1
|
Li J, Liang X, Wang X, Yang P, Jian X, Fu L, Deng A, Liu C, Liu J. A missense GDF5 variant causes brachydactyly type A1 and multiple-synostoses syndrome 2. JOR Spine 2024; 7:e1302. [PMID: 38222807 PMCID: PMC10782059 DOI: 10.1002/jsp2.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/16/2023] [Accepted: 11/02/2023] [Indexed: 01/16/2024] Open
Abstract
Objective This study aimed to identify the molecular defects and clinical manifestations in a Chinese family with brachydactyly (BD) type A1 (BDA1) and multiple-synostoses syndrome 2 (SYNS2). Methods A Chinese family with BDA1 and SYNS2 was enrolled in this study. Whole-exome sequencing was used to analyze the gene variants in the proband. The sequences of the candidate pathogenic variant in GDF5 was validated via Sanger sequencing. I-TASSER and PyMOL were used to analyze the functional domains of the corresponding mutant proteins. Results The family was found to have an autosomal-dominantly inherited combination of BDA1 and SYNS2 caused by the S475N variant in the GDF5 gene. The variant was located within the functional region, and the mutated residue was found to be highly conserved among species. Via bioinformatic analyses, we predicted this variant to be deleterious, which perturb the protein function. The substitution of the negatively charged amino acid S475 with the neutral N475 was predicted to disrupt the formation of salt bridges with Y487 and impair the structure, stability, and function of the protein, consequently, the abnormalities in cartilage and bone development ensue. Conclusions A single genetic variant (S475N) which disrupt the formation of salt bridges with Y487, in the interface of the antagonist- and receptor-binding sites of GDF5 concurrently causes two pathological mechanisms. This is the first report of this variant, identified in a Chinese family with BDA1 and SYNS2.
Collapse
Affiliation(s)
- Juyi Li
- Department of Pharmacy, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaofang Liang
- Department of Dermatology, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xiufang Wang
- Department of Pain, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Pei Yang
- Department of Radiology, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaofei Jian
- Department of Orthopedics, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Lei Fu
- Department of Ultrasound, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianningHubeiChina
| | - Jianxin Liu
- Department of Ultrasound, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
2
|
Wang YP, Di WJ, Yang S, Qin SL, Xu YF, Han PF, Hou KD. The association of growth differentiation factor 5 rs143383 gene polymorphism with osteoarthritis: a systematic review and meta-analysis. J Orthop Surg Res 2023; 18:763. [PMID: 37817264 PMCID: PMC10563324 DOI: 10.1186/s13018-023-04245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is caused by a complex set of pathophysiological factors. The genetic factors involved in the occurrence and progress of the disease have been widely discussed by scholars. It was found that growth differentiation factor 5 (GDF5) gene polymorphisms may be linked to OA susceptibility, which has been controversial and needs to be further confirmed by an updated meta-analysis. OBJECTIVES We examined the association between GDF5 rs143383 single nucleotide polymorphism (SNP) and OA susceptibility. METHODS All relevant articles that met the criteria are retrieved and included, and the search deadline is June 2022. The allele frequencies and different genotype frequencies of GDF5 rs143383 loci in each study were extracted and statistically analyzed by R4.1.3 software, and the different genetic models were analyzed based on their odds ratio (OR) and 95% confidence interval (CI). RESULTS The meta-analysis explained that GDF5 rs143383 SNP was crucial correlated with OA in all patients with OA of knee, hip and hand. The codominant gene model in the whole crowd (OR = 1.17, 95% CI 1.07-1.27, P < 0.01) enlightened that OA was vitally associated with GDF5 gene polymorphism. At the same time, we did a subgroup analysis based on ethnicity. The codominant gene model (OR = 1.31, 95% CI 1.12-1.53, P < 0.01) in Asian population, the codominant homozygote model (OR = 1.28, 95% CI 1.14-1.43), codominant heterozygote gene model (OR = 1.12, 95% CI 1.01-1.23, P = 0.02), and dominant gene model (OR = 1.19, 95% CI 1.09-1.31, P < 0.01) in Caucasian are analyzed by subgroup analysis. It means that there is a momentous relationship between the GDF5rs143383 gene polymorphism and OA, especially among Caucasians. In addition, we also discussed different types of OA separately and discover that the GDF5rs143383 gene polymorphism was relevant for knee osteoarthritis (KOA) and hand osteoarthritis, and it was more significant in the Caucasian population. But due to the high heterogeneity in hip osteoarthritis, it could not be accurately concluded. Furthermore, we also analyzed the osteoarthritis of different genders and found that the GDF5 rs143383 SNP was associated with both men and women and was still significant in the Caucasian population. CONCLUSION We found a close association between osteoarthritis and GDF5rs143383SNP in this study. From the analysis of each group, we got the same conclusion in KOA and hand OA, but which need further verification in hip OA. Considering gender, we found a close relationship between GDF5 rs143383 SNP and OA of the knee, hip and hand, both for men and women. This conclusion is more obvious in Caucasian people.
