022]
Abstract
The fungus Magnaporthe oryzae causes blast, the most devastating disease of cultivated rice. After penetrating the leaf cuticle, M. oryzae grows as a biotroph in intimate contact with living rice epidermal cells before necrotic lesions develop. Biotrophic growth requires maintaining metabolic homeostasis while suppressing plant defenses, but the metabolic connections and requirements involved are largely unknown. Here, we characterized the M. oryzae nucleoside diphosphate kinase-encoding gene NDK1 and discovered it was essential for facilitating biotrophic growth by suppressing the host oxidative burst-the first line of plant defense. NDK enzymes reversibly transfer phosphate groups from tri- to diphosphate nucleosides. Correspondingly, intracellular nucleotide pools were perturbed in M. oryzae strains lacking NDK1 through targeted gene deletion, compared to WT. This affected metabolic homeostasis: TCA, purine and pyrimidine intermediates, and oxidized NADP+ , accumulated in Δndk1. cAMP and glutathione were depleted. ROS accumulated in Δndk1 hyphae. Functional appressoria developed on rice leaf sheath surfaces, but Δndk1 invasive hyphal growth was restricted and redox homeostasis was perturbed, resulting in unsuppressed host oxidative bursts that triggered immunity. We conclude Ndk1 modulates intracellular nucleotide pools to maintain redox balance via metabolic homeostasis, thus quenching the host oxidative burst and suppressing rice innate immunity during biotrophy.
Collapse
Affiliation(s)
- Raquel O Rocha
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
29
|
Liu F, Wickham JD, Cao Q, Lu M, Sun J. An invasive beetle-fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles. ISME JOURNAL 2020; 14:2829-2842. [PMID: 32814865 PMCID: PMC7784882 DOI: 10.1038/s41396-020-00740-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/05/2020] [Indexed: 11/09/2022]
Abstract
Mutualisms between symbiotic microbes and animals have been well documented, and nutritional relationships provide the foundation for maintaining beneficial associations. The well-studied mutualism between bark beetles and their fungi has become a classic model system in the study of symbioses. Despite the nutritional competition between bark beetles and beneficial fungi in the same niche due to poor nutritional feeding substrates, bark beetles still maintain mutualistic associations with beneficial fungi over time. The mechanism behind this phenomenon, however, remains largely unknown. Here, we demonstrated the bark beetle Dendroctonus valens LeConte relies on the symbiotic bacterial volatile ammonia, as a nitrogen source, to regulate carbohydrate metabolism of its mutualistic fungus Leptographium procerum to alleviate nutritional competition, thereby maintaining the stability of the bark beetle–fungus mutualism. Ammonia significantly reduces competition of L. procerum for carbon resources for D. valens larval growth and increases fungal growth. Using stable isotope analysis, we show the fungus breakdown of phloem starch into d-glucose by switching on amylase genes only in the presence of ammonia. Deletion of amylase genes interferes with the conversion of starch to glucose. The acceleration of carbohydrate consumption and the conversion of starch into glucose benefit this invasive beetle–fungus complex. The nutrient consumption–compensation strategy mediated by tripartite beetle–fungus–bacterium aids the maintenance of this invasive mutualism under limited nutritional conditions, exacerbating its invasiveness with this competitive nutritional edge.
Collapse
Affiliation(s)
- Fanghua Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qingjie Cao
- College of Forestry, Hebei Agricultural University, 071000, Baoding, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,State Key Laboratory of Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
30
|
Crystal structures of Magnaporthe oryzae trehalose-6-phosphate synthase (MoTps1) suggest a model for catalytic process of Tps1. Biochem J 2020; 476:3227-3240. [PMID: 31455720 DOI: 10.1042/bcj20190289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022]
Abstract
Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3-β4 loop to α0 helix) and movement of a 'shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a 'closed' state compared with its 'open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.
Collapse
|
31
|
Ries LNA, Pardeshi L, Dong Z, Tan K, Steenwyk JL, Colabardini AC, Ferreira Filho JA, de Castro PA, Silva LP, Preite NW, Almeida F, de Assis LJ, dos Santos RAC, Bowyer P, Bromley M, Owens RA, Doyle S, Demasi M, Hernández DCR, Netto LES, Pupo MT, Rokas A, Loures FV, Wong KH, Goldman GH. The Aspergillus fumigatus transcription factor RglT is important for gliotoxin biosynthesis and self-protection, and virulence. PLoS Pathog 2020; 16:e1008645. [PMID: 32667960 PMCID: PMC7384679 DOI: 10.1371/journal.ppat.1008645] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that secretes an array of immune-modulatory molecules, including secondary metabolites (SMs), which contribute to enhancing fungal fitness and growth within the mammalian host. Gliotoxin (GT) is a SM that interferes with the function and recruitment of innate immune cells, which are essential for eliminating A. fumigatus during invasive infections. We identified a C6 Zn cluster-type transcription factor (TF), subsequently named RglT, important for A. fumigatus oxidative stress resistance, GT biosynthesis and self-protection. RglT regulates the expression of several gli genes of the GT biosynthetic gene cluster, including the oxidoreductase-encoding gene gliT, by directly binding to their respective promoter regions. Subsequently, RglT was shown to be important for virulence in a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA). Homologues of RglT and GliT are present in eurotiomycete and sordariomycete fungi, including the non-GT-producing fungus A. nidulans, where a conservation of function was described. Phylogenetically informed model testing led to an evolutionary scenario in which the GliT-based resistance mechanism is ancestral and RglT-mediated regulation of GliT occurred subsequently. In conclusion, this work describes the function of a previously uncharacterised TF in oxidative stress resistance, GT biosynthesis and self-protection in both GT-producing and non-producing Aspergillus species.
