1
|
Dicer promotes genome stability via the bromodomain transcriptional co-activator BRD4. Nat Commun 2022; 13:1001. [PMID: 35194019 PMCID: PMC8863982 DOI: 10.1038/s41467-022-28554-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
RNA interference is required for post-transcriptional silencing, but also has additional roles in transcriptional silencing of centromeres and genome stability. However, these roles have been controversial in mammals. Strikingly, we found that Dicer-deficient embryonic stem cells have strong proliferation and chromosome segregation defects as well as increased transcription of centromeric satellite repeats, which triggers the interferon response. We conducted a CRISPR-Cas9 genetic screen to restore viability and identified transcriptional activators, histone H3K9 methyltransferases, and chromosome segregation factors as suppressors, resembling Dicer suppressors identified in independent screens in fission yeast. The strongest suppressors were mutations in the transcriptional co-activator Brd4, which reversed the strand-specific transcription of major satellite repeats suppressing the interferon response, and in the histone acetyltransferase Elp3. We show that identical mutations in the second bromodomain of Brd4 rescue Dicer-dependent silencing and chromosome segregation defects in both mammalian cells and fission yeast. This remarkable conservation demonstrates that RNA interference has an ancient role in transcriptional silencing and in particular of satellite repeats, which is essential for cell cycle progression and proper chromosome segregation. Our results have pharmacological implications for cancer and autoimmune diseases characterized by unregulated transcription of satellite repeats. While RNA interference is conserved across species, small RNA pathways are very diverse. In this study, Gutbrod et al. find that non-canonical roles of Dicer in genome stability are in fact deeply conserved from yeast to humans.
Collapse
|
2
|
Samra N, Toubiana S, Yttervik H, Tzur-Gilat A, Morani I, Itzkovich C, Giladi L, Abu Jabal K, Cao JZ, Godley LA, Mory A, Baris Feldman H, Tveten K, Selig S, Weiss K. RBL2 bi-allelic truncating variants cause severe motor and cognitive impairment without evidence for abnormalities in DNA methylation or telomeric function. J Hum Genet 2021; 66:1101-1112. [PMID: 33980986 DOI: 10.1038/s10038-021-00931-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/01/2023]
Abstract
RBL2/p130, a member of the retinoblastoma family of proteins, is a key regulator of cell division and propagates irreversible senescence. RBL2/p130 is also involved in neuronal differentiation and survival, and eliminating Rbl2 in certain mouse strains leads to embryonic lethality accompanied by an abnormal central nervous system (CNS) phenotype. Conflicting reports exist regarding a role of RBL2/p130 in transcriptional regulation of DNA methyltransferases (DNMTs), as well as the control of telomere length. Here we describe the phenotype of three patients carrying bi-allelic RBL2-truncating variants. All presented with infantile hypotonia, severe developmental delay and microcephaly. Malignancies were not reported in carriers or patients. Previous studies carried out on mice and human cultured cells, associated RBL2 loss to DNA methylation and telomere length dysregulation. Here, we investigated whether patient cells lacking RBL2 display related abnormalities. The study of primary patient fibroblasts did not detect abnormalities in expression of DNMTs. Furthermore, methylation levels of whole genome DNA, and specifically of pericentromeric repeats and subtelomeric regions, were unperturbed. RBL2-null fibroblasts show no evidence for abnormal elongation by telomeric recombination. Finally, gradual telomere shortening, and normal onset of senescence were observed following continuous culturing of RBL2-mutated fibroblasts. Thus, this study resolves uncertainties regarding a potential non-redundant role for RBL2 in DNA methylation and telomere length regulation, and indicates that loss of function variants in RBL2 cause a severe autosomal recessive neurodevelopmental disorder in humans.
Collapse
Affiliation(s)
- Nadra Samra
- Genetic Unit, Ziv Medical Center, Tzfat, Israel.,Faculty of Medicine, Bar Ilan University, Tzfat, Israel
| | - Shir Toubiana
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hilde Yttervik
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | - Aya Tzur-Gilat
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Chen Itzkovich
- The Clinical Research Institute at Rambam Health Care Campus, Haifa, Israel
| | - Liran Giladi
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - John Z Cao
- Section of Hematology Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Lucy A Godley
- Section of Hematology Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Sara Selig
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. .,Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa, Israel.