Collapse
Affiliation(s)
- Yue-Peng Wang
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, 101200, China
| | - Wen-Jia Di
- Department of Graduate School, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Su Yang
- Department of Orthopaedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Shi-Lei Qin
- Department of Orthopaedics, Changzhi Yunfeng Hospital, Changzhi, 046000, China
| | - Yun-Feng Xu
- Department of Orthopaedics, Changzhi Yunfeng Hospital, Changzhi, 046000, China
| | - Peng-Fei Han
- Department of Orthopaedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| | - Ke-Dong Hou
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, 101200, China.
| |
Collapse
|
3
|
Yeboah RL, Pira CU, Shankel M, Cooper AM, Haro E, Ly VD, Wysong K, Zhang M, Sandoval N, Oberg KC. Sox, Fox, and Lmx1b binding sites differentially regulate a Gdf5-Associated regulatory region during elbow development. Front Cell Dev Biol 2023; 11:1215406. [PMID: 37492222 PMCID: PMC10364121 DOI: 10.3389/fcell.2023.1215406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction: The articulating ends of limb bones have precise morphology and asymmetry that ensures proper joint function. Growth differentiation factor 5 (Gdf5) is a secreted morphogen involved in cartilage and bone development that contributes to the architecture of developing joints. Dysregulation of Gdf5 results in joint dysmorphogenesis often leading to progressive joint degeneration or osteoarthritis (OA). The transcription factors and cis-regulatory modules (CRMs) that regulate Gdf5 expression are not well characterized. We previously identified a Gdf5-associated regulatory region (GARR) that contains predicted binding sites for Lmx1b, Osr2, Fox, and the Sox transcription factors. These transcription factors are recognized factors involved in joint morphogenesis and skeletal development. Methods: We used in situ hybridization to Gdf5, Col2A1, and the transcription factors of interest in developing chicken limbs to determine potential overlap in expression. We further analyzed scRNA-seq data derived from limbs and knees in published mouse and chicken datasets, identifying cells with coexpression of Gdf5 and the transcription factors of interest. We also performed site-directed mutatgenesis of the predicted transcription factor binding sites in a GARR-reporter construct and determined any change in activity using targeted regional electroporation (TREP) in micromass and embryonic chicken wing bioassays. Results: Gdf5 expression overlapped the expression of these transcription factors during joint development both by in situ hybridization (ISH) and scRNA-seq analyses. Within the GARR CRM, mutation of two binding sites common to Fox and Sox transcripstion factors reduced enhancer activity to background levels in micromass cultures and in ovo embryonic chicken wing bioassays, whereas mutation of two Sox-only binding sites caused a significant increase in activity. These results indicate that the Fox/Sox binding sites are required for activity, while the Sox-only sites are involved in repression of activity. Mutation of Lmx1b binding sites in GARR caused an overall reduction in enhancer activity in vitro and a dorsal reduction in ovo. Despite a recognized role for Osr2 in joint development, disruption of the predicted Osr2 site did not alter GARR activity. Conclusion: Taken together, our data indicates that GARR integrates positive, repressive, and asymmetrical inputs to fine-tune the expression of Gdf5 during elbow joint development.
Collapse
|
4
|
Kim M, Rubab A, Chan WC, Chan D. Osteoarthritis year in review: genetics, genomics and epigenetics. Osteoarthritis Cartilage 2023:S1063-4584(23)00725-2. [PMID: 36924918 DOI: 10.1016/j.joca.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
This "year in review" provides a summary of the research findings on the topic of genetics, genomics and epigenetics for osteoarthritis (OA) between Mar 2021-Apr 2022. A search routine of the literature in PubMed for the keyword, osteoarthritis, together with topics on genetics, genomics, epigenetics, polymorphism, DNA methylation, noncoding RNA, lncRNA, proteomics, and single cell RNA sequencing, returned key research articles and relevant reviews. Following filtering of duplicates across search routines, 695 unique research articles and 112 reviews were identified. We manually curated these articles and selected 90 as references for this review. However, we were unable to refer to all these articles, and only used selected articles to highlight key outcomes and trends. The trend in genetics is on the meta-analysis of existing cohorts with comparable genetic and phenotype characterisation of OA; in particular, clear definition of endophenotypes to enhance the genetic power. Further, many researchers are realizing the power of big data and multi-omics approaches to gain molecular insights for OA, and this has opened innovative approaches to include transcriptomics and epigenetics data as quantitative trait loci (QTLs). Given that most of the genetic loci for OA are not located within coding regions of genes, implying the impact is likely to be on gene regulation, epigenetics is a hot topic, and there is a surge in studies relating to the role of miRNA and long non-coding RNA on cartilage biology and pathology. The findings are exciting and new insights are provided in this review to summarize a year of research and the road map to capture all new innovations to achieve the desired goal in OA prevention and treatment.
