1
|
Morao AK, Chervova A, Zhao Y, Ercan S, Cecere G. DNA supercoiling modulates eukaryotic transcription in a gene-orientation dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631213. [PMID: 39803503 PMCID: PMC11722375 DOI: 10.1101/2025.01.03.631213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Transcription introduces torsional stress in the DNA fiber causing it to transition from a relaxed to a supercoiled state that can propagate across several kilobases and modulate the binding and activity of DNA-associated proteins. As a result, transcription at one locus has the potential to impact nearby transcription events. In this study, we asked how DNA supercoiling affects histone modifications and transcription of neighboring genes in the multicellular eukaryote Caenorhabditis elegans. We acutely depleted the two major topoisomerases and measured nascent transcription by Global Run-on sequencing (GRO-seq), RNA Polymerase II occupancy by ChIP-seq, gene expression by RNA-seq and four transcription-associated histone modifications by Cut & Tag. Depletion of topoisomerases I and II led to genome-wide changes in transcription dynamics, with minor disruptions to the histone modification landscape. Our results showed that C. elegans topoisomerase I is required for transcription elongation and is partially redundant with topoisomerase II. Analysis of transcription changes with respect to neighboring genes suggest that negative supercoiling promotes the transcription of genes with a divergent neighbor and positive supercoiling suppresses transcription of convergent genes. Additionally, topoisomerase depletion caused coordinated changes in the expression of divergent gene pairs, suggesting that negative supercoiling drives their synchronized expression. Conversely, the coordinated expression of convergent genes was disrupted, suggesting that excessive positive supercoiling inhibits transcription. Overall, our data supports a model in which DNA supercoiling generated by transcription at one site propagates along the eukaryotic chromatin fiber, influencing nearby transcription in an orientation-dependent manner.
Collapse
Affiliation(s)
- Ana Karina Morao
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Almira Chervova
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Yuya Zhao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinc Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| |
Collapse
|
2
|
Yao Q, Zhu L, Shi Z, Banerjee S, Chen C. Topoisomerase-modulated genome-wide DNA supercoiling domains colocalize with nuclear compartments and regulate human gene expression. Nat Struct Mol Biol 2025; 32:48-61. [PMID: 39152238 DOI: 10.1038/s41594-024-01377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
DNA supercoiling is a biophysical feature of the double helix with a pivotal role in biological processes. However, understanding of DNA supercoiling in the chromatin remains limited. Here, we developed azide-trimethylpsoralen sequencing (ATMP-seq), a DNA supercoiling assay offering quantitative accuracy while minimizing genomic bias and background noise. Using ATMP-seq, we directly visualized transcription-dependent negative and positive twin-supercoiled domains around genes and mapped kilobase-resolution DNA supercoiling throughout the human genome. Remarkably, we discovered megabase-scale supercoiling domains (SDs) across all chromosomes that are modulated mainly by topoisomerases I and IIβ. Transcription activities, but not the consequent supercoiling accumulation in the local region, contribute to SD formation, indicating the long-range propagation of transcription-generated supercoiling. Genome-wide SDs colocalize with A/B compartments in both human and Drosophila cells but are distinct from topologically associating domains (TADs), with negative supercoiling accumulation at TAD boundaries. Furthermore, genome-wide DNA supercoiling varies between cell states and types and regulates human gene expression, underscoring the importance of supercoiling dynamics in chromatin regulation and function.
Collapse
Affiliation(s)
- Qian Yao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linying Zhu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhen Shi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Subhadra Banerjee
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Belew MD, Michael WM. Transcriptome analysis in C. elegans early embryos upon depletion of the Topoisomerase 2/condensin II axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618010. [PMID: 39464072 PMCID: PMC11507951 DOI: 10.1101/2024.10.17.618010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In C. elegans , the chromosome compaction factors topoisomerase 2 (TOP-2) and condensin II have been shown to globally repress transcription in multiple contexts. Our group has previously reported that TOP-2 and condensin II repress transcription in the C. elegans germline during larval starvation, oocyte maturation, and in germline progenitor cells of the early embryo. Here, we assess the transcriptome of early embryos treated with RNAi against TOP-2 and the condensin II subunit CAPG-2. We found 144 upregulated and 172 downregulated genes. Further analysis showed that the upregulated genes are mostly somatic, with a host of neuronal cells present in our tissue enrichment analysis.
Collapse
|
4
|
Bhola M, Abe K, Orozco P, Rahnamoun H, Avila-Lopez P, Taylor E, Muhammad N, Liu B, Patel P, Marko JF, Starner AC, He C, Van Nostrand EL, Mondragón A, Lauberth SM. RNA interacts with topoisomerase I to adjust DNA topology. Mol Cell 2024; 84:3192-3208.e11. [PMID: 39173639 PMCID: PMC11380577 DOI: 10.1016/j.molcel.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/07/2023] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Topoisomerase I (TOP1) is an essential enzyme that relaxes DNA to prevent and dissipate torsional stress during transcription. However, the mechanisms underlying the regulation of TOP1 activity remain elusive. Using enhanced cross-linking and immunoprecipitation (eCLIP) and ultraviolet-cross-linked RNA immunoprecipitation followed by total RNA sequencing (UV-RIP-seq) in human colon cancer cells along with RNA electrophoretic mobility shift assays (EMSAs), biolayer interferometry (BLI), and in vitro RNA-binding assays, we identify TOP1 as an RNA-binding protein (RBP). We show that TOP1 directly binds RNA in vitro and in cells and that most RNAs bound by TOP1 are mRNAs. Using a TOP1 RNA-binding mutant and topoisomerase cleavage complex sequencing (TOP1cc-seq) to map TOP1 catalytic activity, we reveal that RNA opposes TOP1 activity as RNA polymerase II (RNAPII) commences transcription of active genes. We further demonstrate the inhibitory role of RNA in regulating TOP1 activity by employing DNA supercoiling assays and magnetic tweezers. These findings provide insight into the coordinated actions of RNA and TOP1 in regulating DNA topological stress intrinsic to RNAPII-dependent transcription.