| | - Karin Weiss
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Tao J, Xia L, Cai Z, Liang L, Chen Y, Meng J, Wang Z. Interaction Between microRNA and DNA Methylation in Atherosclerosis. DNA Cell Biol 2020; 40:101-115. [PMID: 33259723 DOI: 10.1089/dna.2020.6138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease accompanied by complex pathological changes, such as endothelial dysfunction, foam cell formation, and vascular smooth muscle cell proliferation. Many approaches, including regulating AS-related gene expression in the transcriptional or post-transcriptional level, contribute to alleviating AS development. The DNA methylation is a crucial epigenetic modification in regulating cell function by silencing the relative gene expression. The microRNA (miRNA) is a type of noncoding RNA that plays an important role in gene post-transcriptional regulation and disease development. The DNA methylation and the miRNA are important epigenetic factors in AS. However, recent studies have found a mutual regulation between these two factors in AS development. In this study, recent insights into the roles of miRNA and DNA methylation and their interaction in the AS progression are reviewed.
Collapse
Affiliation(s)
- Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Linzhen Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Zemin Cai
- Department of Pediatrics and The First Affiliated Hospital of University of South China, Hengyang, China
| | - Lingli Liang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yanjun Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
4
|
Inhibition of a K9/K36 demethylase by an H3.3 point mutation found in paediatric glioblastoma. Nat Commun 2018; 9:3142. [PMID: 30087349 PMCID: PMC6081460 DOI: 10.1038/s41467-018-05607-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/17/2018] [Indexed: 12/17/2022] Open
Abstract
An array of oncogenic histone point mutations have been identified across a number of different cancer studies. It has been suggested that some of these mutant histones can exert their effects by inhibiting epigenetic writers. Here, we report that the H3.3 G34R (glycine to arginine) substitution mutation, found in paediatric gliomas, causes widespread changes in H3K9me3 and H3K36me3 by interfering with the KDM4 family of K9/K36 demethylases. Expression of a targeted single-copy of H3.3 G34R at endogenous levels induced chromatin alterations that were comparable to a KDM4 A/B/C triple-knockout. We find that H3.3 G34R preferentially binds KDM4 while simultaneously inhibiting its enzymatic activity, demonstrating that histone mutations can act through inhibition of epigenetic erasers. These results suggest that histone point mutations can exert their effects through interactions with a range of epigenetic readers, writers and erasers. Recent studies have identified a number of oncogenic histone point mutations in different cancers. Here the authors provide evidence that H3.3 G34R substitution mutation, which is found in paediatric gliomas, causes changes in H3K9me3 and H3K36me3 by interfering with the KDM4 family of K9/K36 demethylases.
Collapse
|
5
|
Stathopoulou A, Chhetri JB, Ambrose JC, Estève PO, Ji L, Erdjument-Bromage H, Zhang G, Neubert TA, Pradhan S, Herrero J, Schmitz RJ, Ooi SK. A novel requirement for DROSHA in maintenance of mammalian CG methylation. Nucleic Acids Res 2017; 45:9398-9412. [PMID: 28934503 PMCID: PMC5766157 DOI: 10.1093/nar/gkx695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022] Open
Abstract
In mammals, faithful inheritance of genomic methylation patterns ensures proper gene regulation and cell behaviour, impacting normal development and fertility. Following establishment, genomic methylation patterns are transmitted through S-phase by the maintenance methyltransferase Dnmt1. Using a protein interaction screen, we identify Microprocessor component DROSHA as a novel DNMT1-interactor. Drosha-deficient embryonic stem (ES) cells display genomic hypomethylation that is not accounted for by changes in the levels of DNMT proteins. DNMT1-mediated methyltransferase activity is also reduced in these cells. We identify two transcripts that are specifically upregulated in Drosha- but not Dicer-deficient ES cells. Regions within these transcripts predicted to form stem-loop structures are processed by Microprocessor and can inhibit DNMT1-mediated methylation in vitro. Our results highlight DROSHA as a novel regulator of mammalian DNA methylation and we propose that DROSHA-mediated processing of RNA is necessary to ensure full DNMT1 activity. This adds to the DROSHA repertoire of non-miRNA dependent functions as well as implicating RNA in regulating DNMT1 activity and correct levels of genomic methylation.