Collapse
Affiliation(s)
- Minyeong Kim
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Aqsa Rubab
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wilson Cw Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
5
|
Yu T, Li G, Wang C, Li N, Yao R, Wang J. Defective Joint Development and Maintenance in GDF6-Related Multiple Synostoses Syndrome. J Bone Miner Res 2023; 38:568-577. [PMID: 36744814 DOI: 10.1002/jbmr.4785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
Multiple synostoses syndromes (SYNS) are a group of rare genetic bone disorders characterized by multiple joint fusions. We previously reported an SYNS4-causing GDF6 c.1330 T > A (p.Tyr444Asn) mutation, which reduced Noggin-induced GDF6 inhibition and enhanced SMAD1/5/8 signaling. However, the mechanisms by which GDF6 gain-of-function mutation alters joint formation and the comprehensive molecular portraits of SYNS4 remain unclear. Herein, we introduce the p.Tyr443Asn (orthologous to the human GDF6 p.Tyr444Asn) mutation into the mouse Gdf6 locus and report the results of extensive phenotype analysis, joint development investigation, and transcriptome profiling of Gdf6 p.Tyr443Asn limb buds. Gdf6 p.Tyr443Asn knock-in mice recapitulated the morphological features of human SYNS4, showing joint fusion in the wrists, ankles, phalanges, and auditory ossicles. Analysis of mouse embryonic forelimbs demonstrated joint interzone formation defects and excess chondrogenesis in Gdf6 p.Tyr443Asn knock-in mice. Further, RNA sequencing of forelimb buds revealed enhanced bone formation and upregulated bone morphogenetic protein (BMP) signaling in mice carrying the Gdf6 p.Tyr443Asn mutation. Because tightly regulated BMP signaling is critical for skeletal development and joint morphogenesis, our study shows that enhancing GDF6 activity has a significant impact on both prenatal joint development and postnatal joint maintenance. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Bastide S, Chomsky E, Saudemont B, Loe-Mie Y, Schmutz S, Novault S, Marlow H, Tanay A, Spitz F. TATTOO-seq delineates spatial and cell type-specific regulatory programs in the developing limb. SCIENCE ADVANCES 2022; 8:eadd0695. [PMID: 36516250 PMCID: PMC9750149 DOI: 10.1126/sciadv.add0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized cell types during mouse limb development and their spatial integration. We identify multiple transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, alterations of preexisting cell states' molecular identities, and changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially resolved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the interconnected genetic networks that regulate organogenesis and its reorganization upon genetic alterations.
Collapse
Affiliation(s)
- Sébastien Bastide
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- École Doctorale “Complexité du Vivant”, Sorbonne Université, 75005 Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
| | - François Spitz
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis. Nat Commun 2022; 13:2447. [PMID: 35508470 PMCID: PMC9068604 DOI: 10.1038/s41467-022-30119-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Damaged hyaline cartilage has no capacity for self-healing, making osteoarthritis (OA) "difficult-to-treat". Cartilage destruction is central to OA patho-etiology and is mediated by matrix degrading enzymes. Here we report decreased expression of miR-17 in osteoarthritic chondrocytes and its deficiency contributes to OA progression. Supplementation of exogenous miR-17 or its endogenous induction by growth differentiation factor 5, effectively prevented OA by simultaneously targeting pathological catabolic factors including matrix metallopeptidase-3/13 (MMP3/13), aggrecanase-2 (ADAMTS5), and nitric oxide synthase-2 (NOS2). Single-cell RNA sequencing of hyaline cartilage revealed two distinct superficial chondrocyte populations (C1/C2). C1 expressed physiological catabolic factors including MMP2, and C2 carries synovial features, together with C3 in the middle zone. MiR-17 is highly expressed in both superficial and middle chondrocytes under physiological conditions, and maintains the physiological catabolic and anabolic balance potentially by restricting HIF-1α signaling. Together, this study identified dual functions of miR-17 in maintaining cartilage homeostasis and prevention of OA.
Collapse
|
8
|
Towler OW, Shore EM. BMP signaling and skeletal development in fibrodysplasia ossificans progressiva (FOP). Dev Dyn 2022; 251:164-177. [PMID: 34133058 PMCID: PMC9068236 DOI: 10.1002/dvdy.387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disease caused by increased BMP pathway signaling due to mutation of ACVR1, a bone morphogenetic protein (BMP) type 1 receptor. The primary clinical manifestation of FOP is extra-skeletal bone formation (heterotopic ossification) within soft connective tissues. However, the underlying ACVR1 mutation additionally alters skeletal bone development and nearly all people born with FOP have bilateral malformation of the great toes as well as other skeletal malformations at diverse anatomic sites. The specific mechanisms through which ACVR1 mutations and altered BMP pathway signaling in FOP influence skeletal bone formation during development remain to be elucidated; however, recent investigations are providing a clearer understanding of the molecular and developmental processes associated with ACVR1-regulated skeletal formation.
Collapse
Affiliation(s)
- Oscar Will Towler
- The Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eileen M. Shore
- The Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Murata A. The third patient with Tsukahara-Azuno-Kaiji syndrome with type A1 brachydactyly, dwarfism, microcephaly, scoliosis, intellectual disability, ptosis, and hearing loss. Radiol Case Rep 2021; 17:181-184. [PMID: 34815823 PMCID: PMC8593260 DOI: 10.1016/j.radcr.2021.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 01/24/2023] Open
Abstract
We report the case of the third patient with Tsukahara-Azuno-Kaiji syndrome. It is characterized by brachydactyly A1, dwarfism, microcephaly, scoliosis, intellectual disability, ptosis, and hearing loss. The first patient was reported in 1989, and the second in 2010. The present patient had many features in common with the previous 2 patients, with a few minor differences. Although this combination of symptoms is very characteristic, the clinicians should know about this syndrome to diagnose it. The syndrome in this patient appeared sporadically, and chromosome G-banding revealed a normal female karyotype of 46XX. However, further genetic research could not be performed. Steady accumulation of information will enable us to discover the true clinical and genetic nature of the disease and to make the diagnosis more easily.