Collapse
Affiliation(s)
- Mannan Bhola
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kouki Abe
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paola Orozco
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Homa Rahnamoun
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Pedro Avila-Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elijah Taylor
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3108, USA
| | - Nefertiti Muhammad
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bei Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Prachi Patel
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3108, USA
| | - Anne C Starner
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Eric L Van Nostrand
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3108, USA
| | - Shannon M Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Li S, Vemuri C, Chen C. DNA topology: A central dynamic coordinator in chromatin regulation. Curr Opin Struct Biol 2024; 87:102868. [PMID: 38878530 PMCID: PMC11283972 DOI: 10.1016/j.sbi.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 07/29/2024]
Abstract
Double helical DNA winds around nucleosomes, forming a beads-on-a-string array that further contributes to the formation of high-order chromatin structures. The regulatory components of the chromatin, interacting intricately with DNA, often exploit the topological tension inherent in the DNA molecule. Recent findings shed light on, and simultaneously complicate, the multifaceted roles of DNA topology (also known as DNA supercoiling) in various aspects of chromatin regulation. Different studies may emphasize the dynamics of DNA topological tension across different scales, interacting with diverse chromatin factors such as nucleosomes, nucleic acid motors that propel DNA-tracking processes, and DNA topoisomerases. In this review, we consolidate recent studies and establish connections between distinct scientific discoveries, advancing our current understanding of chromatin regulation mediated by the supercoiling tension of the double helix. Additionally, we explore the implications of DNA topology and DNA topoisomerases in human diseases, along with their potential applications in therapeutic interventions.
Collapse
Affiliation(s)
- Shuai Li
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Charan Vemuri
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Abe K, Maunze B, Lopez PA, Xu J, Muhammad N, Yang GY, Katz D, Liu Y, Lauberth SM. Downstream-of-gene (DoG) transcripts contribute to an imbalance in the cancer cell transcriptome. SCIENCE ADVANCES 2024; 10:eadh9613. [PMID: 38959318 PMCID: PMC11221514 DOI: 10.1126/sciadv.adh9613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Downstream-of-gene (DoG) transcripts are an emerging class of noncoding RNAs. However, it remains largely unknown how DoG RNA production is regulated and whether alterations in DoG RNA signatures exist in major cancers. Here, through transcriptomic analyses of matched tumors and nonneoplastic tissues and cancer cell lines, we reveal a comprehensive catalog of DoG RNA signatures. Through separate lines of evidence, we support the biological importance of DoG RNAs in carcinogenesis. First, we show tissue-specific and stage-specific differential expression of DoG RNAs in tumors versus paired normal tissues with their respective host genes involved in tumor-promoting versus tumor-suppressor pathways. Second, we identify that differential DoG RNA expression is associated with poor patient survival. Third, we identify that DoG RNA induction is a consequence of treating colon cancer cells with the topoisomerase I (TOP1) poison camptothecin and following TOP1 depletion. Our results underlie the significance of DoG RNAs and TOP1-dependent regulation of DoG RNAs in diversifying and modulating the cancer transcriptome.
Collapse
Affiliation(s)
- Kouki Abe
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brian Maunze
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pedro-Avila Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica Xu
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nefertiti Muhammad
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - David Katz
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yaping Liu
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M. Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Lau MS, Hu Z, Zhao X, Tan YS, Liu J, Huang H, Yeo CJ, Leong HF, Grinchuk OV, Chan JK, Yan J, Tee WW. Transcriptional repression by a secondary DNA binding surface of DNA topoisomerase I safeguards against hypertranscription. Nat Commun 2023; 14:6464. [PMID: 37833256 PMCID: PMC10576097 DOI: 10.1038/s41467-023-42078-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Regulation of global transcription output is important for normal development and disease, but little is known about the mechanisms involved. DNA topoisomerase I (TOP1) is an enzyme well-known for its role in relieving DNA supercoils for enabling transcription. Here, we report a non-enzymatic function of TOP1 that downregulates RNA synthesis. This function is dependent on specific DNA-interacting residues located on a conserved protein surface. A loss-of-function knock-in mutation on this surface, R548Q, is sufficient to cause hypertranscription and alter differentiation outcomes in mouse embryonic stem cells (mESCs). Hypertranscription in mESCs is accompanied by reduced TOP1 chromatin binding and change in genomic supercoiling. Notably, the mutation does not impact TOP1 enzymatic activity; rather, it diminishes TOP1-DNA binding and formation of compact protein-DNA structures. Thus, TOP1 exhibits opposing influences on transcription through distinct activities which are likely to be coordinated. This highlights TOP1 as a safeguard of appropriate total transcription levels in cells.
Collapse
Affiliation(s)
- Mei Sheng Lau
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
| | - Zhenhua Hu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaodan Zhao
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute (BII), A*STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Jinyue Liu
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Hua Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Electrophysiology Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Clarisse Jingyi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwei Fen Leong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Oleg V Grinchuk
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Justin Kaixuan Chan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore.
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117557, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
| | - Wee-Wei Tee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Patel HP, Coppola S, Pomp W, Aiello U, Brouwer I, Libri D, Lenstra TL. DNA supercoiling restricts the transcriptional bursting of neighboring eukaryotic genes. Mol Cell 2023; 83:1573-1587.e8. [PMID: 37207624 DOI: 10.1016/j.molcel.2023.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
DNA supercoiling has emerged as a major contributor to gene regulation in bacteria, but how DNA supercoiling impacts transcription dynamics in eukaryotes is unclear. Here, using single-molecule dual-color nascent transcription imaging in budding yeast, we show that transcriptional bursting of divergent and tandem GAL genes is coupled. Temporal coupling of neighboring genes requires rapid release of DNA supercoils by topoisomerases. When DNA supercoils accumulate, transcription of one gene inhibits transcription at its adjacent genes. Transcription inhibition of the GAL genes results from destabilized binding of the transcription factor Gal4. Moreover, wild-type yeast minimizes supercoiling-mediated inhibition by maintaining sufficient levels of topoisomerases. Overall, we discover fundamental differences in transcriptional control by DNA supercoiling between bacteria and yeast and show that rapid supercoiling release in eukaryotes ensures proper gene expression of neighboring genes.
Collapse
Affiliation(s)
- Heta P Patel
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Stefano Coppola
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Wim Pomp
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Umberto Aiello
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Ineke Brouwer
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Domenico Libri
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
9
|
TOP2B's contributions to transcription. Biochem Soc Trans 2021; 49:2483-2493. [PMID: 34747992 DOI: 10.1042/bst20200454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
Transcription is regulated and mediated by multiprotein complexes in a chromatin context. Transcription causes changes in DNA topology which is modulated by DNA topoisomerases, enzymes that catalyse changes in DNA topology via transient breaking and re-joining of one or both strands of the phosphodiester backbone. Mammals have six DNA topoisomerases, this review focuses on one, DNA topoisomerase II beta (TOP2B). In the absence of TOP2B transcription of many developmentally regulated genes is altered. Long genes seem particularly susceptible to the lack of TOP2B. Biochemical studies of the role of TOP2B in transcription regulated by ligands such as nuclear hormones, growth factors and insulin has revealed PARP1 associated with TOP2B and also PRKDC, XRCC5 and XRCC6. Analysis of publicly available databases of protein interactions confirms these interactions and illustrates interactions with other key transcriptional regulators including TRIM28. TOP2B has been shown to interact with proteins involved in chromosome organisation including CTCF and RAD21. Comparison of publicly available Chip-seq datasets reveals the location at which these proteins interact with genes. The availability of resources such as large datasets of protein-protein interactions, e.g. BioGrid and IntAct and protein-DNA interactions such as Chip-seq in GEO enables scientists to extend models and propose new hypotheses.
