1
|
Biswas K, Moore C, Rogers H, Wani KA, Pukkila-Worley R, Higgins DP, Walker AK, Mullen GP, Rand JB, Francis MM. Transcriptional responses to chronic oxidative stress require cholinergic activation of G-protein-coupled receptor signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.628021. [PMID: 39829818 PMCID: PMC11741395 DOI: 10.1101/2025.01.06.628021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Organisms have evolved protective strategies that are geared toward limiting cellular damage and enhancing organismal survival in the face of environmental stresses, but how these protective mechanisms are coordinated remains unclear. Here, we define a requirement for neural activity in mobilizing the antioxidant defenses of the nematode Caenorhabditis elegans both during chronic oxidative stress and prior to its onset. We show that acetylcholine-deficient mutants are particularly vulnerable to chronic oxidative stress. We find that extended oxidative stress mobilizes a broad transcriptional response which is strongly dependent on both cholinergic signaling and activation of the muscarinic G-protein acetylcholine coupled receptor (mAChR) GAR-3. Gene enrichment analysis revealed a lack of upregulation of proteasomal proteolysis machinery in both cholinergic-deficient and gar-3 mAChR mutants, suggesting that muscarinic activation is critical for stress-responsive upregulation of protein degradation pathways. Further, we find that GAR-3 overexpression in cholinergic motor neurons prolongs survival during chronic oxidative stress. Our studies demonstrate neuronal modulation of antioxidant defenses through cholinergic activation of G protein-coupled receptor signaling pathways, defining new potential links between cholinergic signaling, oxidative damage, and neurodegenerative disease.
Collapse
Affiliation(s)
- Kasturi Biswas
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Caroline Moore
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hannah Rogers
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daniel P Higgins
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Amy K Walker
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gregory P. Mullen
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - James B Rand
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Gallrein C, Williams AB, Meyer DH, Messling JE, Garcia A, Schumacher B. baz-2 enhances systemic proteostasis in vivo by regulating acetylcholine metabolism. Cell Rep 2023; 42:113577. [PMID: 38100354 DOI: 10.1016/j.celrep.2023.113577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Neurodegenerative disorders, such as Alzheimer's disease (AD) or Huntington's disease (HD), are linked to protein aggregate neurotoxicity. According to the "cholinergic hypothesis," loss of acetylcholine (ACh) signaling contributes to the AD pathology, and therapeutic restoration of ACh signaling is a common treatment strategy. How disease causation and the effect of ACh are linked to protein aggregation and neurotoxicity remains incompletely understood, thus limiting the development of more effective therapies. Here, we show that BAZ-2, the Caenorhabditis elegans ortholog of human BAZ2B, limits ACh signaling. baz-2 mutations reverse aggregation and toxicity of amyloid-beta as well as polyglutamine peptides, thereby restoring health and lifespan in nematode models of AD and HD, respectively. The neuroprotective effect of Δbaz-2 is mediated by choline acetyltransferase, phenocopied by ACh-esterase depletion, and dependent on ACh receptors. baz-2 reduction or ectopic ACh treatment augments proteostasis via induction of the endoplasmic reticulum unfolded protein response and the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Christian Gallrein
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Ashley B Williams
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - David H Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Jan-Erik Messling
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Antonio Garcia
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.