Collapse
Affiliation(s)
- Laure N. A. Ries
- Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lakhansing Pardeshi
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Kaeling Tan
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine and Research and Training, University of Macau, Macau SAR, China
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
| | - Ana Cristina Colabardini
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaire A. Ferreira Filho
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Patricia A. de Castro
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lilian P. Silva
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Nycolas W. Preite
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Fausto Almeida
- Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Leandro J. de Assis
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Renato A. C. dos Santos
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Marilene Demasi
- Institute Butantan, Laboratory of Biochemistry and Biophysics, São Paulo, Brazil
| | - Diego C. R. Hernández
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Monica T. Pupo
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
| | - Flavio V. Loures
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Koon H. Wong
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, University of Macau, Macau SAR, China
| | - Gustavo H. Goldman
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
32
|
Tang C, Li T, Klosterman SJ, Tian C, Wang Y. The bZIP transcription factor VdAtf1 regulates virulence by mediating nitrogen metabolism in Verticillium dahliae. THE NEW PHYTOLOGIST 2020; 226:1461-1479. [PMID: 32040203 DOI: 10.1111/nph.16481] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on hundreds of plant species. Homologs of the bZIP transcription factor Atf1 are required for virulence in most pathogenic fungi, but the molecular basis for their involvement is largely unknown. We performed targeted gene deletion, expression analysis, biochemistry and pathogenicity assays to demonstrate that VdAtf1 governs pathogenesis via the regulation of nitrosative resistance and nitrogen metabolism in V. dahliae. VdAtf1 controls pathogenesis via the regulation of nitric oxide (NO) resistance and inorganic nitrogen metabolism rather than oxidative resistance and is important for penetration peg formation in V. dahliae. VdAtf1 affects ammonium and nitrate assimilation in response to various nitrogen sources. VdAtf1 may be involved in regulating the expression of VdNut1. VdAtf1 responds to NO stress by strengthening the fungal cell wall, and by causing over-accumulation of methylglyoxal and glycerol, which in turn impacts NO detoxification. We also verified that the VdAtf1 ortholog in Fusarium graminearum mediates nitrogen metabolism, suggesting conservation of this function in related plant pathogenic fungi. Our findings revealed new functions of VdAtf1 in pathogenesis, response to nitrosative stress and nitrogen metabolism in V. dahliae. The results provide novel insights into the regulatory mechanisms of the transcription factor VdAtf1 in virulence.
Collapse
Affiliation(s)
- Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Tianyu Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
33
|
Ziv C, Kumar D, Sela N, Itkin M, Malitsky S, Schaffer AA, Prusky DB. Sugar-regulated susceptibility of tomato fruit to Colletotrichum and Penicillium requires differential mechanisms of pathogenicity and fruit responses. Environ Microbiol 2020; 22:2870-2891. [PMID: 32323444 DOI: 10.1111/1462-2920.15031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022]
Abstract
Colletotrichum gloeosporioides and Penicillium expansum cause postharvest diseases in tropical and deciduous fruit. During colonization, C. gloeosporioides and P. expansum secrete ammonia in hosts with low sugar content (LowSC) and gluconic acid in hosts with high sugar content (HighSC), respectively, as a mechanism to modulate enhanced pathogenicity. We studied the pathogens interactions with tomato lines of similar genetic background but differing in their sugar content. Colletotrichum gloeosporioides showed enhanced colonization of the LowSC line with differential expression response of 15% of its genes including enhanced relative expression of glycosyl hydrolases, glucanase and MFS-transporter genes. Enhanced colonization of P. expansum occurred in the HighSC line, accompanied by an increase in carbohydrate metabolic processes mainly phosphoenolpyruvate carboxykinase, and only 4% of differentially expressed genes. Gene response of the two host lines strongly differed depending on the sugar level. Limited colonization of HighSC line by C. gloeosporioides was accompanied by a marked alteration of gene expression compared the LowSC response to the same pathogen; while colonization by P. expansum resulted in a similar response of the two different hosts. We suggest that this differential pattern of fungal/host responses may be the basis for the differential of host range of both pathogens in nature.