Collapse
|
10
|
Guo MS, Kawamura R, Littlehale ML, Marko JF, Laub MT. High-resolution, genome-wide mapping of positive supercoiling in chromosomes. eLife 2021; 10:e67236. [PMID: 34279217 PMCID: PMC8360656 DOI: 10.7554/elife.67236] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Supercoiling impacts DNA replication, transcription, protein binding to DNA, and the three-dimensional organization of chromosomes. However, there are currently no methods to directly interrogate or map positive supercoils, so their distribution in genomes remains unknown. Here, we describe a method, GapR-seq, based on the chromatin immunoprecipitation of GapR, a bacterial protein that preferentially recognizes overtwisted DNA, for generating high-resolution maps of positive supercoiling. Applying this method to Escherichia coli and Saccharomyces cerevisiae, we find that positive supercoiling is widespread, associated with transcription, and particularly enriched between convergently oriented genes, consistent with the 'twin-domain' model of supercoiling. In yeast, we also find positive supercoils associated with centromeres, cohesin-binding sites, autonomously replicating sites, and the borders of R-loops (DNA-RNA hybrids). Our results suggest that GapR-seq is a powerful approach, likely applicable in any organism, to investigate aspects of chromosome structure and organization not accessible by Hi-C or other existing methods.
Collapse
Affiliation(s)
- Monica S Guo
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ryo Kawamura
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Megan L Littlehale
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- Department of Physics and Astronomy, Northwestern UniversityEvanstonUnited States
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
11
|
Herrero-Ruiz A, Martínez-García PM, Terrón-Bautista J, Millán-Zambrano G, Lieberman JA, Jimeno-González S, Cortés-Ledesma F. Topoisomerase IIα represses transcription by enforcing promoter-proximal pausing. Cell Rep 2021; 35:108977. [PMID: 33852840 PMCID: PMC8052185 DOI: 10.1016/j.celrep.2021.108977] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulation of topological stress in the form of DNA supercoiling is inherent to the advance of RNA polymerase II (Pol II) and needs to be resolved by DNA topoisomerases to sustain productive transcriptional elongation. Topoisomerases are therefore considered positive facilitators of transcription. Here, we show that, in contrast to this general assumption, human topoisomerase IIα (TOP2A) activity at promoters represses transcription of immediate early genes such as c-FOS, maintaining them under basal repressed conditions. Thus, TOP2A inhibition creates a particular topological context that results in rapid release from promoter-proximal pausing and transcriptional upregulation, which mimics the typical bursting behavior of these genes in response to physiological stimulus. We therefore describe the control of promoter-proximal pausing by TOP2A as a layer for the regulation of gene expression, which can act as a molecular switch to rapidly activate transcription, possibly by regulating the accumulation of DNA supercoiling at promoter regions.
Collapse
Affiliation(s)
- Andrés Herrero-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | | | - Silvia Jimeno-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain.
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
12
|
Topoisomerase activity is linked to altered nucleosome positioning and transcriptional regulation in the fission yeast fbp1 gene. PLoS One 2020; 15:e0242348. [PMID: 33180846 PMCID: PMC7660550 DOI: 10.1371/journal.pone.0242348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/01/2020] [Indexed: 01/26/2023] Open
Abstract
Chromatin structure, including nucleosome positioning, has a fundamental role in transcriptional regulation through influencing protein-DNA interactions. DNA topology is known to influence chromatin structure, and in doing so, can also alter transcription. However, detailed mechanism(s) linking transcriptional regulation events to chromatin structure that is regulated by changes in DNA topology remain to be well defined. Here we demonstrate that nucleosome positioning and transcriptional output from the fission yeast fbp1 and prp3 genes are altered by excess topoisomerase activity. Given that lncRNAs (long noncoding RNAs) are transcribed from the fbp1 upstream region and are important for fbp1 gene expression, we hypothesized that local changes in DNA topological state caused by topoisomerase activity could alter lncRNA and fbp1 transcription. In support of this, we found that topoisomerase overexpression caused destabilization of positioned nucleosomes within the fbp1 promoter region, which was accompanied by aberrant fbp1 transcription. Similarly, the direct recruitment of topoisomerase, but not a catalytically inactive form, to the promoter region of fbp1 caused local changes in nucleosome positioning that was also accompanied by altered fbp1 transcription. These data indicate that changes in DNA topological state induced by topoisomerase activity could lead to altered fbp1 transcription through modulating nucleosome positioning.
Collapse
|
13
|
Kota S, Chaudhary R, Mishra S, Misra HS. Topoisomerase IB interacts with genome segregation proteins and is involved in multipartite genome maintenance in Deinococcus radiodurans. Microbiol Res 2020; 242:126609. [PMID: 33059113 DOI: 10.1016/j.micres.2020.126609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Deinococcus radiodurans, an extremophile, resistant to many abiotic stresses including ionizing radiation, has 2 type I topoisomerases (drTopo IA and drTopo IB) and one type II topoisomerase (DNA gyrase). The role of drTopo IB in guanine quadruplex DNA (G4 DNA) metabolism was demonstrated earlier in vitro. Here, we report that D. radiodurans cells lacking drTopo IB (ΔtopoIB) show sensitivity to G4 DNA binding drug (NMM) under normal growth conditions. The activity of G4 motif containing promoters like mutL and recQ was reduced in the presence of NMM in mutant cells. In mutant, the percentage of anucleate cells was more while the copy number of genome elements were less as compared to wild type. Protein-protein interaction studies showed that drTopo IB interacts with genome segregation and DNA replication initiation (DnaA) proteins. The typical patterns of cellular localization of GFP-PprA were affected in the mutant cells. Microscopic examination of D. radiodurans cells expressing drTopo IB-RFP showed its localization on nucleoid forming a streak parallel to the old division septum and perpendicular to newly formed septum. These results together suggest the role of drTopo IB in genome maintenance in this bacterium.
Collapse
Affiliation(s)
- Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
14
|
The Functional Consequences of Eukaryotic Topoisomerase 1 Interaction with G-Quadruplex DNA. Genes (Basel) 2020; 11:genes11020193. [PMID: 32059547 PMCID: PMC7073998 DOI: 10.3390/genes11020193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022] Open
Abstract
Topoisomerase I in eukaryotic cells is an important regulator of DNA topology. Its catalytic function is to remove positive or negative superhelical tension by binding to duplex DNA, creating a reversible single-strand break, and finally religating the broken strand. Proper maintenance of DNA topological homeostasis, in turn, is critically important in the regulation of replication, transcription, DNA repair, and other processes of DNA metabolism. One of the cellular processes regulated by the DNA topology and thus by Topoisomerase I is the formation of non-canonical DNA structures. Non-canonical or non-B DNA structures, including the four-stranded G-quadruplex or G4 DNA, are potentially pathological in that they interfere with replication or transcription, forming hotspots of genome instability. In this review, we first describe the role of Topoisomerase I in reducing the formation of non-canonical nucleic acid structures in the genome. We further discuss the interesting recent discovery that Top1 and Top1 mutants bind to G4 DNA structures in vivo and in vitro and speculate on the possible consequences of these interactions.