Collapse
|
10
|
Goetzinger L, Starks RD, Dillahunt K, Major H, Nagy JM, Sidhu A. Interstitial duplication of 20q11.22q13.11: A case report and review of literature. Mol Genet Genomic Med 2021; 9:e1755. [PMID: 34268909 PMCID: PMC8404222 DOI: 10.1002/mgg3.1755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/07/2021] [Accepted: 07/08/2021] [Indexed: 11/07/2022] Open
Abstract
Background Reports of interstitial duplication of chromosome 20q11 are rare with only nine published patients to date. Methods We performed karyotype and chromosomal microarray analysis on a peripheral blood sample for our patient and reviewed the genes in the region to provide genotype–phenotype correlation. Results Clinical features of the patient include minor dysmorphic facial features, shorthands and feet, bilateral conductive hearing loss, global developmental delay, and behavioral issues with attention deficit hyperactivity disorder. Together with previously published cases of 20q11 duplication, we show that patients with overlapping duplications share a similar clinical phenotype of dysmorphic craniofacial features and developmental delay. Conclusion We report an 8‐year‐old girl with a 9.1 Mb interstitial duplication of chromosome 20q11.22q13.11. Our observations suggest that a novel duplication syndrome and documentation of similar cases will further help clarify the phenotype.
Collapse
Affiliation(s)
- Logan Goetzinger
- Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Rachel D Starks
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Kyle Dillahunt
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Heather Major
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Jaime M Nagy
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Alpa Sidhu
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Genovesi ML, Guadagnolo D, Marchionni E, Giovannetti A, Traversa A, Panzironi N, Bernardo S, Palumbo P, Petrizzelli F, Carella M, Mazza T, Pizzuti A, Caputo V. GDF5 mutation case report and a systematic review of molecular and clinical spectrum: Expanding current knowledge on genotype-phenotype correlations. Bone 2021; 144:115803. [PMID: 33333243 DOI: 10.1016/j.bone.2020.115803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Brachydactyly is a bone development abnormality presenting with variable phenotypes and different transmission patterns. Mutations in GDF5 (Growth and Differentiation Factor 5, MIM *601146) account for a significant amount of cases. Here, we report on a three-generation family, where the proband and the grandfather have an isolated brachydactyly with features of both type A1 (MIM #112500) and type C (MIM #113100), while the mother shows only subtle hand phenotype signs. MATERIALS AND METHODS Whole Exome Sequencing (WES) was performed on the two affected individuals. An in-depth analysis of GDF5 genotype-phenotype correlations was performed through literature reviewing and retrieving information from several databases to elucidate GDF5-related molecular pathogenic mechanisms. RESULTS WES analysis disclosed a pathogenic variant in GDF5 (NM_000557.5:c.157dup; NP_000548.2:p.Leu53Profs*41; rs778834209), segregating with the phenotype. The frameshift variant was previously associated with Brachydactyly type C (MIM #113100), in heterozygosity, and with the severe Grebe type chondrodysplasia (MIM #200700), in homozygosity. In-depth analysis of literature and databases allowed to retrieve GDF5 mutations and correlations to phenotypes. We disclosed the association of 49 GDF5 pathogenic mutations with eight phenotypes, with both autosomal dominant and recessive transmission patterns. Clinical presentations ranged from severe defects of limb morphogenesis to mild redundant ossification. We suggest that such clinical gradient can be linked to a continuum of GDF5-activity variation, with loss of GDF5 activity underlying bone development defects, and gain of function causing disorders with excessive bone formation. CONCLUSIONS Our analysis of GDF5 pathogenicity mechanisms furtherly supports that mutation and zygosity backgrounds resulting in the same level of GDF5 activity may lead to similar phenotypes. This information can aid in interpreting the potential pathogenic effect of new variants and in supporting an appropriate genetic counseling.
Collapse
Affiliation(s)
- Maria Luce Genovesi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrica Marchionni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Agnese Giovannetti
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Alice Traversa
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Noemi Panzironi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Bernardo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Pietro Palumbo
- Laboratory of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Francesco Petrizzelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy; Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Massimo Carella
- Laboratory of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy; Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
12
|
Berland S, Haukanes BI, Juliusson PB, Houge G. Deep exploration of a CDKN1C mutation causing a mixture of Beckwith-Wiedemann and IMAGe syndromes revealed a novel transcript associated with developmental delay. J Med Genet 2020; 59:155-164. [PMID: 33443097 PMCID: PMC8788247 DOI: 10.1136/jmedgenet-2020-107401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 11/24/2022]
Abstract
Background Loss-of-function mutations in CDKN1C cause overgrowth, that is, Beckwith-Wiedemann syndrome (BWS), while gain-of-function variants in the gene’s PCNA binding motif cause a growth-restricted condition called IMAGe syndrome. We report on a boy with a remarkable mixture of both syndromes, with developmental delay and microcephaly as additional features. Methods Whole-exome DNA sequencing and ultra-deep RNA sequencing of leucocyte-derived and fibroblast-derived mRNA were performed in the family. Results We found a maternally inherited variant in the IMAGe hotspot region: NM_000076.2(CDKN1C) c.822_826delinsGAGCTG. The asymptomatic mother had inherited this variant from her mosaic father with mild BWS features. This delins caused tissue-specific frameshifting resulting in at least three novel mRNA transcripts in the boy. First, a splice product causing CDKN1C truncation was the likely cause of BWS. Second, an alternative splice product in fibroblasts encoded IMAGe-associated amino acid substitutions. Third, we speculate that developmental delay is caused by a change in the alternative CDKN1C-201 (ENST00000380725.1) transcript, encoding a novel isoform we call D (UniProtKB: A6NK88). Isoform D is distinguished from isoforms A and B by alternative splicing within exon 1 that changes the reading frame of the last coding exon. Remarkably, this delins changed the reading frame back to the isoform A/B type, resulting in a hybrid D–A/B isoform. Conclusion Three different cell-type-dependent RNA products can explain the co-occurrence of both BWS and IMAGe features in the boy. Possibly, brain expression of hybrid isoform D–A/B is the cause of developmental delay and microcephaly, a phenotypic feature not previously reported in CDKN1C patients.