| |
Collapse
|
3
|
Wong SQ, Ryan CJ, Bonal DM, Mills J, Lapierre LR. Neuronal HLH-30/TFEB modulates peripheral mitochondrial fragmentation to improve thermoresistance in Caenorhabditis elegans. Aging Cell 2023; 22:e13741. [PMID: 36419219 PMCID: PMC10014052 DOI: 10.1111/acel.13741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Transcription factor EB (TFEB) is a conserved master transcriptional activator of autophagy and lysosomal genes that modulates organismal lifespan regulation and stress resistance. As neurons can coordinate organism-wide processes, we investigated the role of neuronal TFEB in stress resistance and longevity. To this end, the Caenorhabditis elegans TFEB ortholog, hlh-30, was rescued panneuronally in hlh-30 loss of function mutants. While important in the long lifespan of daf-2 animals, neuronal HLH-30/TFEB was not sufficient to restore normal lifespan in short-lived hlh-30 mutants. However, neuronal HLH-30/TFEB rescue mediated robust improvements in the heat stress resistance of wildtype but not daf-2 animals. Notably, these mechanisms can be uncoupled, as neuronal HLH-30/TFEB requires DAF-16/FOXO to regulate longevity but not thermoresistance. Through further transcriptomics profiling and functional analysis, we discovered that neuronal HLH-30/TFEB modulates neurotransmission through the hitherto uncharacterized protein W06A11.1 by inducing peripheral mitochondrial fragmentation and organismal heat stress resistance in a non-cell autonomous manner. Taken together, this study uncovers a novel mechanism of heat stress protection mediated by neuronal HLH-30/TFEB.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Catherine J. Ryan
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Dennis M. Bonal
- Pathobiology Graduate Program, Division of Biology & MedicineBrown UniversityProvidenceRhode IslandUSA
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
- Department of BiologyWheaton CollegeNortonMassachusettsUSA
| | - Louis R. Lapierre
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
- Département de Chimie et BiochimieUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Center for Precision MedicineMonctonNew BrunswickCanada
| |
Collapse
|
4
|
Lazaro-Pena MI, Cornwell AB, Diaz-Balzac CA, Das R, Macoretta N, Thakar J, Samuelson AV. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal Caenorhabditis elegans aging and systemically regulates longevity from serotonergic and GABAergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523661. [PMID: 36711523 PMCID: PMC9882034 DOI: 10.1101/2023.01.11.523661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 is co-expressed with key longevity transcription factors, including daf-16 (FOXO), hlh-30 (TFEB), skn-1 (Nrf2), and hif-1 , which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity. Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.
Collapse
|
5
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
6
|
Regulation of Aging and Longevity by Ion Channels and Transporters. Cells 2022; 11:cells11071180. [PMID: 35406743 PMCID: PMC8997527 DOI: 10.3390/cells11071180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Despite significant advances in our understanding of the mechanisms that underlie age-related physiological decline, our ability to translate these insights into actionable strategies to extend human healthspan has been limited. One of the major reasons for the existence of this barrier is that with a few important exceptions, many of the proteins that mediate aging have proven to be undruggable. The argument put forth here is that the amenability of ion channels and transporters to pharmacological manipulation could be leveraged to develop novel therapeutic strategies to combat aging. This review delves into the established roles for ion channels and transporters in the regulation of aging and longevity via their influence on membrane excitability, Ca2+ homeostasis, mitochondrial and endolysosomal function, and the transduction of sensory stimuli. The goal is to provide the reader with an understanding of emergent themes, and prompt further investigation into how the activities of ion channels and transporters sculpt the trajectories of cellular and organismal aging.
Collapse
|
7
|
Wu S, Du L. Protein Aggregation in the Pathogenesis of Ischemic Stroke. Cell Mol Neurobiol 2021; 41:1183-1194. [PMID: 32529541 PMCID: PMC11448579 DOI: 10.1007/s10571-020-00899-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/05/2020] [Indexed: 01/31/2023]
Abstract
Despite the distinction between ischemic stroke and neurodegenerative disorders, they share numerous pathophysiologies particularly those mediated by inflammation and oxidative stress. Although protein aggregation is considered to be a hallmark of neurodegenerative diseases, the formation of protein aggregates can be also induced within a short time after cerebral ischemia, aggravating cerebral ischemic injury. Protein aggregation uncovers a previously unappreciated molecular overlap between neurodegenerative diseases and ischemic stroke. Unfortunately, compared with neurodegenerative disease, mechanism of protein aggregation after cerebral ischemia and how this can be averted remain unclear. This review highlights current understanding on protein aggregation and its intrinsic role in ischemic stroke.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
Li F, Long Y, Xie J, Ren J, Zhou T, Song G, Li Q, Cui Z. Generation of GCaMP6s-Expressing Zebrafish to Monitor Spatiotemporal Dynamics of Calcium Signaling Elicited by Heat Stress. Int J Mol Sci 2021; 22:ijms22115551. [PMID: 34074030 PMCID: PMC8197303 DOI: 10.3390/ijms22115551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023] Open
Abstract
The ability of organisms to quickly sense and transduce signals of environmental stresses is critical for their survival. Ca2+ is a versatile intracellular messenger involved in sensing a wide variety of stresses and regulating the subsequent cellular responses. So far, our understanding for calcium signaling was mostly obtained from ex vivo tissues and cultured cell lines, and the in vivo spatiotemporal dynamics of stress-triggered calcium signaling in a vertebrate remains to be characterized. Here, we describe the generation and characterization of a transgenic zebrafish line with ubiquitous expression of GCaMP6s, a genetically encoded calcium indicator (GECI). We developed a method to investigate the spatiotemporal patterns of Ca2+ events induced by heat stress. Exposure to heat stress elicited immediate and transient calcium signaling in developing zebrafish. Cells extensively distributed in the integument of the head and body trunk were the first batch of responders and different cell populations demonstrated distinct response patterns upon heat stress. Activity of the heat stress-induced calcium signaling peaked at 30 s and swiftly decreased to near the basal level at 120 s after the beginning of exposure. Inhibition of the heat-induced calcium signaling by LaCl3 and capsazepine and treatment with the inhibitors for CaMKII (Ca²2/calmodulin-dependent protein kinase II) and HSF1 (Heat shock factor 1) all significantly depressed the enhanced heat shock response (HSR). Together, we delineated the spatiotemporal dynamics of heat-induced calcium signaling and confirmed functions of the Ca2+-CaMKII-HSF1 pathway in regulating the HSR in zebrafish.