Collapse
|
15
|
Achar YJ, Adhil M, Choudhary R, Gilbert N, Foiani M. Negative supercoil at gene boundaries modulates gene topology. Nature 2020; 577:701-705. [PMID: 31969709 DOI: 10.1038/s41586-020-1934-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/25/2019] [Indexed: 11/08/2022]
Abstract
Transcription challenges the integrity of replicating chromosomes by generating topological stress and conflicts with forks1,2. The DNA topoisomerases Top1 and Top2 and the HMGB family protein Hmo1 assist DNA replication and transcription3-6. Here we describe the topological architecture of genes in Saccharomyces cerevisiae during the G1 and S phases of the cell cycle. We found under-wound DNA at gene boundaries and over-wound DNA within coding regions. This arrangement does not depend on Pol II or S phase. Top2 and Hmo1 preserve negative supercoil at gene boundaries, while Top1 acts at coding regions. Transcription generates RNA-DNA hybrids within coding regions, independently of fork orientation. During S phase, Hmo1 protects under-wound DNA from Top2, while Top2 confines Pol II and Top1 at coding units, counteracting transcription leakage and aberrant hybrids at gene boundaries. Negative supercoil at gene boundaries prevents supercoil diffusion and nucleosome repositioning at coding regions. DNA looping occurs at Top2 clusters. We propose that Hmo1 locks gene boundaries in a cruciform conformation and, with Top2, modulates the architecture of genes that retain the memory of the topological arrangements even when transcription is repressed.
Collapse
MESH Headings
- Chromatin Assembly and Disassembly
- DNA Replication
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Cruciform/chemistry
- DNA, Cruciform/genetics
- DNA, Cruciform/metabolism
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- G1 Phase
- Gene Expression Regulation, Fungal
- Genes, Fungal
- High Mobility Group Proteins/metabolism
- Mutation
- Nucleic Acid Hybridization
- Nucleosomes/chemistry
- Nucleosomes/genetics
- Nucleosomes/metabolism
- Open Reading Frames/genetics
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- S Phase
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
| | - Mohamood Adhil
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Ramveer Choudhary
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Marco Foiani
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Milan, Italy.
- Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
16
|
Riedlinger T, Bartkuhn M, Zimmermann T, Hake SB, Nist A, Stiewe T, Kracht M, Schmitz ML. Chemotherapeutic Drugs Inhibiting Topoisomerase 1 Activity Impede Cytokine-Induced and NF-κB p65-Regulated Gene Expression. Cancers (Basel) 2019; 11:cancers11060883. [PMID: 31242600 PMCID: PMC6627772 DOI: 10.3390/cancers11060883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/03/2023] Open
Abstract
Inhibitors of DNA topoisomerase I (TOP1), an enzyme relieving torsional stress of DNA by generating transient single-strand breaks, are clinically used to treat ovarian, small cell lung and cervical cancer. As torsional stress is generated during transcription by progression of RNA polymerase II through the transcribed gene, we tested the effects of camptothecin and of the approved TOP1 inhibitors Topotecan and SN-38 on TNFα-induced gene expression. RNA-seq experiments showed that inhibition of TOP1 but not of TOP2 activity suppressed the vast majority of TNFα-triggered genes. The TOP1 effects were fully reversible and preferentially affected long genes. TNFα stimulation led to inducible recruitment of TOP1 to the gene body of IL8, where its inhibition by camptothecin reduced transcription elongation and also led to altered histone H3 acetylation. Together, these data show that TOP1 inhibitors potently suppress expression of proinflammatory cytokines, a feature that may contribute to the increased infection risk occurring in tumor patients treated with these agents. On the other hand, TOP1 inhibitors could also be considered as a therapeutic option in order to interfere with exaggerated cytokine expression seen in several inflammatory diseases.
Collapse
Affiliation(s)
- Tabea Riedlinger
- Institute of Biochemistry, Justus Liebig University, D-35392 Giessen, Germany.
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig University Giessen, 35392 Giessen, Germany.
| | - Tobias Zimmermann
- Bioinformatics and Systems Biology, University of Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany.
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig University Giessen, 35392 Giessen, Germany.
| | - Andrea Nist
- Genomics Core Facility and Institute of Molecular Oncology, Philipps University Marburg, D-35043 Marburg, Germany.
| | - Thorsten Stiewe
- Genomics Core Facility and Institute of Molecular Oncology, Philipps University Marburg, D-35043 Marburg, Germany.
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University, D-35392 Giessen, Germany.
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University, D-35392 Giessen, Germany.
| |
Collapse
|
17
|
Hegedüs É, Kókai E, Nánási P, Imre L, Halász L, Jossé R, Antunovics Z, Webb MR, El Hage A, Pommier Y, Székvölgyi L, Dombrádi V, Szabó G. Endogenous single-strand DNA breaks at RNA polymerase II promoters in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:10649-10668. [PMID: 30445637 PMCID: PMC6237785 DOI: 10.1093/nar/gky743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
Molecular combing and gel electrophoretic studies revealed endogenous nicks with free 3'OH ends at ∼100 kb intervals in the genomic DNA (gDNA) of unperturbed and G1-synchronized Saccharomyces cerevisiae cells. Analysis of the distribution of endogenous nicks by Nick ChIP-chip indicated that these breaks accumulated at active RNA polymerase II (RNAP II) promoters, reminiscent of the promoter-proximal transient DNA breaks of higher eukaryotes. Similar periodicity of endogenous nicks was found within the ribosomal rDNA cluster, involving every ∼10th of the tandemly repeated 9.1 kb units of identical sequence. Nicks were mapped by Southern blotting to a few narrow regions within the affected units. Three of them were overlapping the RNAP II promoters, while the ARS-containing IGS2 region was spared of nicks. By using a highly sensitive reverse-Southwestern blot method to map free DNA ends with 3'OH, nicks were shown to be distinct from other known rDNA breaks and linked to the regulation of rDNA silencing. Nicks in rDNA and the rest of the genome were typically found at the ends of combed DNA molecules, occasionally together with R-loops, comprising a major pool of vulnerable sites that are connected with transcriptional regulation.