Collapse
Affiliation(s)
- Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Ivar Haukanes
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Petur Benedikt Juliusson
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Department of Paediatrics, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
13
|
Xu Y, Ren C, Zhao X, Wang W, Zhang N. microRNA-132 inhibits osteogenic differentiation of periodontal ligament stem cells via GDF5 and the NF-κB signaling pathway. Pathol Res Pract 2019; 215:152722. [PMID: 31718857 DOI: 10.1016/j.prp.2019.152722] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/14/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) could differentiate into osteoblasts and have a great prospect in treating bone diseases. microRNAs (miRs) and nuclear factor kappa-B (NF-κB) signaling pathway have proved pivotal in regulating osteogenic differentiation. This study intended to discuss the mechanism of miR-132 and NF-κB in PDLSC osteogenesis. METHODS PDLSCs were firstly cultured, induced, and identified by detecting the surface markers and observing cell morphology. Levels of osteogenic markers alkaline phosphatase (ALP), bone morphogenetic proteins 2 (BMP2), runt-related transcription factor 2 (Runx2) and osteocalcin (OCN), along with miR-132 expression were measured. The osteoblast activity and mineral deposition were detected by ALP and alizarin red S (ARS) stainings. The targeting relationship between miR-132 and growth differentiation factor 5 (GDF5) was verified. The gain-and loss-of-function was performed to discuss roles of miR-132 and GDF5 in osteogenic differentiation of PDLSCs. Besides, levels of NF-κB signaling pathway-related proteins were measured. RESULTS In osteogenic differentiation of PDLSCs, levels of ALP, BMP2, Runx2 and OCN were upregulated while miR-132 was downregulated. Overexpressing miR-132 reduced levels of osteogenic markers, osteoblast activity, ALP and ARS intensity and the activation of NF-κB axis. GDF5 is a target of miR-132 and GDF5 overexpression reversed the inhibitory effects of overexpressed miR-132 on PDLSC osteogenesis. CONCLUSION Together, miR-132 could inhibit PDLSC osteogenesis via targeting GDF5 and activating NF-κB axis. These data provide useful information for PDLSC application in periodontal therapy.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthodontics, Beijing Stomotological Hospital, Capital Medical University, Beijing 100006, PR China
| | - Chaochao Ren
- Department of Orthodontics, Beijing Stomotological Hospital, Capital Medical University, Beijing 100006, PR China
| | - Xiang Zhao
- Department of General Dentistry, Beijing Stomotological Hospital, Capital Medical University, Beijing 100006, PR China
| | - Wei Wang
- Department of Orthodontics, Beijing Stomotological Hospital, Capital Medical University, Beijing 100006, PR China
| | - Ning Zhang
- Department of Orthodontics, Beijing Stomotological Hospital, Capital Medical University, Beijing 100006, PR China.
| |
Collapse
|
14
|
Rafipay A, Berg ALR, Erskine L, Vargesson N. Expression analysis of limb element markers during mouse embryonic development. Dev Dyn 2018; 247:1217-1226. [PMID: 30225906 PMCID: PMC6282987 DOI: 10.1002/dvdy.24671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
Background: While data regarding expression of limb element and tissue markers during normal mouse limb development exist, few studies show expression patterns in upper and lower limbs throughout key limb development stages. A comparison to normal developmental events is essential when analyzing development of the limb in mutant mice models. Results: Expression patterns of the joint marker Gdf5, tendon and ligament marker Scleraxis, early muscle marker MyoD1, and blood vessel marker Cadherin5 (Cdh5) are presented during the most active phases of embryonic mouse limb patterning. Anti‐neurofilament staining of developing nerves in the fore‐ and hindlimbs and cartilage formation and progression also are described. Conclusions: This study demonstrates and describes a range of key morphological markers and methods that together can be used to assess normal and abnormal limb development. Developmental Dynamics 247:1217–1226, 2018. © 2018 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists Expression patterns of molecular markers throughout both fore‐ and hindlimb development ‐ which can be used to assess normal and abnormal development. Detailled description of innervation during fore‐ and hindlimb development confirming innervation first seen after limb patterning events have begun. Description of cartilage development and progression indicates alizarin red staining not seen until E15.5 in both fore‐ and hindlimbs. Hindlimb lags behind forelimb molecularly and morphologically until E14.5. Detailled description of methods used to study fore‐ and hindlimb development.
