1
|
Frigerio C, Galli M, Castelli S, Da Prada A, Clerici M. Control of Replication Stress Response by Cytosolic Fe-S Cluster Assembly (CIA) Machinery. Cells 2025; 14:442. [PMID: 40136691 PMCID: PMC11941123 DOI: 10.3390/cells14060442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Accurate DNA replication is essential for the maintenance of genome stability and the generation of healthy offspring. When DNA replication is challenged, signals accumulate at blocked replication forks that elicit a multifaceted cellular response, orchestrating DNA replication, DNA repair and cell cycle progression. This replication stress response promotes the recovery of DNA replication, maintaining chromosome integrity and preventing mutations. Defects in this response are linked to heightened genetic instability, which contributes to tumorigenesis and genetic disorders. Iron-sulfur (Fe-S) clusters are emerging as important cofactors in supporting the response to replication stress. These clusters are assembled and delivered to target proteins that function in the cytosol and nucleus via the conserved cytosolic Fe-S cluster assembly (CIA) machinery and the CIA targeting complex. This review summarizes recent advances in understanding the structure and function of the CIA machinery in yeast and mammals, emphasizing the critical role of Fe-S clusters in the replication stress response.
Collapse
Affiliation(s)
| | | | | | | | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy; (C.F.); (M.G.); (S.C.); (A.D.P.)
| |
Collapse
|
2
|
Volpe M, Levinton N, Rosenstein N, Prag G, Ben-Aroya S. Regulation of the anaphase promoting complex/cyclosome by the degradation of its unassembled catalytic subunit, Apc11. FASEB J 2019; 33:9752-9761. [PMID: 31162950 DOI: 10.1096/fj.201802300r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the challenges encountered by the protein quality control machinery is the need to ensure that members of multiprotein complexes are available in the correct proportions. In this study, we demonstrate that the ubiquitin proteasome system (UPS) mediates the degradation of Apc11, the catalytic core subunit of the anaphase promoting complex/cyclosome (APC/C). In vitro studies have shown that Apc11, together with its E2 enzyme, is sufficient to ubiquitinate substrates independently of the APC/C. Here, we establish that this can occur in living yeast cells. We show that the tight controls regulating the function of the fully assembled APC/C can be circumvented when its substrates are ubiquitinated by the excess levels of Apc11 independently of the assembled complex. We thus suggest that the UPS-mediated degradation of Apc11 is an overlooked mechanism ensuring that proper function of the APC/C is limited to suitably delimited holoenzymes and that an imbalance in protein expression may result in detrimental gain-of-function activity, rather than merely the disruption of protein complex stoichiometry.-Volpe, M., Levinton, N., Rosenstein, N., Prag, G., Ben-Aroya, S. Regulation of the anaphase promoting complex/cyclosome by the degradation of its unassembled catalytic subunit, Apc11.
Collapse
Affiliation(s)
- Marina Volpe
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nelly Levinton
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Gali Prag
- The Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Shay Ben-Aroya
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
3
|
Stynen B, Abd-Rabbo D, Kowarzyk J, Miller-Fleming L, Aulakh SK, Garneau P, Ralser M, Michnick SW. Changes of Cell Biochemical States Are Revealed in Protein Homomeric Complex Dynamics. Cell 2018; 175:1418-1429.e9. [PMID: 30454649 PMCID: PMC6242466 DOI: 10.1016/j.cell.2018.09.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
We report here a simple and global strategy to map out gene functions and target pathways of drugs, toxins, or other small molecules based on "homomer dynamics" protein-fragment complementation assays (hdPCA). hdPCA measures changes in self-association (homomerization) of over 3,500 yeast proteins in yeast grown under different conditions. hdPCA complements genetic interaction measurements while eliminating the confounding effects of gene ablation. We demonstrate that hdPCA accurately predicts the effects of two longevity and health span-affecting drugs, the immunosuppressant rapamycin and the type 2 diabetes drug metformin, on cellular pathways. We also discovered an unsuspected global cellular response to metformin that resembles iron deficiency and includes a change in protein-bound iron levels. This discovery opens a new avenue to investigate molecular mechanisms for the prevention or treatment of diabetes, cancers, and other chronic diseases of aging.