Collapse
Affiliation(s)
- Éva Hegedüs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Nánási
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Imre
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Halász
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rozenn Jossé
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (CCR-NCI), NIH, Bethesda, MD, USA
| | - Zsuzsa Antunovics
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | | | - Aziz El Hage
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (CCR-NCI), NIH, Bethesda, MD, USA
| | - Lóránt Székvölgyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktor Dombrádi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Structure and Chromosomal Organization of Yeast Genes Regulated by Topoisomerase II. Int J Mol Sci 2018; 19:ijms19010134. [PMID: 29301361 PMCID: PMC5796083 DOI: 10.3390/ijms19010134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 01/06/2023] Open
Abstract
Cellular DNA topoisomerases (topo I and topo II) are highly conserved enzymes that regulate the topology of DNA during normal genome transactions, such as DNA transcription and replication. In budding yeast, topo I is dispensable whereas topo II is essential, suggesting fundamental and exclusive roles for topo II, which might include the functions of the topo IIa and topo IIb isoforms found in mammalian cells. In this review, we discuss major findings of the structure and chromosomal organization of genes regulated by topo II in budding yeast. Experimental data was derived from short (10 min) and long term (120 min) responses to topo II inactivation in top-2 ts mutants. First, we discuss how short term responses reveal a subset of yeast genes that are regulated by topo II depending on their promoter architecture. These short term responses also uncovered topo II regulation of transcription across multi-gene clusters, plausibly by common DNA topology management. Finally, we examine the effects of deactivated topo II on the elongation of RNA transcripts. Each study provides an insight into the particular chromatin structure that interacts with the activity of topo II. These findings are of notable clinical interest as numerous anti-cancer therapies interfere with topo II activity.
Collapse
|
19
|
Tsochatzidou M, Malliarou M, Papanikolaou N, Roca J, Nikolaou C. Genome urbanization: clusters of topologically co-regulated genes delineate functional compartments in the genome of Saccharomyces cerevisiae. Nucleic Acids Res 2017; 45:5818-5828. [PMID: 28369650 PMCID: PMC5449599 DOI: 10.1093/nar/gkx198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/15/2017] [Indexed: 02/01/2023] Open
Abstract
The eukaryotic genome evolves under the dual constraint of maintaining coordinated gene transcription and performing effective DNA replication and cell division, the coupling of which brings about inevitable DNA topological tension. DNA supercoiling is resolved and, in some cases, even harnessed by the genome through the function of DNA topoisomerases, as has been shown in the concurrent transcriptional activation and suppression of genes upon transient deactivation of topoisomerase II (topoII). By analyzing a genome-wide transcription run-on experiment upon thermal inactivation of topoII in Saccharomyces cerevisiae we were able to define 116 gene clusters of consistent response (either positive or negative) to topological stress. A comprehensive analysis of these topologically co-regulated gene clusters reveals pronounced preferences regarding their functional, regulatory and structural attributes. Genes that negatively respond to topological stress, are positioned in gene-dense pericentromeric regions, are more conserved and associated to essential functions, while upregulated gene clusters are preferentially located in the gene-sparse nuclear periphery, associated with secondary functions and under complex regulatory control. We propose that genome architecture evolves with a core of essential genes occupying a compact genomic ‘old town’, whereas more recently acquired, condition-specific genes tend to be located in a more spacious ‘suburban’ genomic periphery.
Collapse
Affiliation(s)
- Maria Tsochatzidou
- Computational Genomics Group, Department of Biology, University of Crete, Herakleion 70013, Greece
| | - Maria Malliarou
- Computational Genomics Group, Department of Biology, University of Crete, Herakleion 70013, Greece
| | - Nikolas Papanikolaou
- Computational Genomics Group, Department of Biology, University of Crete, Herakleion 70013, Greece
| | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Christoforos Nikolaou
- Computational Genomics Group, Department of Biology, University of Crete, Herakleion 70013, Greece
| |
Collapse
|
20
|
Physiological functions of programmed DNA breaks in signal-induced transcription. Nat Rev Mol Cell Biol 2017; 18:471-476. [PMID: 28537575 DOI: 10.1038/nrm.2017.43] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The idea that signal-dependent transcription might involve the generation of transient DNA nicks or even breaks in the regulatory regions of genes, accompanied by activation of DNA damage repair pathways, would seem to be counterintuitive, as DNA damage is usually considered harmful to cellular integrity. However, recent studies have generated a substantial body of evidence that now argues that programmed DNA single- or double-strand breaks can, at least in specific cases, have a role in transcription regulation. Here, we discuss the emerging functions of DNA breaks in the relief of DNA torsional stress and in promoter and enhancer activation.
Collapse
|
21
|
Ahmed W, Sala C, Hegde SR, Jha RK, Cole ST, Nagaraja V. Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase. PLoS Genet 2017; 13:e1006754. [PMID: 28463980 PMCID: PMC5433769 DOI: 10.1371/journal.pgen.1006754] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/16/2017] [Accepted: 04/10/2017] [Indexed: 01/28/2023] Open
Abstract
Movement of the transcription machinery along a template alters DNA topology resulting in the accumulation of supercoils in DNA. The positive supercoils generated ahead of transcribing RNA polymerase (RNAP) and the negative supercoils accumulating behind impose severe topological constraints impeding transcription process. Previous studies have implied the role of topoisomerases in the removal of torsional stress and the maintenance of template topology but the in vivo interaction of functionally distinct topoisomerases with heterogeneous chromosomal territories is not deciphered. Moreover, how the transcription-induced supercoils influence the genome-wide recruitment of DNA topoisomerases remains to be explored in bacteria. Using ChIP-Seq, we show the genome-wide occupancy profile of both topoisomerase I and DNA gyrase in conjunction with RNAP in Mycobacterium tuberculosis taking advantage of minimal topoisomerase representation in the organism. The study unveils the first in vivo genome-wide interaction of both the topoisomerases with the genomic regions and establishes that transcription-induced supercoils govern their recruitment at genomic sites. Distribution profiles revealed co-localization of RNAP and the two topoisomerases on the active transcriptional units (TUs). At a given locus, topoisomerase I and DNA gyrase were localized behind and ahead of RNAP, respectively, correlating with the twin-supercoiled domains generated. The recruitment of topoisomerases was higher at the genomic loci with higher transcriptional activity and/or at regions under high torsional stress compared to silent genomic loci. Importantly, the occupancy of DNA gyrase, sole type II topoisomerase in Mtb, near the Ter domain of the Mtb chromosome validates its function as a decatenase. The generation of DNA topological constraint is intrinsic to transcription. Although in vitro studies indicated DNA gyrase and topoisomerase I action in the removal of excess supercoils, ahead and behind the transcribing RNA polymerase, in vivo recruitment and interaction of both topoisomerases with the genome has not been investigated. Using advanced sequencing, we have mapped the genome-wide footprints of topoisomerase I and DNA gyrase along with RNAP in deadly pathogen, Mycobacterium tuberculosis. We show that in vivo distribution of topoisomerases is guided by active transcription and both the enzymes co-occupy active transcription units. We establish their interaction with the regions of genome having propensity to accumulate negative and positive supercoiled domains, validating their role in managing the twin supercoiled domains.