Collapse
Affiliation(s)
| | - Jyoti B. Chhetri
- Department of Cancer Biology, UCL Cancer Institute, London WC1E 6BT, UK
| | - John C. Ambrose
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6BT, UK
| | | | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, 120 East Green Street, Athens, GA 30602, USA
| | - Hediye Erdjument-Bromage
- Department of Biochemistry and Molecular Pharmacology, Skirball Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Guoqiang Zhang
- New England Biolabs, 240 Country Road, Ipswich, MA 01938, USA
| | - Thomas A. Neubert
- Department of Biochemistry and Molecular Pharmacology, Skirball Institute, NYU School of Medicine, New York, NY 10016, USA
| | | | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6BT, UK
| | - Robert J. Schmitz
- Institute of Bioinformatics, University of Georgia, 120 East Green Street, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA 30602, USA
| | - Steen K.T. Ooi
- Department of Cancer Biology, UCL Cancer Institute, London WC1E 6BT, UK
- To whom correspondence should be addressed. Tel: +44 2076 790717; Fax: +44 2076 796817;
| |
Collapse
|
6
|
Poole CJ, Zheng W, Lodh A, Yevtodiyenko A, Liefwalker D, Li H, Felsher DW, van Riggelen J. DNMT3B overexpression contributes to aberrant DNA methylation and MYC-driven tumor maintenance in T-ALL and Burkitt's lymphoma. Oncotarget 2017; 8:76898-76920. [PMID: 29100357 PMCID: PMC5652751 DOI: 10.18632/oncotarget.20176] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
Aberrant DNA methylation is a hallmark of cancer. However, our understanding of how tumor cell-specific DNA methylation patterns are established and maintained is limited. Here, we report that in T-cell acute lymphoblastic leukemia (T-ALL) and Burkitt's lymphoma the MYC oncogene causes overexpression of DNA methyltransferase (DNMT) 1 and 3B, which contributes to tumor maintenance. By utilizing a tetracycline-regulated MYC transgene in a mouse T-ALL (EμSRα-tTA;tet-o-MYC) and human Burkitt's lymphoma (P493-6) model, we demonstrated that DNMT1 and DNMT3B expression depend on high MYC levels, and that their transcription decreased upon MYC-inactivation. Chromatin immunoprecipitation indicated that MYC binds to the DNMT1 and DNMT3B promoters, implicating a direct transcriptional regulation. Hence, shRNA-mediated knock-down of endogenous MYC in human T-ALL and Burkitt's lymphoma cell lines downregulated DNMT3B expression. Knock-down and pharmacologic inhibition of DNMT3B in T-ALL reduced cell proliferation associated with genome-wide changes in DNA methylation, indicating a tumor promoter function during tumor maintenance. We provide novel evidence that MYC directly deregulates the expression of both de novo and maintenance DNMTs, showing that MYC controls DNA methylation in a genome-wide fashion. Our finding that a coordinated interplay between the components of the DNA methylating machinery contributes to MYC-driven tumor maintenance highlights the potential of specific DNMTs for targeted therapies.
Collapse
Affiliation(s)
- Candace J. Poole
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| | - Wenli Zheng
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| | - Atul Lodh
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| | - Aleksey Yevtodiyenko
- Stanford University School of Medicine, Division of Oncology, Departments of Medicine and Pathology, Stanford, CA 94305, USA
| | - Daniel Liefwalker
- Stanford University School of Medicine, Division of Oncology, Departments of Medicine and Pathology, Stanford, CA 94305, USA
| | - Honglin Li
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| | - Dean W. Felsher
- Stanford University School of Medicine, Division of Oncology, Departments of Medicine and Pathology, Stanford, CA 94305, USA
| | - Jan van Riggelen
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
8
|
Chen Y, Zhao J, Luo Y, Wang Y, Jiang Y. Downregulated expression of miRNA-149 promotes apoptosis in side population cells sorted from the TSU prostate cancer cell line. Oncol Rep 2016; 36:2587-2600. [PMID: 27573045 DOI: 10.3892/or.2016.5047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/30/2016] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to identify prostate cancer stem cells and determine the effects of modulating specific miRNAs on prostate CSC proliferation and apoptosis. We applied flow cytometry sorting of side population cells to cultures of prostate cancer cell lines (TSU, DU145, PC-3 and LNCaP). The proportion of SP cells in the TSU line was 1.60±0.40% (mean ± SD), while that of the DU145, PC-3 and LNCaP lines was 0.60±0.05, 0.80±0.05 and 0.60±0.20%, respectively. Because the proportion of SP cells derived from TSU cells is greater, these cells were selected to sort side population cells and non-side population cells. The stem-like properties of SP cells had been identified by in vivo and in vitro experiments, and the related study was published. RNA was extracted from the SP cells and non-SP cells and analyzed using miRNA microarray technology. Fifty-three miRNAs with significant differences in their expression were detected in total. Furthermore, 20 of these miRNAs were validated by qPCR. We found that hsa-miR‑149 expression in SP cells and non-SP cells was significantly different; hsa-miR-149 was significantly upregulated in SP cells. By constructing a vector for lentiviral infection, we found that the downregulation of hsa-miR-149 leads to a reduction in proliferation, an increase in apoptosis, and a significant reduction in the colony formation potential, thus, inhibiting tumor growth in vivo of SP cells from the TSU cell line. The present study will provide new avenues toward understanding the function of prostate cancer stem cells (PCSCs) in tumorigenicity and metastasis.