Collapse
Affiliation(s)
- Bram Stynen
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Diala Abd-Rabbo
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada; Centre Robert-Cedergren, Bio-Informatique et Génomique, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jacqueline Kowarzyk
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Leonor Miller-Fleming
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Philippe Garneau
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Biochemistry, Charité University Medicine, Berlin, Germany
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada; Centre Robert-Cedergren, Bio-Informatique et Génomique, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
4
|
Vo AT, Fleischman NM, Marquez MD, Camire EJ, Esonwune SU, Grossman JD, Gay KA, Cosman JA, Perlstein DL. Defining the domains of Cia2 required for its essential function in vivo and in vitro. Metallomics 2018; 9:1645-1654. [PMID: 29057997 DOI: 10.1039/c7mt00181a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cytosolic iron-sulfur cluster assembly (CIA) system biosynthesizes iron-sulfur (FeS) cluster cofactors for cytosolic and nuclear proteins. The yeast Cia2 protein is the central component of the targeting complex which identifies apo-protein targets in the final step of the pathway. Herein, we determine that Cia2 contains five conserved motifs distributed between an intrinsically disordered N-terminal domain and a C-terminal domain of unknown function 59 (DUF59). The disordered domain is dispensible for binding the other subunits of the targeting complex, Met18 and Cia1, and the apo-target Rad3 in vitro. While in vivo assays reveal that the C-terminal domain is sufficient to support viability, several phenotypic assays indicate that deletion of the N-terminal domain negatively impacts CIA function. We additionally establish that Glu208, located within a conserved motif found only in eukaryotic DUF59 proteins, is important for the Cia1-Cia2 interaction in vitro. In vivo, E208A-Cia2 results in a diminished activity of the cytosolic iron sulfur cluster protein, Leu1 but only modest effects on hydroxyurea or methylmethane sulfonate sensitivity. Finally, we demonstrate that neither of the two highly conserved motifs of the DUF59 domain are vital for any of Cia2's interactions in vitro yet mutation of the DPE motif in the DUF59 domain results in a nonfunctional allele in vivo. Our observation that four of the five highly conserved motifs of Cia2 are dispensable for targeting complex formation and apo-target binding suggests that Cia2 is not simply a protein-protein interaction mediator but it likely possesses an additional, currently cryptic, function during the final cluster insertion step of CIA.
Collapse
Affiliation(s)
- Amanda T Vo
- Department of Chemistry, Boston University, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ben-Shimon L, Paul VD, David-Kadoch G, Volpe M, Stümpfig M, Bill E, Mühlenhoff U, Lill R, Ben-Aroya S. Fe-S cluster coordination of the chromokinesin KIF4A alters its sub-cellular localization during mitosis. J Cell Sci 2018; 131:jcs.211433. [DOI: 10.1242/jcs.211433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/11/2018] [Indexed: 11/20/2022] Open
Abstract
Fe-S clusters act as co-factors of proteins with diverse functions, e.g. in DNA repair. Down-regulation of the cytosolic iron-sulfur protein assembly (CIA) machinery promotes genomic instability by the inactivation of multiple DNA repair pathways. Furthermore, CIA deficiencies are associated with so far unexplained mitotic defects. Here, we show that CIA2B and MMS19, constituents of the CIA targeting complex involved in facilitating Fe-S cluster insertion into cytosolic and nuclear target proteins, co-localize with components of the mitotic machinery. Down-regulation of CIA2B and MMS19 impairs the mitotic cycle. We identify the chromokinesin KIF4A as a mitotic component involved in these effects. KIF4A binds a Fe-S cluster in vitro through its conserved cysteine-rich domain. We demonstrate in vivo that this domain is required for the mitosis-related KIF4A localization and for the mitotic defects associated with KIF4A knockout. KIF4A is the first identified mitotic component carrying such a post-translational modification. These findings suggest that the lack of Fe-S clusters in KIF4A upon down-regulation of the CIA targeting complex contributes to the mitotic defects.