Collapse
Affiliation(s)
- Wareed Ahmed
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Claudia Sala
- Ecole Polytechnique Federale de Lausanne, Global Health Institute, Station 19, Lausanne, Switzerland
| | - Shubhada R. Hegde
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Rajiv Kumar Jha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Stewart T. Cole
- Ecole Polytechnique Federale de Lausanne, Global Health Institute, Station 19, Lausanne, Switzerland
- * E-mail: (VN); (STC)
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- * E-mail: (VN); (STC)
| |
Collapse
|
22
|
Alemasova EE, Lavrik OI. At the Interface of Three Nucleic Acids: The Role of RNA-Binding Proteins and Poly(ADP-ribose) in DNA Repair. Acta Naturae 2017; 9:4-16. [PMID: 28740723 PMCID: PMC5508997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 11/26/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate RNA metabolism, from synthesis to decay. When bound to RNA, RBPs act as guardians of the genome integrity at different levels, from DNA damage prevention to the post-transcriptional regulation of gene expression. Recently, RBPs have been shown to participate in DNA repair. This fact is of special interest as DNA repair pathways do not generally involve RNA. DNA damage in higher organisms triggers the formation of the RNA-like polymer - poly(ADP-ribose) (PAR). Nucleic acid-like properties allow PAR to recruit DNA- and RNA-binding proteins to the site of DNA damage. It is suggested that poly(ADP-ribose) and RBPs not only modulate the activities of DNA repair factors, but that they also play an important role in the formation of transient repairosome complexes in the nucleus. Cytoplasmic biomolecules are subjected to similar sorting during the formation of RNA assemblages by functionally related mRNAs and promiscuous RBPs. The Y-box-binding protein 1 (YB-1) is the major component of cytoplasmic RNA granules. Although YB-1 is a classic RNA-binding protein, it is now regarded as a non-canonical factor of DNA repair.
Collapse
Affiliation(s)
- E. E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
| | - O. I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
23
|
Uthe H, Vanselow JT, Schlosser A. Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae. Sci Rep 2017; 7:43584. [PMID: 28240253 PMCID: PMC5327418 DOI: 10.1038/srep43584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 12/02/2022] Open
Abstract
Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis.
Collapse
Affiliation(s)
- Henriette Uthe
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| |
Collapse
|
24
|
Pommier Y, Sun Y, Huang SYN, Nitiss JL. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol 2016; 17:703-721. [DOI: 10.1038/nrm.2016.111] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Abstract
Topoisomerases are unique enzymes that regulate torsional stress in DNA to enable essential genome functions, including DNA replication and transcription. Although all cells in an organism require topoisomerases to maintain normal function, the nervous system in particular shows a vital need for these enzymes. Indeed, a range of inherited human neurologic syndromes, including neurodegeneration, schizophrenia and intellectual impairment, are associated with aberrant topoisomerase function. Much remains unknown regarding the tissue-specific function of neural topoisomerases or the connections between these enzymes and disease aetiology. Precisely how topoisomerases regulate genome dynamics within the nervous system is therefore a crucial research question.
Collapse
|
26
|
Baranello L, Wojtowicz D, Cui K, Devaiah BN, Chung HJ, Chan-Salis KY, Guha R, Wilson K, Zhang X, Zhang H, Piotrowski J, Thomas CJ, Singer DS, Pugh BF, Pommier Y, Przytycka TM, Kouzine F, Lewis BA, Zhao K, Levens D. RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription. Cell 2016; 165:357-71. [PMID: 27058666 DOI: 10.1016/j.cell.2016.02.036] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 12/01/2015] [Accepted: 02/17/2016] [Indexed: 11/24/2022]
Abstract
We report a mechanism through which the transcription machinery directly controls topoisomerase 1 (TOP1) activity to adjust DNA topology throughout the transcription cycle. By comparing TOP1 occupancy using chromatin immunoprecipitation sequencing (ChIP-seq) versus TOP1 activity using topoisomerase 1 sequencing (TOP1-seq), a method reported here to map catalytically engaged TOP1, TOP1 bound at promoters was discovered to become fully active only after pause-release. This transition coupled the phosphorylation of the carboxyl-terminal-domain (CTD) of RNA polymerase II (RNAPII) with stimulation of TOP1 above its basal rate, enhancing its processivity. TOP1 stimulation is strongly dependent on the kinase activity of BRD4, a protein that phosphorylates Ser2-CTD and regulates RNAPII pause-release. Thus the coordinated action of BRD4 and TOP1 overcame the torsional stress opposing transcription as RNAPII commenced elongation but preserved negative supercoiling that assists promoter melting at start sites. This nexus between transcription and DNA topology promises to elicit new strategies to intercept pathological gene expression.
Collapse
Affiliation(s)
| | | | - Kairong Cui
- Systems Biology Center, NHLBI/NIH, Bethesda, MD 20892, USA
| | | | - Hye-Jung Chung
- Laboratory of Pathology, NCI/NIH, Bethesda, MD 20892, USA
| | - Ka Yim Chan-Salis
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Rajarshi Guha
- Division of Preclinical Innovation, NCATS/NIH, Rockville, MD 20850, USA
| | - Kelli Wilson
- Division of Preclinical Innovation, NCATS/NIH, Rockville, MD 20850, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, NCATS/NIH, Rockville, MD 20850, USA
| | - Hongliang Zhang
- Development Therapeutics Branch and Laboratory of Molecular Pharmacology, NCI/NIH, Bethesda, MD 20892, USA
| | | | - Craig J Thomas
- Division of Preclinical Innovation, NCATS/NIH, Rockville, MD 20850, USA
| | - Dinah S Singer
- Experimental Immunology Branch, NCI/NIH, Bethesda, MD 20892, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Yves Pommier
- Development Therapeutics Branch and Laboratory of Molecular Pharmacology, NCI/NIH, Bethesda, MD 20892, USA
| | | | - Fedor Kouzine
- Laboratory of Pathology, NCI/NIH, Bethesda, MD 20892, USA
| | - Brian A Lewis
- Lymphoid Malignancies Branch, NCI/NIH, Bethesda, MD 20892, USA
| | - Keji Zhao
- Systems Biology Center, NHLBI/NIH, Bethesda, MD 20892, USA.
| | - David Levens
- Laboratory of Pathology, NCI/NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Calderwood SK. A critical role for topoisomerase IIb and DNA double strand breaks in transcription. Transcription 2016; 7:75-83. [PMID: 27100743 DOI: 10.1080/21541264.2016.1181142] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb.