Collapse
Affiliation(s)
- Alexandra Rafipay
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| | - Amanda L R Berg
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| |
Collapse
|
15
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
16
|
Knock-in human GDF5 proregion L373R mutation as a mouse model for proximal symphalangism. Oncotarget 2017; 8:113966-113976. [PMID: 29371961 PMCID: PMC5768378 DOI: 10.18632/oncotarget.23047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/20/2017] [Indexed: 01/18/2023] Open
Abstract
Proximal symphalangism (SYM1) is an autosomal dominant disorder, mainly characterized by bony fusions of the proximal phalanges of the hands and feet. GDF5 and NOG were identified to be responsible for SYM1. We have previously reported on a p.Leu373Arg mutation in the GDF5 proregion present in a Chinese family with SYM1. Here, we investigated the effects of the GDF-L373R mutation. The variant caused proteolysis efficiency of GDF5 increased in ATDC5 cells. The variant also caused upregulation of SMAD1/5/8 phosphorylation and increased expression of target genes SMURF1, along with COL2A1 and SOX9 which are factors associated with chondrosis. Furthermore, we developed a human-relevant SYM1 mouse model by making a Gdf5L367R (the orthologous position for L373R in humans) knock-in mouse. Gdf5L367R/+ and Gdf5L367R/L367R mice displayed stiffness and adhesions across the proximal phalanx joint which were in complete accord with SYM1. It was also confirmed the joint formation and development was abnormal in Gdf5L367R/+ and Gdf5L367R/L367R mice, including the failure to develop the primary ossification center and be hypertrophic chondrocytes during embryonic development. This knock-in mouse model offers a tool for assessing the pathogenesis of SYM1 and the function of the GDF5 proregion.
Collapse
|
17
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
18
|
Ayerst BI, Merry CLR, Day AJ. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals (Basel) 2017; 10:E54. [PMID: 28608822 PMCID: PMC5490411 DOI: 10.3390/ph10020054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
High sulfation, low cost, and the status of heparin as an already FDA- and EMA- approved product, mean that its inclusion in tissue engineering (TE) strategies is becoming increasingly popular. However, the use of heparin may represent a naïve approach. This is because tissue formation is a highly orchestrated process, involving the temporal expression of numerous growth factors and complex signaling networks. While heparin may enhance the retention and activity of certain growth factors under particular conditions, its binding 'promiscuity' means that it may also inhibit other factors that, for example, play an important role in tissue maintenance and repair. Within this review we focus on articular cartilage, highlighting the complexities and highly regulated processes that are involved in its formation, and the challenges that exist in trying to effectively engineer this tissue. Here we discuss the opportunities that glycosaminoglycans (GAGs) may provide in advancing this important area of regenerative medicine, placing emphasis on the need to move away from the common use of heparin, and instead focus research towards the utility of specific GAG preparations that are able to modulate the activity of growth factors in a more controlled and defined manner, with less off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
19
|
Ayerst BI, Smith RAA, Nurcombe V, Day AJ, Merry CLR, Cool SM. Growth Differentiation Factor 5-Mediated Enhancement of Chondrocyte Phenotype Is Inhibited by Heparin: Implications for the Use of Heparin in the Clinic and in Tissue Engineering Applications. Tissue Eng Part A 2017; 23:275-292. [PMID: 27899064 PMCID: PMC5397242 DOI: 10.1089/ten.tea.2016.0364] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The highly sulfated glycosaminoglycan (GAG) heparin is widely used in the clinic as an anticoagulant, and researchers are now using it to enhance stem cell expansion/differentiation protocols, as well as to improve the delivery of growth factors for tissue engineering (TE) strategies. Growth differentiation factor 5 (GDF5) belongs to the bone morphogenetic protein family of proteins and is vital for skeletal formation; however, its interaction with heparin and heparan sulfate (HS) has not been studied. We identify GDF5 as a novel heparin/HS binding protein and show that HS proteoglycans are vital in localizing GDF5 to the cell surface. Clinically relevant doses of heparin (≥10 nM), but not equivalent concentrations of HS, were found to inhibit GDF5's biological activity in both human mesenchymal stem/stromal cell-derived chondrocyte pellet cultures and the skeletal cell line ATDC5. We also found that heparin inhibited both GDF5 binding to cell surface HS and GDF5-induced induction of Smad 1/5/8 signaling. Furthermore, GDF5 significantly increased aggrecan gene expression in chondrocyte pellet cultures, without affecting collagen type X expression, making it a promising target for the TE of articular cartilage. Importantly, this study may explain the variable (and disappointing) results seen with heparin-loaded biomaterials for skeletal TE and the adverse skeletal effects reported in the clinic following long-term heparin treatment. Our results caution the use of heparin in the clinic and in TE applications, and prompt the transition to using more specific GAGs (e.g., HS derivatives), with better-defined structures and fewer off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- 1 Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,2 Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester , Manchester, United Kingdom
| | - Raymond A A Smith
- 1 Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Victor Nurcombe
- 1 Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anthony J Day
- 2 Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester , Manchester, United Kingdom
| | - Catherine L R Merry
- 3 School of Materials, University of Manchester , Manchester, United Kingdom .,4 Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Simon M Cool
- 1 Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,5 Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| |
Collapse
|
20
|
Phadke SR, Kar A, Bhowmik AD, Dalal A. Complex Camptosynpolydactyly and Mesoaxial synostotic syndactyly with phalangeal reduction are allelic disorders. Am J Med Genet A 2016; 170:1622-5. [PMID: 27041388 DOI: 10.1002/ajmg.a.37643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/20/2016] [Indexed: 11/06/2022]
Abstract
Complex Camptosynpolydactyly is an autosomal recessive disorder characterized by complex hand deformities described earlier by us in a consanguineous family. We report on identification of mutations in BHLHA9 gene in this condition. Our results indicate that Complex Camptosynpolydactyly and Mesoaxial synostotic syndactyly with phalangeal reduction (MSSD) are likely to be allelic disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Anjana Kar
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,Graduate Studies, Manipal University, Manipal, India