Collapse
Affiliation(s)
- Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Dilip Kumar
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Maxim Itkin
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sergey Malitsky
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Arthur A Schaffer
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Dov B Prusky
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| |
Collapse
|
34
|
Wilson RA, Fernandez J, Rocha RO, Marroquin-Guzman M, Wright JD. Genetic evidence for Magnaporthe oryzae vitamin B3 acquisition from rice cells. MICROBIOLOGY-SGM 2020; 165:1198-1202. [PMID: 31517594 DOI: 10.1099/mic.0.000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Following penetration, the devastating rice blast fungus Magnaporthe oryzae, like some other important eukaryotic phytopathogens, grows in intimate contact with living plant cells before causing disease. Cell-to-cell growth during this biotrophic growth stage must involve nutrient acquisition, but experimental evidence for the internalization and metabolism of host-derived compounds is exceedingly sparse. This striking gap in our knowledge of the infection process undermines accurate conceptualization of the plant-fungal interaction. Here, through our general interest in Magnaporthe metabolism and with a specific focus on the signalling and redox cofactor nicotinamide adenine dinucleotide (NAD), we deleted the M. oryzae QPT1 gene encoding quinolinate phosphoribosyltransferase, catalyst of the last step in de novo NAD biosynthesis from tryptophan. We show how QPT1 is essential for axenic growth on minimal media lacking nicotinic acid (NA, an importable NAD precursor). However, Δqpt1 mutant strains were fully pathogenic, indicating de novo NAD biosynthesis is dispensable for lesion expansion following invasive hyphal growth in leaf tissue. Because overcoming the loss of de novo NAD biosynthesis in planta can only occur if importable NAD precursors (which solely comprise the NA, nicotinamide and nicotinamide riboside forms of vitamin B3) are accessible, we unexpectedly but unequivocally demonstrate that vitamin B3 can be acquired from the host and assimilated into Magnaporthe metabolism during growth in rice cells. Our results furnish a rare, experimentally determined example of host nutrient acquisition by a fungal plant pathogen and are significant in expanding our knowledge of events at the plant-fungus metabolic interface.
Collapse
Affiliation(s)
- Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jessie Fernandez
- Present address: University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Raquel O Rocha
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Janet D Wright
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
35
|
Horta MAC, Thieme N, Gao Y, Burnum-Johnson KE, Nicora CD, Gritsenko MA, Lipton MS, Mohanraj K, de Assis LJ, Lin L, Tian C, Braus GH, Borkovich KA, Schmoll M, Larrondo LF, Samal A, Goldman GH, Benz JP. Broad Substrate-Specific Phosphorylation Events Are Associated With the Initial Stage of Plant Cell Wall Recognition in Neurospora crassa. Front Microbiol 2019; 10:2317. [PMID: 31736884 PMCID: PMC6838226 DOI: 10.3389/fmicb.2019.02317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal plant cell wall degradation processes are governed by complex regulatory mechanisms, allowing the organisms to adapt their metabolic program with high specificity to the available substrates. While the uptake of representative plant cell wall mono- and disaccharides is known to induce specific transcriptional and translational responses, the processes related to early signal reception and transduction remain largely unknown. A fast and reversible way of signal transmission are post-translational protein modifications, such as phosphorylations, which could initiate rapid adaptations of the fungal metabolism to a new condition. To elucidate how changes in the initial substrate recognition phase of Neurospora crassa affect the global phosphorylation pattern, phospho-proteomics was performed after a short (2 min) induction period with several plant cell wall-related mono- and disaccharides. The MS/MS-based peptide analysis revealed large-scale substrate-specific protein phosphorylation and de-phosphorylations. Using the proteins identified by MS/MS, a protein-protein-interaction (PPI) network was constructed. The variance in phosphorylation of a large number of kinases, phosphatases and transcription factors indicate the participation of many known signaling pathways, including circadian responses, two-component regulatory systems, MAP kinases as well as the cAMP-dependent and heterotrimeric G-protein pathways. Adenylate cyclase, a key component of the cAMP pathway, was identified as a potential hub for carbon source-specific differential protein interactions. In addition, four phosphorylated F-Box proteins were identified, two of which, Fbx-19 and Fbx-22, were found to be involved in carbon catabolite repression responses. Overall, these results provide unprecedented and detailed insights into a so far less well known stage of the fungal response to environmental cues and allow to better elucidate the molecular mechanisms of sensory perception and signal transduction during plant cell wall degradation.
Collapse
Affiliation(s)
- Maria Augusta C. Horta
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Nils Thieme
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Marina A. Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Mary S. Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Karthikeyan Mohanraj
- The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai, India
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Liangcai Lin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chaoguang Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Katherine A. Borkovich
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Monika Schmoll
- AIT - Austrian Institute of Technology GmbH, Center for Health & Bioresources, Tulln, Austria
| | - Luis F. Larrondo
- Millennium Institute for Integrative Biology (iBio), Departamento Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai, India
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - J. Philipp Benz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
36
|
Rodríguez-Mendoza J, Santiago-Hernández A, Alvarez-Zúñiga MT, Gutiérrez-Antón M, Aguilar-Osorio G, Hidalgo-Lara ME. Purification and biochemical characterization of a novel thermophilic exo-β-1,3-glucanase from the thermophile biomass-degrading fungus Thielavia terrestris Co3Bag1. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
37
|
Yan Y, Wang H, Zhu S, Wang J, Liu X, Lin F, Lu J. The Methylcitrate Cycle is Required for Development and Virulence in the Rice Blast Fungus Pyricularia oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1148-1161. [PMID: 30933666 DOI: 10.1094/mpmi-10-18-0292-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The methylcitrate cycle metabolizes propionyl-CoA, a toxic metabolite, into pyruvate. Pyricularia oryzae (syn. Magnaporthe oryzae) is a phytopathogenic fungus that causes a destructive blast disease in rice and wheat. We characterized the essential roles of the methylcitrate cycle in the development and virulence of P. oryzae using functional genomics. In P. oryzae, the transcript levels of MCS1 and MCL1, which encode a 2-methylcitrate synthase and a 2-methylisocitrate lyase, respectively, were upregulated during appressorium formation and when grown on propionyl-CoA-producing carbon sources. We found that deletion of MCS1 and MCL1 inhibited fungal growth on media containing both glucose and propionate, and media using propionate or propionyl-CoA-producing amino acids (valine, isoleucine, methionine, and threonine) as the sole carbon or nitrogen sources. The Δmcs1 mutant formed sparse aerial hyphae and did not produce conidia on complete medium (CM), while the Δmcl1 mutant showed decreased conidiation. The aerial mycelium of Δmcs1 displayed a lowered NAD+/NADH ratio, reduced nitric oxide content, and downregulated transcription of hydrophobin genes. Δmcl1 showed reduced appressorium turgor, severely delayed plant penetration, and weakened virulence. Addition of acetate recovered the growth of the wild type and Δmcs1 on medium containing both glucose and propionate and recovered the conidiation of both Δmcs1 and Δmcl1 on CM by reducing propionyl-CoA formation. Deletion of MCL1 together with ICL1, an isocitrate lyase gene in the glyoxylate cycle, greatly reduced the mutant's virulence as compared with the single-gene deletion mutants (Δicl1 and Δmcl1). This experimental evidence provides important information about the role of the methylcitrate cycle in development and virulence of P. oryzae by detoxification of propionyl-CoA and 2-methylisocitrate.