Collapse
Affiliation(s)
- Yatong Chen
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Jiahui Zhao
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yong Luo
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yongxing Wang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| |
Collapse
|
9
|
Graham B, Marcais A, Dharmalingam G, Carroll T, Kanellopoulou C, Graumann J, Nesterova TB, Bermange A, Brazauskas P, Xella B, Kriaucionis S, Higgs DR, Brockdorff N, Mann M, Fisher AG, Merkenschlager M. MicroRNAs of the miR-290-295 Family Maintain Bivalency in Mouse Embryonic Stem Cells. Stem Cell Reports 2016; 6:635-642. [PMID: 27150236 PMCID: PMC4939759 DOI: 10.1016/j.stemcr.2016.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 11/03/2022] Open
Abstract
Numerous developmentally regulated genes in mouse embryonic stem cells (ESCs) are marked by both active (H3K4me3)- and polycomb group (PcG)-mediated repressive (H3K27me3) histone modifications. This bivalent state is thought to be important for transcriptional poising, but the mechanisms that regulate bivalent genes and the bivalent state remain incompletely understood. Examining the contribution of microRNAs (miRNAs) to the regulation of bivalent genes, we found that the miRNA biogenesis enzyme DICER was required for the binding of the PRC2 core components EZH2 and SUZ12, and for the presence of the PRC2-mediated histone modification H3K27me3 at many bivalent genes. Genes that lost bivalency were preferentially upregulated at the mRNA and protein levels. Finally, reconstituting Dicer-deficient ESCs with ESC miRNAs restored bivalent gene repression and PRC2 binding at formerly bivalent genes. Therefore, miRNAs regulate bivalent genes and the bivalent state itself.
Collapse
Affiliation(s)
- Bryony Graham
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Antoine Marcais
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Gopuraja Dharmalingam
- Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Thomas Carroll
- Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Chryssa Kanellopoulou
- Laboratory of Immunology, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Johannes Graumann
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | | | - Anna Bermange
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Pijus Brazauskas
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Oxford OX3 7DQ, UK
| | - Barbara Xella
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Oxford OX3 7DQ, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
10
|
Ling KH, Brautigan PJ, Moore S, Fraser R, Cheah PS, Raison JM, Babic M, Lee YK, Daish T, Mattiske DM, Mann JR, Adelson DL, Thomas PQ, Hahn CN, Scott HS. Derivation of an endogenous small RNA from double-stranded Sox4 sense and natural antisense transcripts in the mouse brain. Genomics 2016; 107:88-99. [DOI: 10.1016/j.ygeno.2016.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/28/2022]
|
11
|
Zhang PY, Li G, Deng ZJ, Liu LY, Chen L, Tang JZ, Wang YQ, Cao ST, Fang YX, Wen F, Xu Y, Chen X, Shi KQ, Li WF, Xie C, Tang KF. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Res 2015; 44:3629-42. [PMID: 26704979 PMCID: PMC4856966 DOI: 10.1093/nar/gkv1504] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/10/2015] [Indexed: 01/14/2023] Open
Abstract
Dicer participates in heterochromatin formation in fission yeast and plants. However, whether it has a similar role in mammals remains controversial. Here we showed that the human Dicer protein interacts with SIRT7, an NAD+-dependent H3K18Ac (acetylated lysine 18 of histone H3) deacetylase, and holds a proportion of SIRT7 in the cytoplasm. Dicer knockdown led to an increase of chromatin-associated SIRT7 and simultaneously a decrease of cytoplasmic SIRT7, while its overexpression induced SIRT7 reduction in the chromatin-associated fraction and increment in the cytoplasm. Furthermore, DNA damaging agents promoted Dicer expression, leading to decreased level of chromatin-associated SIRT7 and increased level of H3K18Ac, which can be alleviated by Dicer knockdown. Taken together with that H3K18Ac was exclusively associated with the chromatin, our findings suggest that Dicer induction by DNA damaging treatments prevents H3K18Ac deacetylation, probably by trapping more SIRT7 in the cytoplasm.