Collapse
Affiliation(s)
- Fengyang Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China;
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.); (T.Z.); (G.S.); (Q.L.)
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.); (T.Z.); (G.S.); (Q.L.)
- Correspondence: , (Y.L.); (Z.C.); Tel.: +86-27-68780100 (Y.L.); +86-27-68780090 (Z.C.)
| | - Juhong Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.); (T.Z.); (G.S.); (Q.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ren
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Tong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.); (T.Z.); (G.S.); (Q.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.); (T.Z.); (G.S.); (Q.L.)
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.); (T.Z.); (G.S.); (Q.L.)
| | - Zongbin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: , (Y.L.); (Z.C.); Tel.: +86-27-68780100 (Y.L.); +86-27-68780090 (Z.C.)
| |
Collapse
|
9
|
Miller HA, Dean ES, Pletcher SD, Leiser SF. Cell non-autonomous regulation of health and longevity. eLife 2020; 9:62659. [PMID: 33300870 PMCID: PMC7728442 DOI: 10.7554/elife.62659] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022] Open
Abstract
As the demographics of the modern world skew older, understanding and mitigating the effects of aging is increasingly important within biomedical research. Recent studies in model organisms demonstrate that the aging process is frequently modified by an organism’s ability to perceive and respond to changes in its environment. Many well-studied pathways that influence aging involve sensory cells, frequently neurons, that signal to peripheral tissues and promote survival during the presence of stress. Importantly, this activation of stress response pathways is often sufficient to improve health and longevity even in the absence of stress. Here, we review the current landscape of research highlighting the importance of cell non-autonomous signaling in modulating aging from C. elegans to mammals. We also discuss emerging concepts including retrograde signaling, approaches to mapping these networks, and development of potential therapeutics.
Collapse
Affiliation(s)
- Hillary A Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, United States
| | - Elizabeth S Dean
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States
| | - Scott D Pletcher
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States
| | - Scott F Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| |
Collapse
|
10
|
Abstract
The functional health of the proteome is determined by properties of the proteostasis network (PN) that regulates protein synthesis, folding, macromolecular assembly, translocation, and degradation. In eukaryotes, the PN also integrates protein biogenesis across compartments within the cell and between tissues of metazoans for organismal health and longevity. Additionally, in metazoans, proteome stability and the functional health of proteins is optimized for development and yet declines throughout aging, accelerating the risk for misfolding, aggregation, and cellular dysfunction. Here, I describe the cell-nonautonomous regulation of organismal PN by tissue communication and cell stress-response pathways. These systems are robust from development through reproductive maturity and are genetically programmed to decline abruptly in early adulthood by repression of the heat shock response and other cell-protective stress responses, thus compromising the ability of cells and tissues to properly buffer against the cumulative stress of protein damage during aging. While the failure of multiple protein quality control processes during aging challenges cellular function and tissue health, genetic studies, and the identification of small-molecule proteostasis regulators suggests strategies that can be employed to reset the PN with potential benefit on cellular health and organismal longevity.