Collapse
Affiliation(s)
- Stuart K Calderwood
- a Department of Radiation Oncology , Harvard Medical School at Beth Israel Deaconess Medical Center , Boston , MA , USA
| |
Collapse
|
28
|
Bunch H. Role of genome guardian proteins in transcriptional elongation. FEBS Lett 2016; 590:1064-75. [PMID: 27010360 DOI: 10.1002/1873-3468.12152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
Abstract
Maintaining genomic integrity is vital for cell survival and homeostasis. Mutations in critical genes in germ-line and somatic cells are often implicated with the onset or progression of diseases. DNA repair enzymes thus take important roles as guardians of the genome in the cell. Besides the known function to repair DNA damage, recent findings indicate that DNA repair enzymes regulate the transcription of protein-coding and noncoding RNA genes. In particular, a novel role of DNA damage response signaling has been identified in the regulation of transcriptional elongation. Topoisomerases-mediated DNA breaks appear important for the regulation. In this review, recent findings of these DNA break- and repair-associated enzymes in transcription and potential roles of transcriptional activation-coupled DNA breaks are discussed.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
29
|
Abstract
Genome replication introduces a stepwise increase in the DNA template available for transcription. Genes replicated early in S phase experience this increase before late-replicating genes, raising the question of how expression levels are affected by DNA replication. We show that in budding yeast, messenger RNA (mRNA) synthesis rate is buffered against changes in gene dosage during S phase. This expression homeostasis depends on acetylation of H3 on its internal K56 site by Rtt109/Asf1. Deleting these factors, mutating H3K56 or up-regulating its deacetylation, increases gene expression in S phase in proportion to gene replication timing. Therefore, H3K56 acetylation on newly deposited histones reduces transcription efficiency from replicated DNA, complementing its role in guarding genome stability. Our study provides molecular insight into the mechanism maintaining expression homeostasis during DNA replication.
Collapse
Affiliation(s)
- Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raz Bar-Ziv
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
30
|
Bunch H, Lawney BP, Lin YF, Asaithamby A, Murshid A, Wang YE, Chen BPC, Calderwood SK. Transcriptional elongation requires DNA break-induced signalling. Nat Commun 2015; 6:10191. [PMID: 26671524 PMCID: PMC4703865 DOI: 10.1038/ncomms10191] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/13/2015] [Indexed: 01/20/2023] Open
Abstract
We have previously shown that RNA polymerase II (Pol II) pause release and transcriptional elongation involve phosphorylation of the factor TRIM28 by the DNA damage response (DDR) kinases ATM and DNA-PK. Here we report a significant role for DNA breaks and DDR signalling in the mechanisms of transcriptional elongation in stimulus-inducible genes in humans. Our data show the enrichment of TRIM28 and γH2AX on serum-induced genes and the important function of DNA-PK for Pol II pause release and transcriptional activation-coupled DDR signalling on these genes. γH2AX accumulation decreases when P-TEFb is inhibited, confirming that DDR signalling results from transcriptional elongation. In addition, transcriptional elongation-coupled DDR signalling involves topoisomerase II because inhibiting this enzyme interferes with Pol II pause release and γH2AX accumulation. Our findings propose that DDR signalling is required for effective Pol II pause release and transcriptional elongation through a novel mechanism involving TRIM28, DNA-PK and topoisomerase II. RNA polymerase II (Pol II) pause release and transcriptional elongation involve phosphorylation of TRIM28 by the DNA damage response (DDR) kinases. Here, Bunch et al. show that DDR signalling is coupled with and required for transcriptional elongation in stimulus-inducible genes and involves topoisomerase II.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brian P Lawney
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02130, USA
| | - Yu-Fen Lin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yaoyu E Wang
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02130, USA
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
DNA Topoisomerases Are Required for Preinitiation Complex Assembly during GAL Gene Activation. PLoS One 2015; 10:e0132739. [PMID: 26173127 PMCID: PMC4501763 DOI: 10.1371/journal.pone.0132739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
To investigate the importance of topoisomerases for transcription of the galactose induced genes, we have studied the expression of GAL1, GAL2, GAL7 and GAL10 in Saccharomyces cerevisiae cells deficient for topoisomerases I and II. We find that topoisomerases are required for transcriptional activation of the GAL genes, but are dispensable for ongoing transcription, eliminating a role of the enzymes in transcriptional elongation. Furthermore, we demonstrate that promoter chromatin remodeling of the GAL genes is unaffected in the topoisomerase deficient strain. However, the cells fail to successfully recruit RNA polymerase II due to an inability of the TATA-binding protein (TBP) to bind to the TATA box in these promoters. We therefore argue that topoisomerases are required for accurate assembly of the preinitiation complex at the promoters of the GAL genes.
Collapse
|
32
|
The intracellular Scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes eukaryote-like proteins. mBio 2015; 6:mBio.00039-15. [PMID: 25805725 PMCID: PMC4453540 DOI: 10.1128/mbio.00039-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont’s activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside all tissues. M. extorquens DSM13060 occupies an unusual niche inside cells of the dividing shoot tissues of a pine and stimulates seedling growth without producing cytokinin, auxin, or other plant hormones commonly synthesized by plant-associated bacteria. Here, we tracked the bacteria using a fluorescent tag and confocal laser scanning microscopy and found that they localize near the nucleus of the plant cell. This prompted us to sequence the genome and identify proteins that may affect host growth by targeting processes in the host cytoplasm and nucleus. We found many novel genes whose products may modulate plant processes from within the plant cell. Our results open up new avenues to better understand how bacteria assist in plant growth, with broad implications for plant science, forestry, and agriculture.
Collapse
|
33
|
Baranello L, Kouzine F, Levens D. DNA topoisomerases beyond the standard role. Transcription 2015; 4:232-7. [PMID: 24135702 DOI: 10.4161/trns.26598] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chromatin is dynamically changing its structure to accommodate and control DNA-dependent processes inside of eukaryotic cells. These changes are necessarily linked to changes of DNA topology, which might itself serve as a regulatory signal to be detected by proteins. Thus, DNA Topoisomerases may contribute to the regulation of many events occurring during the transcription cycle. In this review we will focus on DNA Topoisomerase functions in transcription, with particular emphasis on the multiplicity of tasks beyond their widely appreciated role in solving topological problems associated with transcription elongation.