Collapse
Affiliation(s)
- Pei-Ying Zhang
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Guiling Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Zhu-Jun Deng
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Li-Yuan Liu
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Li Chen
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Jun-Zhou Tang
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yu-Qun Wang
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Su-Ting Cao
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Yu-Xiao Fang
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Fuping Wen
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Yunsheng Xu
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Department of Dermato-Venereology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Xiaoming Chen
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Department of Pediatric Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Ke-Qing Shi
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Wen-Feng Li
- Department of Radiation Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Congying Xie
- Department of Radiation Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Kai-Fu Tang
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| |
Collapse
|
12
|
Ribeiro AO, Schoof CRG, Izzotti A, Pereira LV, Vasques LR. MicroRNAs: modulators of cell identity, and their applications in tissue engineering. Microrna 2015; 3:45-53. [PMID: 25069512 PMCID: PMC4262937 DOI: 10.2174/2211536603666140522003539] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023]
Abstract
MicroRNAs post-transcriptionally regulate the expression of approximately 60% of the mammalian genes, and have an important role in maintaining the differentiated state of somatic cells through the expression of unique tissue-specific microRNA sets. Likewise, the stemness of pluripotent cells is also sustained by embryonic stem cell-enriched microRNAs, which regulate genes involved in cell cycle, cell signaling and epigenetics, among others. Thus, microRNAs work as modulator molecules that ensure the appropriate expression profile of each cell type. Manipulation of microRNA expression might determine the cell fate. Indeed, microRNA-mediated reprogramming can change the differentiated status of somatic cells towards stemness or, conversely, microRNAs can also transform stem- into differentiated-cells both in vitro and in vivo. In this Review, we outline what is currently known in this field, focusing on the applications of microRNA in tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Luciana R Vasques
- Departamento de Genetica e Biologia Evolutiva, Universidade de Sao Paulo, Sao Paulo, Brazil. Rua do Matao, 277- 05508-090, Cidade Universitaria, Sao Paulo, SP, Brasil
| |
Collapse
|
13
|
Abstract
Embryonic and induced pluripotent stem cells (ESCs and iPSCs) hold great promise for regenerative medicine. The therapeutic application of these cells requires an understanding of the molecular networks that regulate pluripotency, differentiation, and de-differentiation. Along with signaling pathways, transcription factors, and epigenetic regulators, microRNAs (miRNAs) are emerging as important regulators in the establishment and maintenance of pluripotency. These tiny RNAs control proliferation, survival, the cell cycle, and the pluripotency program of ESCs. In addition, they serve as barriers or factors to overcome barriers during the reprogramming process. Systematic screening for novel miRNAs that regulate the establishment and maintenance of pluripotent stem cells and further mechanistic investigations will not only shed new light on the biology of ESCs and iPSCs, but also help develop safe and efficient technologies to manipulate cell fate for regenerative medicine.
Collapse
|
14
|
Ciaudo C, Jay F, Okamoto I, Chen CJ, Sarazin A, Servant N, Barillot E, Heard E, Voinnet O. RNAi-dependent and independent control of LINE1 accumulation and mobility in mouse embryonic stem cells. PLoS Genet 2013; 9:e1003791. [PMID: 24244175 PMCID: PMC3820764 DOI: 10.1371/journal.pgen.1003791] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/29/2013] [Indexed: 01/04/2023] Open
Abstract
In most mouse tissues, long-interspersed elements-1 (L1s) are silenced via methylation of their 5'-untranslated regions (5'-UTR). A gradual loss-of-methylation in pre-implantation embryos coincides with L1 retrotransposition in blastocysts, generating potentially harmful mutations. Here, we show that Dicer- and Ago2-dependent RNAi restricts L1 accumulation and retrotransposition in undifferentiated mouse embryonic stem cells (mESCs), derived from blastocysts. RNAi correlates with production of Dicer-dependent 22-nt small RNAs mapping to overlapping sense/antisense transcripts produced from the L1 5'-UTR. However, RNA-surveillance pathways simultaneously degrade these transcripts and, consequently, confound the anti-L1 RNAi response. In Dicer(-/-) mESC complementation experiments involving ectopic Dicer expression, L1 silencing was rescued in cells in which microRNAs remained strongly depleted. Furthermore, these cells proliferated and differentiated normally, unlike their non-complemented counterparts. These results shed new light on L1 biology, uncover defensive, in addition to regulatory roles for RNAi, and raise questions on the differentiation defects of Dicer(-/-) mESCs.