Collapse
Affiliation(s)
- Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
11
|
Henis-Korenblit S, Meléndez A. Methods to Determine the Role of Autophagy Proteins in C. elegans Aging. Methods Mol Biol 2019; 1880:561-586. [PMID: 30610723 DOI: 10.1007/978-1-4939-8873-0_37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This chapter describes methods for the analysis of autophagy proteins in C. elegans aging. We discuss the strains to be considered, the methods for the delivery of double-stranded RNA, and the methods to measure autophagy levels, autophagic flux, and degradation by autophagy.
Collapse
Affiliation(s)
- Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Alicia Meléndez
- Department of Biology, Queens College, The City University of New York, Flushing, NY, USA.
- Biology and Biochemistry PhD Programs, The Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
12
|
Endoplasmic Reticulum Homeostasis Is Modulated by the Forkhead Transcription Factor FKH-9 During Infection of Caenorhabditis elegans. Genetics 2018; 210:1329-1337. [PMID: 30287474 DOI: 10.1534/genetics.118.301450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022] Open
Abstract
Animals have evolved critical mechanisms to maintain cellular and organismal proteostasis during development, disease, and exposure to environmental stressors. The Unfolded Protein Response (UPR) is a conserved pathway that senses and responds to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) lumen. We have previously demonstrated that the IRE-1-XBP-1 branch of the UPR is required to maintain Caenorhabditis elegans ER homeostasis during larval development in the presence of pathogenic Pseudomonas aeruginosa In this study, we identify loss-of-function mutations in four conserved transcriptional regulators that suppress the larval lethality of xbp-1 mutant animals caused by immune activation in response to infection by pathogenic bacteria: FKH-9, a forkhead family transcription factor; ARID-1, an ARID/Bright domain-containing transcription factor; HCF-1, a transcriptional regulator that associates with histone modifying enzymes; and SIN-3, a subunit of a histone deacetylase complex. Further characterization of FKH-9 suggests that loss of FKH-9 enhances resistance to the ER toxin tunicamycin and results in enhanced ER-associated degradation (ERAD). Increased ERAD activity of fkh-9 loss-of-function mutants is accompanied by a diminished capacity to degrade cytosolic proteasomal substrates and a corresponding increased sensitivity to the proteasomal inhibitor bortezomib. Our data underscore how the balance between ER and cytosolic proteostasis can be influenced by compensatory activation of ERAD during the physiological ER stress of infection and immune activation.
Collapse
|
13
|
Madhivanan K, Greiner ER, Alves-Ferreira M, Soriano-Castell D, Rouzbeh N, Aguirre CA, Paulsson JF, Chapman J, Jiang X, Ooi FK, Lemos C, Dillin A, Prahlad V, Kelly JW, Encalada SE. Cellular clearance of circulating transthyretin decreases cell-nonautonomous proteotoxicity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2018; 115:E7710-E7719. [PMID: 30061394 PMCID: PMC6099907 DOI: 10.1073/pnas.1801117115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell-autonomous and cell-nonautonomous mechanisms of neurodegeneration appear to occur in the proteinopathies, including Alzheimer's and Parkinson's diseases. However, how neuronal toxicity is generated from misfolding-prone proteins secreted by nonneuronal tissues and whether modulating protein aggregate levels at distal locales affects the degeneration of postmitotic neurons remains unknown. We generated and characterized animal models of the transthyretin (TTR) amyloidoses that faithfully recapitulate cell-nonautonomous neuronal proteotoxicity by expressing human TTR in the Caenorhabditis elegans muscle. We identified sensory neurons with affected morphological and behavioral nociception-sensing impairments. Nonnative TTR oligomer load and neurotoxicity increased following inhibition of TTR degradation in distal macrophage-like nonaffected cells. Moreover, reducing TTR levels by RNAi or by kinetically stabilizing natively folded TTR pharmacologically decreased TTR aggregate load and attenuated neuronal dysfunction. These findings reveal a critical role for in trans modulation of aggregation-prone degradation that directly affects postmitotic tissue degeneration observed in the proteinopathies.