Collapse
|
34
|
Puc J, Kozbial P, Li W, Tan Y, Liu Z, Suter T, Ohgi KA, Zhang J, Aggarwal AK, Rosenfeld MG. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 2015; 160:367-80. [PMID: 25619691 DOI: 10.1016/j.cell.2014.12.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/28/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
The discovery that enhancers are regulated transcription units, encoding eRNAs, has raised new questions about the mechanisms of their activation. Here, we report an unexpected molecular mechanism that underlies ligand-dependent enhancer activation, based on DNA nicking to relieve torsional stress from eRNA synthesis. Using dihydrotestosterone (DHT)-induced binding of androgen receptor (AR) to prostate cancer cell enhancers as a model, we show rapid recruitment, within minutes, of DNA topoisomerase I (TOP1) to a large cohort of AR-regulated enhancers. Furthermore, we show that the DNA nicking activity of TOP1 is a prerequisite for robust eRNA synthesis and enhancer activation and is kinetically accompanied by the recruitment of ATR and the MRN complex, followed by additional components of DNA damage repair machinery to the AR-regulated enhancers. Together, our studies reveal a linkage between eRNA synthesis and ligand-dependent TOP1-mediated nicking-a strategy exerting quantitative effects on eRNA expression in regulating AR-bound enhancer-dependent transcriptional programs.
Collapse
Affiliation(s)
- Janusz Puc
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Piotr Kozbial
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Yuliang Tan
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Zhijie Liu
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Tom Suter
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA; Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Kenneth A Ohgi
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Jie Zhang
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Aneel K Aggarwal
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA.
| |
Collapse
|
35
|
Vos SM, Lyubimov AY, Hershey DM, Schoeffler AJ, Sengupta S, Nagaraja V, Berger JM. Direct control of type IIA topoisomerase activity by a chromosomally encoded regulatory protein. Genes Dev 2014; 28:1485-97. [PMID: 24990966 PMCID: PMC4083091 DOI: 10.1101/gad.241984.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Topoisomerases are central regulators of DNA supercoiling; how these enzymes are regulated to suit specific cellular needs is poorly understood. Vos et al. now report the structure of E. coli gyrase, a type IIA topoisomerase bound to an inhibitor, YacG. YacG represses gyrase through steric occlusion of its DNA-binding site. Further studies show that YacG engages two spatially segregated regions associated with small-molecule inhibitor interactions—fluoroquinolone antibiotics and a gyrase agonist. This study thus defines a new mechanism for the protein-based control of topoisomerases. Precise control of supercoiling homeostasis is critical to DNA-dependent processes such as gene expression, replication, and damage response. Topoisomerases are central regulators of DNA supercoiling commonly thought to act independently in the recognition and modulation of chromosome superstructure; however, recent evidence has indicated that cells tightly regulate topoisomerase activity to support chromosome dynamics, transcriptional response, and replicative events. How topoisomerase control is executed and linked to the internal status of a cell is poorly understood. To investigate these connections, we determined the structure of Escherichia coli gyrase, a type IIA topoisomerase bound to YacG, a recently identified chromosomally encoded inhibitor protein. Phylogenetic analyses indicate that YacG is frequently associated with coenzyme A (CoA) production enzymes, linking the protein to metabolism and stress. The structure, along with supporting solution studies, shows that YacG represses gyrase by sterically occluding the principal DNA-binding site of the enzyme. Unexpectedly, YacG acts by both engaging two spatially segregated regions associated with small-molecule inhibitor interactions (fluoroquinolone antibiotics and the newly reported antagonist GSK299423) and remodeling the gyrase holoenzyme into an inactive, ATP-trapped configuration. This study establishes a new mechanism for the protein-based control of topoisomerases, an approach that may be used to alter supercoiling levels for responding to changes in cellular state.
Collapse
Affiliation(s)
| | | | - David M Hershey
- Deparment of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | - Sugopa Sengupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
36
|
Fernández X, Díaz-Ingelmo O, Martínez-García B, Roca J. Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils. EMBO J 2014; 33:1492-501. [PMID: 24859967 DOI: 10.15252/embj.201488091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic topoisomerases I (topo I) and II (topo II) relax the positive (+) and negative (-) DNA torsional stress (TS) generated ahead and behind the transcription machinery. It is unknown how this DNA relaxation activity is regulated and whether (+) and (-)TS are reduced at similar rates. Here, we used yeast circular minichromosomes to conduct the first comparative analysis of topo I and topo II activities in relaxing chromatin under (+) and (-)TS. We observed that, while topo I relaxed (+) and (-)TS with similar efficiency, topo II was more proficient and relaxed (+)TS more quickly than (-)TS. Accordingly, we found that the relaxation rate of (+)TS by endogenous topoisomerases largely surpassed that of (-)TS. We propose a model of how distinct conformations of chromatin under (+) and (-)TS may produce this unbalanced relaxation of DNA. We postulate that, while quick relaxation of (+)TS may facilitate the progression of RNA and DNA polymerases, slow relaxation of (-)TS may serve to favor DNA unwinding and other structural transitions at specific regions often required for genomic transactions.
Collapse
Affiliation(s)
- Xavier Fernández
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Ofelia Díaz-Ingelmo
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Belén Martínez-García
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Joaquim Roca
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
37
|
Nikolaou C, Bermúdez I, Manichanh C, García-Martinez J, Guigó R, Pérez-Ortín JE, Roca J. Topoisomerase II regulates yeast genes with singular chromatin architectures. Nucleic Acids Res 2013; 41:9243-56. [PMID: 23935120 PMCID: PMC3814376 DOI: 10.1093/nar/gkt707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic topoisomerase II (topo II) is the essential decatenase of newly replicated chromosomes and the main relaxase of nucleosomal DNA. Apart from these general tasks, topo II participates in more specialized functions. In mammals, topo IIα interacts with specific RNA polymerases and chromatin-remodeling complexes, whereas topo IIβ regulates developmental genes in conjunction with chromatin remodeling and heterochromatin transitions. Here we show that in budding yeast, topo II regulates the expression of specific gene subsets. To uncover this, we carried out a genomic transcription run-on shortly after the thermal inactivation of topo II. We identified a modest number of genes not involved in the general stress response but strictly dependent on topo II. These genes present distinctive functional and structural traits in comparison with the genome average. Yeast topo II is a positive regulator of genes with well-defined promoter architecture that associates to chromatin remodeling complexes; it is a negative regulator of genes extremely hypo-acetylated with complex promoters and undefined nucleosome positioning, many of which are involved in polyamine transport. These findings indicate that yeast topo II operates on singular chromatin architectures to activate or repress DNA transcription and that this activity produces functional responses to ensure chromatin stability.
Collapse
Affiliation(s)
- Christoforos Nikolaou
- Molecular Biology Institute of Barcelona, CSIC, 08028 Barcelona, Spain, Department of Biology, University of Crete, 71409 Heraklion, Greece, Department of Genetics and ERI Biotecmed, University of Valencia, 46100 Burjassot, Spain, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Department of Biochemistry and Molecular Biology and ERI Biotecmed, University of Valencia, 46100 Burjassot, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Stower H. A role for DNA topoisomerase in activation. Nat Rev Genet 2013. [DOI: 10.1038/nrg3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|