Collapse
Affiliation(s)
- Lilach Ben-Shimon
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Viktoria D. Paul
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
- LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Galit David-Kadoch
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Marina Volpe
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Martin Stümpfig
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim-Ruhr, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
- LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Shay Ben-Aroya
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| |
Collapse
|
6
|
Cytosolic Iron-Sulfur Assembly Is Evolutionarily Tuned by a Cancer-Amplified Ubiquitin Ligase. Mol Cell 2018; 69:113-125.e6. [DOI: 10.1016/j.molcel.2017.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/04/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023]
|
7
|
Stynen B, Abd-rabbo D, Kowarzyk J, Miller-fleming L, Ralser M, Michnick S. A Yeast Global Genetic Screen Reveals that Metformin Induces an Iron Deficiency-Like State.. [DOI: 10.1101/190389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractWe report here a simple and global strategy to map out gene functions and target pathways of drugs, toxins or other small molecules based on “homomer dynamics” Protein-fragment Complementation Assays (hdPCA). hdPCA measures changes in self-association (homomerization) of over 3,500 yeast proteins in yeast grown under different conditions. hdPCA complements genetic interaction measurements while eliminating confounding effects of gene ablation. We demonstrate that hdPCA accurately predicts the effects of two longevity and health-span-affecting drugs, immunosuppressant rapamycin and type II diabetes drug metformin, on cellular pathways. We also discovered an unsuspected global cellular response to metformin that resembles iron deficiency. This discovery opens a new avenue to investigate molecular mechanisms for the prevention or treatments of diabetes, cancers and other chronic diseases of aging.
Collapse
|
8
|
Riera‐Romo M. COMMD1: A Multifunctional Regulatory Protein. J Cell Biochem 2017; 119:34-51. [DOI: 10.1002/jcb.26151] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Mario Riera‐Romo
- Department of PharmacologyInstitute of Marine SciencesHavanaCuba
| |
Collapse
|
9
|
A New Method, "Reverse Yeast Two-Hybrid Array" (RYTHA), Identifies Mutants that Dissociate the Physical Interaction Between Elg1 and Slx5. Genetics 2017; 206:1683-1697. [PMID: 28476868 DOI: 10.1534/genetics.117.200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/27/2017] [Indexed: 11/18/2022] Open
Abstract
The vast majority of processes within the cell are carried out by proteins working in conjunction. The Yeast Two-Hybrid (Y2H) methodology allows the detection of physical interactions between any two interacting proteins. Here, we describe a novel systematic genetic methodology, "Reverse Yeast Two-Hybrid Array" (RYTHA), that allows the identification of proteins required for modulating the physical interaction between two given proteins. Our assay starts with a yeast strain in which the physical interaction of interest can be detected by growth on media lacking histidine, in the context of the Y2H methodology. By combining the synthetic genetic array technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify trans-acting mutations that disrupt the physical interaction of interest. We apply this novel method in a screen for mutants that disrupt the interaction between the N-terminus of Elg1 and the Slx5 protein. Elg1 is part of an alternative replication factor C-like complex that unloads PCNA during DNA replication and repair. Slx5 forms, together with Slx8, a SUMO-targeted ubiquitin ligase (STUbL) believed to send proteins to degradation. Our results show that the interaction requires both the STUbL activity and the PCNA unloading by Elg1, and identify topoisomerase I DNA-protein cross-links as a major factor in separating the two activities. Thus, we demonstrate that RYTHA can be applied to gain insights about particular pathways in yeast, by uncovering the connection between the proteasomal ubiquitin-dependent degradation pathway, DNA replication, and repair machinery, which can be separated by the topoisomerase-mediated cross-links to DNA.
Collapse
|
10
|
Diss G, Landry CR. Combining the Dihydrofolate Reductase Protein-Fragment Complementation Assay with Gene Deletions to Establish Genotype-to-Phenotype Maps of Protein Complexes and Interaction Networks. Cold Spring Harb Protoc 2016; 2016:2016/11/pdb.prot090035. [PMID: 27803253 DOI: 10.1101/pdb.prot090035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Systematically measuring the impact of gene deletion on protein-protein interactions is a promising approach to reveal the structural bases of protein interaction networks and to allow a better understanding of how genotypes translate into phenotypes. Genetic and protein-interaction tools in yeast now allow us to explore this third dimension of protein-protein interaction networks. Because it is scalable and quantitative, the protein-fragment complementation assay (PCA) using dihydrofolate reductase (DHFR) as the reporter protein provides an exceptionally powerful tool for such a purpose. Here, we describe a fully automated protocol that combines DHFR PCA for protein-protein interaction measurement and synthetic genetic array (SGA) technology for introducing mutant and other alleles into PCA strains using genetic crosses. In this, PCA strains are crossed with strains carrying a gene deletion and SGA markers, and the recombinant haploid progeny are selected by SGA. The resulting haploid strains, each expressing a DHFR-fragment fusion protein in a gene-specific haploid deletion background, are crossed to measure the interaction between the two recombinant proteins by PCA in a diploid homozygous deletion background. This approach can be used to measure a single protein interaction in a large array of genetic backgrounds or a large number of protein interactions in a small number of genetic backgrounds.