Collapse
Affiliation(s)
- Kayalvizhi Madhivanan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Erin R Greiner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Miguel Alves-Ferreira
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-171 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-171 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4150-171 Porto, Portugal
| | - David Soriano-Castell
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nirvan Rouzbeh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Carlos A Aguirre
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Johan F Paulsson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Xin Jiang
- Misfolding Diagnostics, San Diego, CA 92121
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA 52242
| | - Carolina Lemos
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-171 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-171 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4150-171 Porto, Portugal
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA 52242
| | - Jeffery W Kelly
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Sandra E Encalada
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
14
|
Kasza Á, Hunya Á, Frank Z, Fülöp F, Török Z, Balogh G, Sántha M, Bálind Á, Bernáth S, Blundell KLIM, Prodromou C, Horváth I, Zeiler HJ, Hooper PL, Vigh L, Penke B. Dihydropyridine Derivatives Modulate Heat Shock Responses and have a Neuroprotective Effect in a Transgenic Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 53:557-71. [PMID: 27163800 PMCID: PMC4969717 DOI: 10.3233/jad-150860] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heat shock proteins (Hsps) have chaperone activity and play a pivotal role in the homeostasis of proteins by preventing misfolding, by clearing aggregated and damaged proteins from cells, and by maintaining proteins in an active state. Alzheimer’s disease (AD) is thought to be caused by amyloid-β peptide that triggers tau hyperphosphorylation, which is neurotoxic. Although proteostasis capacity declines with age and facilitates the manifestation of neurodegenerative diseases such as AD, the upregulation of chaperones improves prognosis. Our research goal is to identify potent Hsp co-inducers that enhance protein homeostasis for the treatment of AD, especially 1,4-dihydropyridine derivatives optimized for their ability to modulate cellular stress responses. Based on favorable toxicological data and Hsp co-inducing activity, LA1011 was selected for the in vivo analysis of its neuroprotective effect in the APPxPS1 mouse model of AD. Here, we report that 6 months of LA1011 administration effectively improved the spatial learning and memory functions in wild type mice and eliminated neurodegeneration in double mutant mice. Furthermore, Hsp co-inducer therapy preserves the number of neurons, increases dendritic spine density, and reduces tau pathology and amyloid plaque formation in transgenic AD mice. In conclusion, the Hsp co-inducer LA1011 is neuroprotective and therefore is a potential pharmaceutical candidate for the therapy of neurodegenerative diseases, particularly AD.
Collapse
Affiliation(s)
- Ágnes Kasza
- Department of Medical Chemistry, University of Szeged, Hungary
| | - Ákos Hunya
- LipidArt Research and Development Ltd., Szeged, Hungary
| | - Zsuzsa Frank
- Department of Medical Chemistry, University of Szeged, Hungary
| | - Ferenc Fülöp
- Department of Pharmaceutical Chemistry, University of Szeged, Hungary
| | - Zsolt Török
- LipidArt Research and Development Ltd., Szeged, Hungary.,Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Gábor Balogh
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Miklós Sántha
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Árpád Bálind
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | | | | | | | - Ibolya Horváth
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | | | - Philip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Medical School, Anschutz Medical Campus, Aurora, CO, USA
| | - László Vigh
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Hungary
| |
Collapse
|
15
|
Ooi FK, Prahlad V. Olfactory experience primes the heat shock transcription factor HSF-1 to enhance the expression of molecular chaperones in C. elegans. Sci Signal 2017; 10:10/501/eaan4893. [PMID: 29042483 DOI: 10.1126/scisignal.aan4893] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Learning, a process by which animals modify their behavior as a result of experience, enables organisms to synthesize information from their surroundings to acquire resources and avoid danger. We showed that a previous encounter with only the odor of pathogenic bacteria prepared Caenorhabditis elegans to survive exposure to the pathogen by increasing the heat shock factor 1 (HSF-1)-dependent expression of genes encoding molecular chaperones. Experience-mediated enhancement of chaperone gene expression required serotonin, which primed HSF-1 to enhance the expression of molecular chaperone genes by promoting its localization to RNA polymerase II-enriched nuclear loci, even before transcription occurred. However, HSF-1-dependent chaperone gene expression was stimulated only if and when animals encountered the pathogen. Thus, learning equips C. elegans to better survive environmental dangers by preemptively and specifically initiating transcriptional mechanisms throughout the whole organism that prepare the animal to respond rapidly to proteotoxic agents. These studies provide one plausible basis for the protective role of environmental enrichment in disease.