| | - Aneek Das Bhowmik
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
21
|
Wang J, Yu T, Wang Z, Ohte S, Yao RE, Zheng Z, Geng J, Cai H, Ge Y, Li Y, Xu Y, Zhang Q, Gusella JF, Fu Q, Pregizer S, Rosen V, Shen Y. A New Subtype of Multiple Synostoses Syndrome Is Caused by a Mutation in GDF6 That Decreases Its Sensitivity to Noggin and Enhances Its Potency as a BMP Signal. J Bone Miner Res 2016; 31:882-9. [PMID: 26643732 PMCID: PMC5268166 DOI: 10.1002/jbmr.2761] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/19/2015] [Accepted: 12/05/2015] [Indexed: 12/23/2022]
Abstract
Growth and differentiation factors (GDFs) are secreted signaling molecules within the BMP family that have critical roles in joint morphogenesis during skeletal development in mice and humans. Using genetic data obtained from a six-generation Chinese family, we identified a missense variant in GDF6 (NP_001001557.1; p.Y444N) that fully segregates with a novel autosomal dominant synostoses (SYNS) phenotype, which we designate as SYNS4. Affected individuals display bilateral wrist and ankle deformities at birth and progressive conductive deafness after age 40 years. We find that the Y444N variant affects a highly conserved residue of GDF6 in a region critical for binding of GDF6 to its receptor(s) and to the BMP antagonist NOG, and show that this mutant GDF6 is a more potent stimulator of the canonical BMP signaling pathway compared with wild-type GDF6. Further, we determine that the enhanced BMP activity exhibited by mutant GDF6 is attributable to resistance to NOG-mediated antagonism. Collectively, our findings indicate that increased BMP signaling owing to a GDF6 gain-of-function mutation is responsible for loss of joint formation and profound functional impairment in patients with SYNS4. More broadly, our study highlights the delicate balance of BMP signaling required for proper joint morphogenesis and reinforces the critical role of BMP signaling in skeletal development.
Collapse
Affiliation(s)
- Jian Wang
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Tingting Yu
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Zhigang Wang
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Satoshi Ohte
- Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Ru-en Yao
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Zhaojing Zheng
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Juan Geng
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Haiqing Cai
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yihua Ge
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yuchan Li
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yunlan Xu
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Qinghua Zhang
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - James F Gusella
- Molecular Neurogenetics Unit and Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Qihua Fu
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Steven Pregizer
- Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Vicki Rosen
- Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yiping Shen
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA, USA
- Claritas Genomics, Cambridge, MA, USA
| |
Collapse
|
22
|
Mutant GDF5 enhances ameloblast differentiation via accelerated BMP2-induced Smad1/5/8 phosphorylation. Sci Rep 2016; 6:23670. [PMID: 27030100 PMCID: PMC4814822 DOI: 10.1038/srep23670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/11/2016] [Indexed: 02/04/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) regulate hard tissue formation, including bone and tooth. Growth differentiation factor 5 (GDF5), a known BMP, is expressed in cartilage and regulates chondrogenesis, and mutations have been shown to cause osteoarthritis. Notably, GDF5 is also expressed in periodontal ligament tissue; however, its role during tooth development is unclear. Here, we used cell culture and in vivo analyses to determine the role of GDF5 during tooth development. GDF5 and its associated BMP receptors are expressed at the protein and mRNA levels during postnatal tooth development, particularly at a stage associated with enamel formation. Furthermore, whereas BMP2 was observed to induce evidently the differentiation of enamel-forming ameloblasts, excess GDF5 induce mildly this differentiation. A mouse model harbouring a mutation in GDF5 (W408R) showed enhanced enamel formation in both the incisors and molars, but not in the tooth roots. Overexpression of the W408R GDF5 mutant protein was shown to induce BMP2-mediated mRNA expression of enamel matrix proteins and downstream phosphorylation of Smad1/5/8. These results suggest that mutant GDF5 enhances ameloblast differentiation via accelerated BMP2-signalling.
Collapse
|
23
|
Rohart F, Mason EA, Matigian N, Mosbergen R, Korn O, Chen T, Butcher S, Patel J, Atkinson K, Khosrotehrani K, Fisk NM, Lê Cao KA, Wells CA. A molecular classification of human mesenchymal stromal cells. PeerJ 2016; 4:e1845. [PMID: 27042394 PMCID: PMC4811172 DOI: 10.7717/peerj.1845] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are widely used for the study of mesenchymal tissue repair, and increasingly adopted for cell therapy, despite the lack of consensus on the identity of these cells. In part this is due to the lack of specificity of MSC markers. Distinguishing MSC from other stromal cells such as fibroblasts is particularly difficult using standard analysis of surface proteins, and there is an urgent need for improved classification approaches. Transcriptome profiling is commonly used to describe and compare different cell types; however, efforts to identify specific markers of rare cellular subsets may be confounded by the small sample sizes of most studies. Consequently, it is difficult to derive reproducible, and therefore useful markers. We addressed the question of MSC classification with a large integrative analysis of many public MSC datasets. We derived a sparse classifier (The Rohart MSC test) that accurately distinguished MSC from non-MSC samples with >97% accuracy on an internal training set of 635 samples from 41 studies derived on 10 different microarray platforms. The classifier was validated on an external test set of 1,291 samples from 65 studies derived on 15 different platforms, with >95% accuracy. The genes that contribute to the MSC classifier formed a protein-interaction network that included known MSC markers. Further evidence of the relevance of this new MSC panel came from the high number of Mendelian disorders associated with mutations in more than 65% of the network. These result in mesenchymal defects, particularly impacting on skeletal growth and function. The Rohart MSC test is a simple in silico test that accurately discriminates MSC from fibroblasts, other adult stem/progenitor cell types or differentiated stromal cells. It has been implemented in the www.stemformatics.org resource, to assist researchers wishing to benchmark their own MSC datasets or data from the public domain. The code is available from the CRAN repository and all data used to generate the MSC test is available to download via the Gene Expression Omnibus or the Stemformatics resource.