Collapse
Affiliation(s)
- Guillaume Diss
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO-Québec Research Network on Protein Function, Structure and Engineering, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Christian R Landry
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO-Québec Research Network on Protein Function, Structure and Engineering, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
11
|
Structure of ubiquitylated-Rpn10 provides insight into its autoregulation mechanism. Nat Commun 2016; 7:12960. [PMID: 27698474 PMCID: PMC5059453 DOI: 10.1038/ncomms12960] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/19/2016] [Indexed: 01/01/2023] Open
Abstract
Ubiquitin receptors decode ubiquitin signals into many cellular responses. Ubiquitin receptors also undergo coupled monoubiquitylation, and rapid deubiquitylation has hampered the characterization of the ubiquitylated state. Using bacteria that express a ubiquitylation apparatus, we purified and determined the crystal structure of the proteasomal ubiquitin-receptor Rpn10 in its ubiquitylated state. The structure shows a novel ubiquitin-binding patch that directs K84 ubiquitylation. Superimposition of ubiquitylated-Rpn10 onto electron-microscopy models of proteasomes indicates that the Rpn10-conjugated ubiquitin clashes with Rpn9, suggesting that ubiquitylation might be involved in releasing Rpn10 from the proteasome. Indeed, ubiquitylation on immobilized proteasomes dissociates the modified Rpn10 from the complex, while unmodified Rpn10 mainly remains associated. In vivo experiments indicate that contrary to wild type, Rpn10-K84R is stably associated with the proteasomal subunit Rpn9. Similarly Rpn10, but not ubiquitylated-Rpn10, binds Rpn9 in vitro. Thus we suggest that ubiquitylation functions to dissociate modified ubiquitin receptors from their targets, a function that promotes cyclic activity of ubiquitin receptors. Ubiquitin (Ub) receptors are responsible for the recognition of ubiquitylated proteins. Here the authors describe the crystal structure of the ubiquitylated form of the Ub-receptor Rpn10, which suggest that ubiquitylation of Rpn10 promotes its dissociation from the proteasome.
Collapse
|
12
|
Peters LZ, Karmon O, Miodownik S, Ben-Aroya S. Proteasome storage granules are transiently associated with the insoluble protein deposit (IPOD). J Cell Sci 2016; 129:1190-7. [DOI: 10.1242/jcs.179648] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/26/2016] [Indexed: 12/28/2022] Open
Abstract
Proteasome storage granules (PSGs) are created in yeast as part of an extensive, programmed reorganization of proteins into reversible assemblies, upon carbon source depletion. Here, we demonstrate that cells distinguish dysfunctional proteasomes from PSGs on the cytosolic insoluble protein deposit (IPOD). Furthermore, we provide evidence that this is a general mechanism for the reorganization of additional proteins into reversible assemblies. Our study expands the roles of the IPOD which may serve not only as the specific depository for amyloidogenic and misfolded proteins, but also as a potential hub, from which proteins are directed to distinct cellular compartments. These findings therefore provide a framework for understanding how cells discriminate between intact and abnormal proteins under stress conditions to ensure that only structurally ‘correct’ proteins are deployed.