Collapse
Affiliation(s)
- Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Department of Biology, Chair of RNA biology, Zurich, Switzerland
- Institut Curie, CNRS UMR3215, Paris, France
| | - Florence Jay
- Swiss Federal Institute of Technology Zurich, Department of Biology, Chair of RNA biology, Zurich, Switzerland
- Life Science Zurich Graduate School, Plant Sciences program, University of Zurich, Zurich, Switzerland
| | | | - Chong-Jian Chen
- Institut Curie, CNRS UMR3215, Paris, France
- Institut Curie, Paris, France
| | - Alexis Sarazin
- Swiss Federal Institute of Technology Zurich, Department of Biology, Chair of RNA biology, Zurich, Switzerland
| | - Nicolas Servant
- Institut Curie, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Emmanuel Barillot
- Institut Curie, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Fontainebleau, France
| | | | - Olivier Voinnet
- Swiss Federal Institute of Technology Zurich, Department of Biology, Chair of RNA biology, Zurich, Switzerland
- Life Science Zurich Graduate School, Plant Sciences program, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J. The emerging role of microRNAs in the pathogenesis of systemic lupus erythematosus. Cell Signal 2013; 25:1828-36. [DOI: 10.1016/j.cellsig.2013.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/06/2013] [Indexed: 12/31/2022]
|
16
|
Yandim C, Natisvili T, Festenstein R. Gene regulation and epigenetics in Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:21-42. [PMID: 23859339 DOI: 10.1111/jnc.12254] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
This is an exciting time in the study of Friedreich's ataxia. Over the last 10 years much progress has been made in uncovering the mechanisms, whereby the Frataxin gene is silenced by (GAA)n repeat expansions and several of the findings are now ripe for testing in the clinic. The discovery that the Frataxin gene is heterochromatinised and that this can be antagonised in vivo has led to the tantalizing possibility that the disease might be amenable to a more radical therapeutic approach involving epigenetic modifiers. Here, we set out to review progress in the understanding of the fundamental mechanisms whereby genes are regulated at this level and how these findings have been applied to achieve a deeper understanding of the dysregulation that occurs as the primary genetic lesion in Friedreich's ataxia.
Collapse
Affiliation(s)
- Cihangir Yandim
- Gene Control Mechanisms and Disease, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | |
Collapse
|
17
|
Tang MCW, Jacobs SA, Wong LH, Mann JR. Conditional allelic replacement applied to genes encoding the histone variant H3.3 in the mouse. Genesis 2013; 51:142-6. [PMID: 23315948 DOI: 10.1002/dvg.22366] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/03/2012] [Indexed: 11/09/2022]
Abstract
Post-translational modifications to residues in core histones convey epigenetic information. Their function can be evaluated in amino acid substitution mutants, although to date this method has not been used in mice. To this end, we have evaluated gene targeting vectors designed for Cre recombinase-mediated conditional allelic replacement at the two unlinked genes encoding the histone variant H3.3. The conditional alleles consist of an uninterrupted wild-type H3.3 coding sequence upstream of a desired alternative or proxy coding sequence. The arrangement of two loxP sites allows Cre-mediated replacement of the wild-type coding sequence with the proxy. To demonstrate proof of principle, at each locus we replaced the wild-type coding sequence with a fluorescent reporter. This produced null alleles that will be useful to analyse the effects of H3.3 deficiency in development. Each targeting vector can readily be retrofitted with a proxy coding sequence encoding a modified H3.3 protein. Such vectors will allow for the conditional substitution of specific residues in order to dissect the roles of H3.3 post-translational modifications in development and disease.
Collapse
Affiliation(s)
- Michelle C W Tang
- Theme of Genetic Disorders, Murdoch Childrens Research Institute, The Royal Children's Hospital, Victoria, 3052, Australia
| | | | | | | |
Collapse
|