Collapse
Affiliation(s)
- Yuxin Yan
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Huan Wang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Siyi Zhu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
38
|
Liu C, Chen F, Zhang J, Liu L, Lei H, Li H, Wang Y, Liao YC, Tang H. Metabolic Changes of Fusarium graminearum Induced by TPS Gene Deletion. J Proteome Res 2019; 18:3317-3327. [PMID: 31241341 DOI: 10.1021/acs.jproteome.9b00259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fusarium head blight (FHB) mainly resulting from Fusarium graminearum (Fg) Schwabe is a notorious wheat disease causing huge losses in wheat production globally. Fg also produces mycotoxins, which are harmful to human and domestic animals. In our previous study, we obtained two Fg mutants, TPS1- and TPS2-, respectively, with a single deletion of trehalose 6-phosphate synthase (TPS1) and trehalose 6-phosphate phosphatase (TPS2) compared with the wild type (WT). Both mutants were unable to synthesize trehalose and produced fewer mycotoxins. To understand the other biochemical changes induced by TPS gene deletion in Fg, we comprehensively analyzed the metabolomic differences between TPS- mutants and the WT using NMR together with gas chromatography-flame ionization detection/mass spectrometry. The expression of some relevant genes was also quantified. The results showed that TPS1- and TPS2- mutants shared some common metabolic feature such as decreased levels for trehalose, Val, Thr, Lys, Asp, His, Trp, malonate, citrate, uridine, guanosine, inosine, AMP, C10:0, and C16:1 compared with the WT. Both mutants also shared some common expressional patterns for most of the relevant genes. This suggests that apart from the reduced trehalose biosynthesis, both TPS1 and TPS2 have roles in inhibiting glycolysis and the tricarboxylic acid cycle but promoting the phosphopentose pathway and nucleotide synthesis; the depletion of either TPS gene reduces the acetyl-CoA-mediated mycotoxin biosynthesis. TPS2- mutants produced more fatty acids than TPS1- mutants, suggesting different roles for TPS1 and TPS2, with TPS2- mutants having impaired trehalose biosynthesis and trehalose 6-phosphate accumulation. This may offer opportunities for developing new fungicides targeting trehalose biosynthesis in Fg for FHB control and mycotoxin reduction in the FHB-affected cereals.
Collapse
Affiliation(s)
- Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China
| | - Fangfang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences , Hubei University , Wuhan 430062 , P. R. China.,Molecular Biotechnology Laboratory of Triticeae Crops, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Jingtao Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China
| | - Laixing Liu
- School of Management , Wuhan Institute of Technology , Wuhan 430205 , P. R. China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China
| | - Heping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China.,Singapore Phenome Centre, Lee Kong Chian School of Medicine, School of Biological Sciences , Nanyang Technological University , Nanyang , Singapore
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China.,State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Metabolomics and Systems Biology Laboratory in Human Phenome Institute, Collaborative Innovation Center for Genetics and Development , Fudan University , Shanghai 200433 , P. R. China
| |
Collapse
|
39
|
The GATA-Type Transcriptional Factor Are1 Modulates the Expression of Extracellular Proteases and Cellulases in Trichoderma reesei. Int J Mol Sci 2019; 20:ijms20174100. [PMID: 31443450 PMCID: PMC6747117 DOI: 10.3390/ijms20174100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/20/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023] Open
Abstract
Trichoderma reesei is a biotechnologically important filamentous fungus with the remarkable ability to secrete large amounts of enzymes, whose production is strongly affected by both the carbon and nitrogen sources. While the carbon metabolism regulators are extensively studied, the regulation of enzyme production by the nitrogen metabolism regulators is still poorly understood. In this study, the GATA transcription factor Are1, which is an orthologue of the Aspergillus global nitrogen regulator AREA, was identified and characterized for its functions in regulation of both protease and cellulase production in T. reesei. Deletion of the are1 gene abolished the capability to secrete proteases, and complementation of the are1 gene rescued the ability to produce proteases. Quantitative RT-PCR analysis revealed that the transcripts of protease genes apw1 and apw2 were also significantly reduced in the Δare1 strain when grown in the medium with peptone as the nitrogen source. In addition, deletion of are1 resulted in decreased cellulase production in the presence of (NH4)2SO4. Consistent with the reduction of cellulase production, the transcription levels of the major cellulase genes, including cbh1, cbh2, egl1, and egl2, were dramatically decreased in Δare1. Sequence analysis showed that all promoter regions of the tested protease and cellulase genes contain the consensus GATA elements. However, the expression levels of the major cellulase transcription activator Xyr1 and the repressor Cre1 had no significant difference between Δare1 and the parental strain QM9414, indicating that the regulatory mechanism deserves further investigation. Taken together, these results demonstrate the important role of Are1 in the regulation of protease and cellulase production in T. reesei, although these processes depend on the kind of nitrogen sources. The findings in this study contribute to the understanding of the regulation network of carbon and nitrogen sources in filamentous fungi.