Collapse
Affiliation(s)
- Lee Zeev Peters
- Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, Israel
| | - Ofri Karmon
- Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, Israel
| | - Shir Miodownik
- Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, Israel
| | - Shay Ben-Aroya
- Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
13
|
Filteau M, Vignaud H, Rochette S, Diss G, Chrétien AÈ, Berger CM, Landry CR. Multi-scale perturbations of protein interactomes reveal their mechanisms of regulation, robustness and insights into genotype-phenotype maps. Brief Funct Genomics 2015; 15:130-7. [PMID: 26476431 DOI: 10.1093/bfgp/elv043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular architectures and signaling machineries are organized through protein-protein interactions (PPIs). High-throughput methods to study PPIs in yeast have opened a new perspective on the organization of the cell by allowing the study of whole protein interactomes. Recent investigations have moved from the description of this organization to the analysis of its dynamics by experimenting how protein interaction networks (PINs) are rewired in response to perturbations. Here we review studies that have used the budding yeast as an experimental system to explore these altered networks. Given the large space of possible PPIs and the diversity of potential genetic and environmental perturbations, high-throughput methods are an essential requirement to survey PIN perturbations on a large scale. Network perturbations are typically conceptualized as the removal of entire proteins (nodes), the modification of single PPIs (edges) or changes in growth conditions. These studies have revealed mechanisms of PPI regulation, PIN architectural organization, robustness and sensitivity to perturbations. Despite these major advances, there are still inherent limits to current technologies that lead to a trade-off between the number of perturbations and the number of PPIs that can be considered simultaneously. Nevertheless, as we exemplify here, targeted approaches combined with the existing resources remain extremely powerful to explore the inner organization of cells and their responses to perturbations.
Collapse
|
14
|
The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet 2015; 11:e1005178. [PMID: 25919710 PMCID: PMC4412499 DOI: 10.1371/journal.pgen.1005178] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 03/26/2015] [Indexed: 01/22/2023] Open
Abstract
Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with various aggregation diseases. In eukaryotes, the ubiquitin proteasome system (UPS) plays a vital role in protein quality control (PQC), by selectively targeting misfolded proteins for degradation. While the assembly of the proteasome can be naturally impaired by many factors, the regulatory pathways that mediate the sorting and elimination of misassembled proteasomal subunits are poorly understood. Here, we reveal how the dysfunctional proteasome is controlled by the PQC machinery. We found that among the multilayered quality control mechanisms, UPS mediated degradation of its own misassembled subunits is the favored pathway. We also demonstrated that the Hsp42 chaperone mediates an alternative pathway, the accumulation of these subunits in cytoprotective compartments. Thus, we show that proteasome homeostasis is controlled through probing the level of proteasome assembly, and the interplay between UPS mediated degradation or their sorting into distinct cellular compartments. The accumulation of misfolded proteins threatens cell fitness and viability and their aggregation is commonly associated with numerous neurodegenerative disorders. Cells therefore rely on a number of protein quality control (PQC) pathways to prevent protein aggregation. In eukaryotes, the ubiquitin proteasome system (UPS), a supramolecular machinery that mediates the proteolysis of damaged or misfolded proteins, plays a vital role in PQC by selectively targeting proteins for degradation. Although the critical role-played by the UPS in PQC, and the severe consequences of impairing this pathway are well established, little was known about the mechanisms that control dysfunctional proteasome subunits. Here, we reveal that the interplay between UPS mediated degradation of its own misassembled subunits, and sorting them into cytoprotective compartments, a process that is mediated by the Hsp42 chaperone, determines how proteasome homeostasis is controlled in yeast cells. We believe that the mechanism of proteasome regulation by the PCQ in yeast may serve as a paradigm for understanding how homeostasis of this essential complex is controlled in major chronic neurodegenerative disorders in higher eukaryotes.
Collapse
|
15
|
Rochette S, Diss G, Filteau M, Leducq JB, Dubé AK, Landry CR. Genome-wide protein-protein interaction screening by protein-fragment complementation assay (PCA) in living cells. J Vis Exp 2015:52255. [PMID: 25867901 PMCID: PMC4401175 DOI: 10.3791/52255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Proteins are the building blocks, effectors and signal mediators of cellular processes. A protein's function, regulation and localization often depend on its interactions with other proteins. Here, we describe a protocol for the yeast protein-fragment complementation assay (PCA), a powerful method to detect direct and proximal associations between proteins in living cells. The interaction between two proteins, each fused to a dihydrofolate reductase (DHFR) protein fragment, translates into growth of yeast strains in presence of the drug methotrexate (MTX). Differential fitness, resulting from different amounts of reconstituted DHFR enzyme, can be quantified on high-density colony arrays, allowing to differentiate interacting from non-interacting bait-prey pairs. The high-throughput protocol presented here is performed using a robotic platform that parallelizes mating of bait and prey strains carrying complementary DHFR-fragment fusion proteins and the survival assay on MTX. This protocol allows to systematically test for thousands of protein-protein interactions (PPIs) involving bait proteins of interest and offers several advantages over other PPI detection assays, including the study of proteins expressed from their endogenous promoters without the need for modifying protein localization and for the assembly of complex reporter constructs.