Collapse
Affiliation(s)
- Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building East, 338 BBE, University of Iowa, Iowa City, IA 52242, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building East, 338 BBE, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Lin CT, He CW, Huang TT, Pan CL. Longevity control by the nervous system: Sensory perception, stress response and beyond. TRANSLATIONAL MEDICINE OF AGING 2017. [DOI: 10.1016/j.tma.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
Kikis EA. The struggle by Caenorhabditis elegans to maintain proteostasis during aging and disease. Biol Direct 2016; 11:58. [PMID: 27809888 PMCID: PMC5093949 DOI: 10.1186/s13062-016-0161-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
The presence of only small amounts of misfolded protein is an indication of a healthy proteome. Maintaining proteome health, or more specifically, “proteostasis,” is the purview of the “proteostasis network.” This network must respond to constant fluctuations in the amount of destabilized proteins caused by errors in protein synthesis and exposure to acute proteotoxic conditions. Aging is associated with a gradual increase in damaged and misfolded protein, which places additional stress on the machinery of the proteostasis network. In fact, despite the ability of the proteostasis machinery to readjust its stoichiometry in an attempt to maintain homeostasis, the capacity of cells to buffer against misfolding is strikingly limited. Therefore, subtle changes in the folding environment that occur during aging can significantly impact the health of the proteome. This decline and eventual collapse in proteostasis is most pronounced in individuals with neurodegenerative disorders such as Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease that are caused by the misfolding, aggregation, and toxicity of certain proteins. This review discusses how C. elegans models of protein misfolding have contributed to our current understanding of the proteostasis network, its buffering capacity, and its regulation. Reviewers: This article was reviewed by Luigi Bubacco, Patrick Lewis and Xavier Roucou.
Collapse
Affiliation(s)
- Elise A Kikis
- Biology Department, The University of the South, 735 University Avenue, Sewanee, TN, 37383, USA.
| |
Collapse
|
18
|
Hooper PL, Durham HD, Török Z, Hooper PL, Crul T, Vígh L. The central role of heat shock factor 1 in synaptic fidelity and memory consolidation. Cell Stress Chaperones 2016; 21:745-53. [PMID: 27283588 PMCID: PMC5003801 DOI: 10.1007/s12192-016-0709-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
Networks of neuronal synapses are the fundamental basis for making and retaining memory. Reduced synapse number and quality correlates with loss of memory in dementia. Heat shock factor 1 (HSF1), the major transcription factor regulating expression of heat shock genes, plays a central role in proteostasis, in establishing and sustaining synaptic fidelity and function, and in memory consolidation. Support for this thesis is based on these observations: (1) heat shock induces improvements in synapse integrity and memory consolidation; (2) synaptic depolarization activates HSF1; (3) activation of HSF1 alone (independent of the canonical heat shock response) augments formation of essential synaptic elements-neuroligands, vesicle transport, synaptic scaffolding proteins, lipid rafts, synaptic spines, and axodendritic synapses; (4) HSF1 coalesces and activates memory receptors in the post-synaptic dendritic spine; (5) huntingtin or α-synuclein accumulation lowers HSF1 while HSF1 lowers huntingtin and α-synuclein aggregation-a potential vicious cycle; and (6) HSF1 agonists (including physical activity) can improve cognitive function in dementia models. Thus, via direct gene expression of synaptic elements, production of HSPs that assure high protein fidelity, and activation of other neuroprotective signaling pathways, HSF1 agonists could provide breakthrough therapy for dementia-associated disease.
Collapse
Affiliation(s)
- Philip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Heather D Durham
- Department of Neurology/Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Paul L Hooper
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA, USA
| | - Tim Crul
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
19
|
Sinkovics JG. The cell survival pathways of the primordial RNA-DNA complex remain conserved in the extant genomes and may function as proto-oncogenes. Eur J Microbiol Immunol (Bp) 2015; 5:25-43. [PMID: 25883792 PMCID: PMC4397846 DOI: 10.1556/eujmi-d-14-00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/22/2014] [Indexed: 01/09/2023] Open
Abstract
Malignantly transformed (cancer) cells of multicellular hosts, including human cells, operate activated biochemical pathways that recognizably derived from unicellular ancestors. The descendant heat shock proteins of thermophile archaea now chaperon oncoproteins. The ABC cassettes of toxin-producer zooxantella Symbiodinia algae pump out the cytoplasmic toxin molecules; malignantly transformed cells utilize the derivatives of these cassettes to get rid of chemotherapeuticals. High mobility group helix-loop-helix proteins, protein arginine methyltransferases, proliferating cell nuclear antigens, and Ki-67 nuclear proteins, that protect and repair DNA in unicellular life forms, support oncogenes in transformed cells. The cell survival pathways of Wnt-β-catenin, Hedgehog, PI3K, MAPK-ERK, STAT, Ets, JAK, Pak, Myb, achaete scute, circadian rhythms, Bruton kinase and others, which are physiological in uni- and early multicellular eukaryotic life forms, are constitutively encoded in complex oncogenic pathways in selected single cells of advanced multicellular eukaryotic hosts. Oncogenes and oncoproteins in advanced multicellular hosts recreate selected independently living and immortalized unicellular life forms, which are similar to extinct and extant protists. These unicellular life forms are recognized at the clinics as autologous "cancer cells".