Collapse
|
40
|
Simaan H, Shalaby S, Hatoel M, Karinski O, Goldshmidt-Tran O, Horwitz BA. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic. Curr Genet 2019; 66:187-203. [PMID: 31312934 DOI: 10.1007/s00294-019-01012-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023]
Abstract
Fungal pathogens need to contend with stresses including oxidants and antimicrobial chemicals resulting from host defenses. ChAP1 of Cochliobolus heterostrophus, agent of Southern corn leaf blight, encodes an ortholog of yeast YAP1. ChAP1 is retained in the nucleus in response to plant-derived phenolic acids, in addition to its well-studied activation by oxidants. Here, we used transcriptome profiling to ask which genes are regulated in response to ChAP1 activation by ferulic acid (FA), a phenolic abundant in the maize host. Nuclearization of ChAP1 in response to phenolics is not followed by strong expression of genes needed for oxidative stress tolerance. We, therefore, compared the transcriptomes of the wild-type pathogen and a ChAP1 deletion mutant, to study the function of ChAP1 in response to FA. We hypothesized that if ChAP1 is retained in the nucleus under plant-related stress conditions yet in the absence of obvious oxidant stress, it should have additional regulatory functions. The transcriptional signature in response to FA in the wild type compared to the mutant sheds light on the signaling mechanisms and response pathways by which ChAP1 can mediate tolerance to ferulic acid, distinct from its previously known role in the antioxidant response. The ChAP1-dependent FA regulon consists mainly of two large clusters. The enrichment of transport and metabolism-related genes in cluster 1 indicates that C. heterostrophus degrades FA and removes it from the cell. When this fails at increasing stress levels, FA provides a signal for cell death, indicated by the enrichment of cell death-related genes in cluster 2. By quantitation of survival and by TUNEL assays, we show that ChAP1 promotes survival and mitigates cell death. Growth rate data show a time window in which the mutant colony expands faster than the wild type. The results delineate a transcriptional regulatory pattern in which ChAP1 helps balance a survival response for tolerance to FA, against a pathway promoting cell death in the pathogen. A general model for the transition from a phase where the return to homeostasis dominates to a phase leading to the onset of cell death provides a context for understanding these findings.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Samer Shalaby
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.,Rockefeller University, New York, NY, 10065, USA
| | - Maor Hatoel
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Olga Karinski
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Orit Goldshmidt-Tran
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Benjamin A Horwitz
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
41
|
Louw JP, Korsten L. Impact of Postharvest Storage on the Infection and Colonization of Penicillium digitatum and Penicillium expansum on Nectarine. PLANT DISEASE 2019; 103:1584-1594. [PMID: 31025905 DOI: 10.1094/pdis-08-18-1475-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Very few studies have investigated the host-pathogen interaction of Penicillium spp. on nectarine. Penicillium digitatum was identified as pathogenic and highly aggressive on nectarine. A strong association was made with host age/ripeness. This points to a new mechanism or life strategy used by P. digitatum to infect and colonize previously thought nonhosts. The aim of this study was to determine the effect of postharvest storage of nectarine on the infection and colonization of P. digitatum and Penicillium expansum at molecular and physical (firmness and pH) levels. The impact of environmental conditions (cold storage) and pathogen pressure (inoculum load) was also investigated. Although disease incidence was much lower, lesions caused by P. digitatum were similar in size to those caused by P. expansum on freshly harvested nectarine. Disease incidence and lesion diameter significantly increased (larger than P. expansum) on longer stored fruit. Cold storage had the largest effect on P. digitatum. Inoculum load had a meaningful effect on both Penicillium spp. Storage significantly affected pH modulation and gene expression. The pathogens not only decreased but also, increased and maintained (similar to initial pH of the host) pH of infected tissue. The polygalacturonase (PG) gene and creA were upregulated by P. digitatum on 7-day postharvest fruit (other genes were unaffected). It partly explains the larger lesions on older or riper fruit. A different expression profile was observed from P. expansum: strong downregulation in PG and slight upregulation in pacC. Very different life strategies were used by the two Penicillium spp. when infecting nectarine. Unlike what is known on citrus, P. digitatum showed an opportunistic lifestyle that takes advantage of specific host and environmental conditions. It is largely still unclear (gene expression) what specifically triggers the increase in disease incidence (infection) and lesion diameter (colonization) of P. digitatum on older or riper fruit. The differences between in vivo and in vitro studies make it difficult to directly correlate results. Additional research is still needed to differentiate and understand the infection and colonization of these pathogens on the same host.