Collapse
Affiliation(s)
- Samuel Rochette
- Département de Biologie, Institut de biologie intégrative et des systémes & PROTEO, Université Laval
| | - Guillaume Diss
- Département de Biologie, Institut de biologie intégrative et des systémes & PROTEO, Université Laval
| | - Marie Filteau
- Département de Biologie, Institut de biologie intégrative et des systémes & PROTEO, Université Laval
| | - Jean-Baptiste Leducq
- Département de Biologie, Institut de biologie intégrative et des systémes & PROTEO, Université Laval
| | - Alexandre K Dubé
- Département de Biologie, Institut de biologie intégrative et des systémes & PROTEO, Université Laval
| | - Christian R Landry
- Département de Biologie, Institut de biologie intégrative et des systémes & PROTEO, Université Laval;
| |
Collapse
|
16
|
Wang J, Zuo Y, Man YG, Avital I, Stojadinovic A, Liu M, Yang X, Varghese RS, Tadesse MG, Ressom HW. Pathway and network approaches for identification of cancer signature markers from omics data. J Cancer 2015; 6:54-65. [PMID: 25553089 PMCID: PMC4278915 DOI: 10.7150/jca.10631] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022] Open
Abstract
The advancement of high throughput omic technologies during the past few years has made it possible to perform many complex assays in a much shorter time than the traditional approaches. The rapid accumulation and wide availability of omic data generated by these technologies offer great opportunities to unravel disease mechanisms, but also presents significant challenges to extract knowledge from such massive data and to evaluate the findings. To address these challenges, a number of pathway and network based approaches have been introduced. This review article evaluates these methods and discusses their application in cancer biomarker discovery using hepatocellular carcinoma (HCC) as an example.
Collapse
Affiliation(s)
- Jinlian Wang
- 1. Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- 7. Genetics and Genomics Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiming Zuo
- 1. Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- 6. Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA
| | - Yan-gao Man
- 2. Bon Secours Cancer Institute, Richmond VA, USA
| | | | - Alexander Stojadinovic
- 2. Bon Secours Cancer Institute, Richmond VA, USA
- 3. Division of Surgical Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Meng Liu
- 4. Department of Public Health School of Hunter College, City University of New York, NYC, USA
| | - Xiaowei Yang
- 4. Department of Public Health School of Hunter College, City University of New York, NYC, USA
| | - Rency S. Varghese
- 1. Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Mahlet G Tadesse
- 5. Department of Mathematics and Statistics, Georgetown University, Washington DC, USA
| | - Habtom W Ressom
- 1. Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
17
|
Lev I, Volpe M, Ben-Aroya S. Identification of Genes Important for the Physical Interaction between Protein Pairs through Reverse PCA (rPCA). CURRENT PROTOCOLS IN CELL BIOLOGY 2014; 64:17.15.1-11. [PMID: 25181300 DOI: 10.1002/0471143030.cb1715s64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cells contain many important protein complexes involved in performing and regulating structural, metabolic, and signaling functions. Understanding physical and functional interactions between proteins in living systems is of vital importance in biology. The importance of protein-protein interactions (PPIs) has led to the development of several powerful methodologies and techniques to detect them. All of this information has enabled the creation of large protein-interaction networks. One important challenge in biology is to understand how protein complexes respond to genetic perturbations. Here we describe a systematic genetic assay termed "reverse PCA," which allows the identification of genes whose products are required for modulating the physical interaction between two given proteins. Our assay starts with a yeast strain in which the PPI of interest can be detected by resistance to the drug methotrexate, in the context of the protein-fragment complementation assay (PCA). By combining the synthetic genetic array (SGA) technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify trans-acting mutations that disrupt the physical interaction of interest. The identification of such mutants is valuable for unraveling important regulatory mechanisms, and for defining the response of the protein interactome to specific perturbations.
Collapse
Affiliation(s)
- Ifat Lev
- Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|