Collapse
Affiliation(s)
- J G Sinkovics
- St. Joseph's Hospital Cancer Institute Affiliated with the H. L. Moffitt Comprehensive Cancer Center, Morsani College of Medicine, Department of Molecular Medicine, The University of South Florida Tampa, FL USA
| |
Collapse
|
20
|
Nussbaum-Krammer CI, Morimoto RI. Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases. Dis Model Mech 2014; 7:31-9. [PMID: 24396152 PMCID: PMC3882046 DOI: 10.1242/dmm.013011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.
Collapse
Affiliation(s)
- Carmen I Nussbaum-Krammer
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | | |
Collapse
|
21
|
Abstract
Protein quality control is regulated by the proteostasis network and cell stress response pathways to promote cellular health. In this review, van Oosten-Hawle and Morimoto cover recent advances in model systems that reveal how communication between subcellular compartments and across different cells and tissues maintains a functional proteome during stress. The authors propose that transcellular stress signaling provides a critical control mechanism for the proteostasis network to maintain organismal health and life span. Protein quality control is essential in all organisms and regulated by the proteostasis network (PN) and cell stress response pathways that maintain a functional proteome to promote cellular health. In this review, we describe how metazoans employ multiple modes of cell-nonautonomous signaling across tissues to integrate and transmit the heat-shock response (HSR) for balanced expression of molecular chaperones. The HSR and other cell stress responses such as the unfolded protein response (UPR) can function autonomously in single-cell eukaryotes and tissue culture cells; however, within the context of a multicellular animal, the PN is regulated by cell-nonautonomous signaling through specific sensory neurons and by the process of transcellular chaperone signaling. These newly identified forms of stress signaling control the PN between neurons and nonneuronal somatic tissues to achieve balanced tissue expression of chaperones in response to environmental stress and to ensure that metastable aggregation-prone proteins expressed within any single tissue do not generate local proteotoxic risk. Transcellular chaperone signaling leads to the compensatory expression of chaperones in other somatic tissues of the animal, perhaps preventing the spread of proteotoxic damage. Thus, communication between subcellular compartments and across different cells and tissues maintains proteostasis when challenged by acute stress and upon chronic expression of metastable proteins. We propose that transcellular chaperone signaling provides a critical control step for the PN to maintain cellular and organismal health span.
Collapse
|
22
|
Chen CH, Chen YC, Jiang HC, Chen CK, Pan CL. Neuronal aging: learning from C. elegans. J Mol Signal 2013; 8:14. [PMID: 24325838 PMCID: PMC3895751 DOI: 10.1186/1750-2187-8-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/03/2013] [Indexed: 12/21/2022] Open
Abstract
The heterogeneity and multigenetic nature of nervous system aging make modeling of it a formidable task in mammalian species. The powerful genetics, simple anatomy and short life span of the nematode Caenorhabditis elegans offer unique advantages in unraveling the molecular genetic network that regulates the integrity of neuronal structures and functions during aging. In this review, we first summarize recent breakthroughs in the morphological and functional characterization of C. elegans neuronal aging. Age-associated morphological changes include age-dependent neurite branching, axon beading or swelling, axon defasciculation, progressive distortion of the neuronal soma, and early decline in presynaptic release function. We then discuss genetic pathways that modulate the speed of neuronal aging concordant with alteration in life span, such as insulin signaling, as well as cell-autonomous factors that promote neuronal integrity during senescence, including membrane activity and JNK/MAPK signaling. As a robust genetic model for aging, insights from C. elegans neuronal aging studies will contribute to our mechanistic understanding of human brain aging.
Collapse
Affiliation(s)
| | | | | | | | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No, 7, Chung-Shan South Rd, Taipei 100, Taiwan.
| |
Collapse
|