Collapse
Affiliation(s)
- Johannes Petrus Louw
- 1 Department of Plant and Soil Sciences, University of Pretoria, Hillcrest 0083, South Africa
- 2 University of Pretoria, Pretoria 0028, South Africa
| | - Lise Korsten
- 1 Department of Plant and Soil Sciences, University of Pretoria, Hillcrest 0083, South Africa
- 2 University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
42
|
Wang Y, Wu Q, Liu L, Li X, Lin A, Li C. MoMCP1, a Cytochrome P450 Gene, Is Required for Alleviating Manganese Toxin Revealed by Transcriptomics Analysis in Magnaporthe oryzae. Int J Mol Sci 2019; 20:ijms20071590. [PMID: 30934953 PMCID: PMC6480321 DOI: 10.3390/ijms20071590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/24/2022] Open
Abstract
Manganese, as an essential trace element, participates in many physiological reactions by regulating Mn associated enzymes. Magnaporthe oryzae is a serious pathogen and causes destructive losses for rice production. We identified a cytochrome P450 gene, MoMCP1, involving the alleviation of manganese toxin and pathogenicity. To identify the underlying mechanisms, transcriptomics were performed. The results indicated that many pathogenicity related genes were regulated, especially hydrophobin related genes in ∆Momcp1. Furthermore, the Mn2+ toxicity decreased the expressions of genes involved in the oxidative phosphorylation and energy production, and increased the reactive oxygen species (ROS) levels, which might impair the functions of mitochondrion and vacuole, compromising the pathogenicity and development in ∆Momcp1. Additionally, our results provided further information about Mn associated the gene network for Mn metabolism in cells.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Lina Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Xiaoling Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650223, China.
| | - Aijia Lin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
43
|
Tannous J, Kumar D, Sela N, Sionov E, Prusky D, Keller NP. Fungal attack and host defence pathways unveiled in near-avirulent interactions of Penicillium expansum creA mutants on apples. MOLECULAR PLANT PATHOLOGY 2018; 19:2635-2650. [PMID: 30047230 PMCID: PMC6638163 DOI: 10.1111/mpp.12734] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Amongst the universal diseases affecting apples, blue mould caused by Penicillium expansum is a major concern, resulting in yield and quality losses as a result of the production of the mycotoxin patulin. Despite the characterization of the patulin biosynthetic gene cluster at both the molecular and chemical levels, the underlying regulation of patulin biosynthesis in P. expansum and the mechanisms of apple colonization remain largely obscure. Recent work has indicated that sucrose, a carbon catabolite repressive metabolite, is a critical factor in the regulation of patulin synthesis. Here, CreA, the global carbon catabolite regulator, was assessed for virulence both in vitro and in vivo. We showed that loss-of-function creA strains were nearly avirulent and did not produce patulin in apples. On the basis of RNA-sequencing (RNA-seq) analysis and physiological experimentation, these mutants were unable to successfully colonize apples for a multitude of potential mechanisms including, on the pathogen side, a decreased ability to produce proteolytic enzymes and to acidify the environment and impaired carbon/nitrogen metabolism and, on the host side, an increase in the oxidative defence pathways. Our study defines CreA and its downstream signalling pathways as promising targets for the development of strategies to fight against the development and virulence of this post-harvest pathogen.
Collapse
Affiliation(s)
- Joanna Tannous
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin – MadisonMadison 53706WIUSA
| | - Dilip Kumar
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Noa Sela
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Edward Sionov
- Department of Food StorageAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Dov Prusky
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
- College of Food Science and EngineeringGansu Agricultural UniversityYinmencun 1Anning District, Lanzhou730070China
| | - Nancy P. Keller
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin – MadisonMadison 53706WIUSA
- Department of BacteriologyUniversity of Wisconsin – MadisonMadison 53706WIUSA
| |
Collapse
|
44
|
Sun G, Elowsky C, Li G, Wilson RA. TOR-autophagy branch signaling via Imp1 dictates plant-microbe biotrophic interface longevity. PLoS Genet 2018; 14:e1007814. [PMID: 30462633 PMCID: PMC6281275 DOI: 10.1371/journal.pgen.1007814] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/05/2018] [Accepted: 11/06/2018] [Indexed: 01/07/2023] Open
Abstract
Like other intracellular eukaryotic phytopathogens, the devastating rice blast fungus Magnaporthe (Pyricularia) oryzae first infects living host cells by elaborating invasive hyphae (IH) surrounded by a plant-derived membrane. This forms an extended biotrophic interface enclosing an apoplastic compartment into which fungal effectors can be deployed to evade host detection. M. oryzae also forms a focal, plant membrane-rich structure, the biotrophic interfacial complex (BIC), that accumulates cytoplasmic effectors for translocation into host cells. Molecular decision-making processes integrating fungal growth and metabolism in host cells with interface function and dynamics are unknown. Here, we report unanticipated roles for the M. oryzae Target-of-Rapamycin (TOR) nutrient-signaling pathway in mediating plant-fungal biotrophic interface membrane integrity. Through a forward genetics screen for M. oryzae mutant strains resistant to the specific TOR kinase inhibitor rapamycin, we discovered IMP1 encoding a novel vacuolar protein required for membrane trafficking, V-ATPase assembly, organelle acidification and autophagy induction. During infection, Δimp1 deletants developed intracellular IH in the first infected rice cell following cuticle penetration. However, fluorescently labeled effector probes revealed that interface membrane integrity became compromised as biotrophy progressed, abolishing the BIC and releasing apoplastic effectors into host cytoplasm. Growth between rice cells was restricted. TOR-independent autophagy activation in Δimp1 deletants (following infection) remediated interface function and cell-to-cell growth. Autophagy inhibition in wild type (following infection) recapitulated Δimp1. In addition to vacuoles, Imp1GFP localized to IH membranes in an autophagy-dependent manner. Collectively, our results suggest TOR-Imp1-autophagy branch signaling mediates membrane homeostasis to prevent catastrophic erosion of the biotrophic interface, thus facilitating fungal growth in living rice cells. The significance of this work lays in elaborating a novel molecular mechanism of infection stressing the dominance of fungal metabolism and metabolic control in sustaining long-term plant-microbe interactions. This work also has implications for understanding the enigmatic biotrophy to necrotrophy transition. Plant-associated fungi can form intimate connections with living host cells. Clarifying the molecular drivers of these interactions, and which partner is dominant, might be important in understanding how beneficial plant-fungal relationships can be enhanced to improve crop yields while pathogenic interactions that threaten crop health are disrupted. In common with other symbionts and phytopathogens, the devastating rice blast fungus Magnaporthe oryzae elaborates invasive hyphae in living host cells surrounded by plant-derived membranes. Nothing is known at the molecular signaling level about how such plant-microbe biotrophic interfacial zones are maintained as the fungus grows in and between host cells. Here, we report that fungal membrane trafficking processes controlled by nutrient signaling pathways are critical for maintaining biotrophic interface integrity during M. oryzae growth in rice cells. Impairing these processes resulted in erosion of the plant-microbe interface and failure of the fungus to thrive. To our knowledge, this work presents the first evidence indicating that the fungal partner is dominant in propagating the plant-microbe boundary. This suggests that the biotrophic interface is a fungal construct and provides clues on how such interfaces might be modulated to benefit the host plant.
Collapse
Affiliation(s)
- Guangchao Sun
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Christian Elowsky
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Gang Li
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Richard A. Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
45
|
Marroquin-Guzman M, Krotz J, Appeah H, Wilson RA. Metabolic constraints on Magnaporthe biotrophy: loss of de novo asparagine biosynthesis aborts invasive hyphal growth in the first infected rice cell. MICROBIOLOGY (READING, ENGLAND) 2018; 164:1541-1546. [PMID: 30351267 DOI: 10.1099/mic.0.000713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The blast fungus Magnaporthe oryzae devastates global rice yields and is an emerging threat to wheat. Determining the metabolic strategies underlying M. oryzae growth in host cells could lead to the development of new plant protection approaches against blast. Here, we targeted asparagine synthetase (encoded by ASN1), which is required for the terminal step in asparagine production from aspartate and glutamine, the sole pathway to de novo asparagine biosynthesis in M. oryzae. Consequently, the Δasn1 mutant strains could not grow on minimal media without asparagine supplementation. Spores harvested from supplemented plates could form appressoria and penetrate rice leaf surfaces, but biotrophic growth was aborted and the Δasn1 strains were nonpathogenic. This work provides strong genetic evidence that de novo asparagine biosynthesis, and not acquisition from the host, is a critical and potentially exploitable metabolic strategy employed by M. oryzae in order to successfully colonize rice cells.
Collapse
Affiliation(s)
| | - Juliana Krotz
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Harriet Appeah
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
46
|
Cao H, Huang P, Yan Y, Shi Y, Dong B, Liu X, Ye L, Lin F, Lu J. The basic helix-loop-helix transcription factor Crf1 is required for development and pathogenicity of the rice blast fungus by regulating carbohydrate and lipid metabolism. Environ Microbiol 2018; 20:3427-3441. [PMID: 30126031 DOI: 10.1111/1462-2920.14387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 08/12/2018] [Accepted: 08/12/2018] [Indexed: 01/22/2023]
Abstract
Pyricularia oryzae is a plant pathogen causing rice blast, a serious disease spreading in cultivated rice globally. Transcription factors play important regulatory roles in fungal development and pathogenicity. Here, we characterized the biological functions of Crf1, a basic helix-loop-helix (bHLH) transcription factor, in the development and pathogenicity of P. oryzae with functional genetics, molecular and biochemical approaches. We found that CRF1 is necessary for virulence and plays an indispensable role in the regulation of carbohydrate and lipid metabolism in P. oryzae. Deletion of CRF1 led to defects in utilization of lipids, ethanol, glycerol and L-arabinose, and down-regulation of many important genes in lipolysis, β-oxidation, gluconeogenesis, as well as glycerol and arabinose metabolism. CRF1 is also essential for peroxisome and vacuole function, and conidial cell death during appressorium formation. The appressorium turgor, penetration ability and virulence in Δcrf1 were restored by supplementation of exogenous glucose. The virulence of Crf1 mutant was also recovered by adding exogenous D-xylose, but not by addition of ethanol, pyruvate, leucine or L-arabinose. These data showed that Crf1 plays an important role in the complex regulatory network of carbohydrate and lipid metabolism that governs fungal development and pathogenicity.
Collapse
Affiliation(s)
- Huijuan Cao
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Pengyun Huang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yuxin Yan
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yongkai Shi
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang Province, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| |
Collapse
|
47
|
The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism. G3-GENES GENOMES GENETICS 2018; 8:2445-2463. [PMID: 29794164 PMCID: PMC6027865 DOI: 10.1534/g3.118.200411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus Aspergillus nidulans, in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications.
Collapse
|
48
|
Regulation of Aspergillus nidulans CreA-Mediated Catabolite Repression by the F-Box Proteins Fbx23 and Fbx47. mBio 2018; 9:mBio.00840-18. [PMID: 29921666 PMCID: PMC6016232 DOI: 10.1128/mbio.00840-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The attachment of one or more ubiquitin molecules by SCF (Skp-Cullin-F-box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungus Aspergillus nidulans, CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δfbx23 mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications.IMPORTANCE The production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally thrive on decaying plant matter, are of particular interest for this process due to their ability to secrete enzymes required for the deconstruction of lignocellulosic material. A major drawback in fungal hydrolytic enzyme production is the repression of the corresponding genes in the presence of glucose, a process known as carbon catabolite repression (CCR). This report provides previously unknown mechanistic insights into CCR through elucidating part of the protein-protein interaction regulatory system that governs the CreA transcriptional regulator in the reference organism Aspergillus nidulans in the presence of glucose and the biotechnologically relevant plant polysaccharide xylan.
Collapse
|
49
|
Pham J, Stam R, Heredia VM, Csukai M, Huitema E. An NMRA-Like Protein Regulates Gene Expression in Phytophthora capsici to Drive the Infection Cycle on Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:665-677. [PMID: 29419371 DOI: 10.1094/mpmi-07-17-0193-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phytophthora spp. cause devastating disease epidemics on important crop plants and pose a grave threat to global crop production. Critically, Phytophthora pathogens represent a distinct evolutionary lineage in which pathogenicity has been acquired independently. Therefore, there is an urgent need to understand and disrupt the processes that drive infection if we aspire to defeat oomycete pathogens in the field. One area that has received little attention thus far in this respect is the regulation of Phytophthora gene expression during infection. Here, we characterize PcNMRAL1 (Phyca11_505845), a homolog of the Aspergillus nidulans nitrogen metabolite repression regulator NMRA and demonstrate a role for this protein in progression of the Phytophthora capsici infection cycle. PcNmrAL1 is coexpressed with the biotrophic marker gene PcHmp1 (haustorial membrane protein 1) and, when overexpressed, extends the biotrophic infection stage. Microarray analyses revealed that PcNmrAL1 overexpression in P. capsici leads to large-scale transcriptional changes during infection and in vitro. Importantly, detailed analysis reveals that PcNmrAL1 overexpression induces biotrophy-associated genes while repressing those associated with necrotrophy. In addition to factors controlling transcription, translation, and nitrogen metabolism, PcNMRAL1 helps regulate the expression of a considerable effector repertoire in P. capsici. Our data suggests that PcNMRAL1 is a transcriptional regulator that mediates the biotrophy to necrotrophy transition. PcNMRAL1 represents a novel factor that may drive the Phytophthora disease cycle on crops. This study provides the first insight into mechanisms that regulate infection-related processes in Phytophthora spp. and provides a platform for further studies aimed at disabling pathogenesis and preventing crop losses.
Collapse
Affiliation(s)
- Jasmine Pham
- 1 Division of Plant Sciences, University of Dundee, Dundee DD2 5DA, U.K
- 2 Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Remco Stam
- 3 School for Life Sciences, Weihenstephan Technische Universität München, Freising, Germany; and
| | | | - Michael Csukai
- 4 Syngenta, Jealott's Hill International Research Centre, Bracknell, U.K
| | - Edgar Huitema
- 1 Division of Plant Sciences, University of Dundee, Dundee DD2 5DA, U.K
- 2 Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| |
Collapse
|
50
|
Mohd-Assaad N, McDonald BA, Croll D. Genome-Wide Detection of Genes Under Positive Selection in Worldwide Populations of the Barley Scald Pathogen. Genome Biol Evol 2018; 10:1315-1332. [PMID: 29722810 PMCID: PMC5972619 DOI: 10.1093/gbe/evy087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/29/2022] Open
Abstract
Coevolution between hosts and pathogens generates strong selection pressures to maintain resistance and infectivity, respectively. Genomes of plant pathogens often encode major effect loci for the ability to successfully infect specific host genotypes. Hence, spatial heterogeneity in host genotypes coupled with abiotic factors could lead to locally adapted pathogen populations. However, the genetic basis of local adaptation is poorly understood. Rhynchosporium commune, the pathogen causing barley scald disease, interacts at least partially in a gene-for-gene manner with its host. We analyzed global field populations of 125 R. commune isolates to identify candidate genes for local adaptation. Whole genome sequencing data showed that the pathogen is subdivided into three genetic clusters associated with distinct geographic and climatic regions. Using haplotype-based selection scans applied independently to each genetic cluster, we found strong evidence for selective sweeps throughout the genome. Comparisons of loci under selection among clusters revealed little overlap, suggesting that ecological differences associated with each cluster led to variable selection regimes. The strongest signals of selection were found predominantly in the two clusters composed of isolates from Central Europe and Ethiopia. The strongest selective sweep regions encoded protein functions related to biotic and abiotic stress responses. Selective sweep regions were enriched in genes encoding functions in cellular localization, protein transport activity, and DNA damage responses. In contrast to the prevailing view that a small number of gene-for-gene interactions govern plant pathogen evolution, our analyses suggest that the evolutionary trajectory is largely determined by spatially heterogeneous biotic and abiotic selection pressures.
Collapse
Affiliation(s)
- Norfarhan Mohd-Assaad
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Switzerland
| |
Collapse
|