Collapse
Affiliation(s)
- Florian Rohart
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth A. Mason
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Matigian
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rowland Mosbergen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Othmar Korn
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Tyrone Chen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Suzanne Butcher
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jatin Patel
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Kerry Atkinson
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Prenatal Care, Royal Brisbane & Women’s Hospital, Brisbane, Queensland, Australia
| | - Nicholas M. Fisk
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Prenatal Care, Royal Brisbane & Women’s Hospital, Brisbane, Queensland, Australia
| | - Kim-Anh Lê Cao
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Christine A. Wells
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Tosi LL, Warman ML. Mechanistic and therapeutic insights gained from studying rare skeletal diseases. Bone 2015; 76:67-75. [PMID: 25819040 DOI: 10.1016/j.bone.2015.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 12/14/2022]
Abstract
Rare bone diseases account for 5% of all birth defects and can cause significant morbidity throughout patients' lives. Significant progress is being made to elucidate the pathophysiological mechanisms underlying these diseases. This paper summarizes presentation highlights of a workshop on Rare Skeletal Diseases convened to explore how the study of rare diseases has influenced the field's understanding of bone anabolism and catabolism and directed the search for new therapies benefiting patients with rare conditions as well as patients with common skeletal disorders.
Collapse
Affiliation(s)
- Laura L Tosi
- Division of Orthopaedics and Sports Medicine, Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Boston Children's Hospital, 320 Longwood Avenue, Room EN260.1, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Stange K, Ott CE, Schmidt-von Kegler M, Gillesen-Kaesbach G, Mundlos S, Dathe K, Seemann P. Brachydactyly Type C patient with compound heterozygosity for p.Gly319Val and p.Ile358Thr variants in the GDF5 proregion: benign variants or mutations? J Hum Genet 2015; 60:419-25. [DOI: 10.1038/jhg.2015.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 11/09/2022]
|
26
|
Degenkolbe E, Schwarz C, Ott CE, König J, Schmidt-Bleek K, Ellinghaus A, Schmidt T, Lienau J, Plöger F, Mundlos S, Duda GN, Willie BM, Seemann P. Improved bone defect healing by a superagonistic GDF5 variant derived from a patient with multiple synostoses syndrome. Bone 2015; 73:111-9. [PMID: 25543012 DOI: 10.1016/j.bone.2014.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 11/20/2022]
Abstract
Multiple synostoses syndrome 2 (SYNS2) is a rare genetic disease characterized by multiple fusions of the joints of the extremities, like phalangeal joints, carpal and tarsal joints or the knee and elbows. SYNS2 is caused by point mutations in the Growth and Differentiation Factor 5 (GDF5), which plays an essential role during skeletal development and regeneration. We selected one of the SYNS2-causing GDF5 mutations, p.N445T, which is known to destabilize the interaction with the Bone Morphogenetic Protein (BMP) antagonist NOGGIN (NOG), in order to generate the superagonistic GDF5 variant GDF5(N445T). In this study, we tested its capacity to support regeneration in a rat critical-sized defect model in vivo. MicroCT and histological analyses indicate that GDF5(N445T)-treated defects show faster and more efficient healing compared to GDF5 wild type (GDF5(wt))-treated defects. Microarray-based gene expression and quantitative PCR analyses from callus tissue point to a specific acceleration of the early phases of bone healing, comprising the inflammation and chondrogenesis phase. These results support the concept that disease-deduced growth factor variants are promising lead structures for novel therapeutics with improved clinical activities.
Collapse
Affiliation(s)
- Elisa Degenkolbe
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Carolin Schwarz
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Jana König
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Tanja Schmidt
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jasmin Lienau
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | - Stefan Mundlos
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Georg N Duda
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Bettina M Willie
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Seemann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
27
|
Two novel disease-causing variants in BMPR1B are associated with brachydactyly type A1. Eur J Hum Genet 2015; 23:1640-5. [PMID: 25758993 PMCID: PMC4795202 DOI: 10.1038/ejhg.2015.38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 01/14/2023] Open
Abstract
Brachydactyly type A1 is an autosomal dominant disorder primarily characterized by hypoplasia/aplasia of the middle phalanges of digits 2–5. Human and mouse genetic perturbations in the BMP-SMAD signaling pathway have been associated with many brachymesophalangies, including BDA1, as causative mutations in IHH and GDF5 have been previously identified. GDF5 interacts directly as the preferred ligand for the BMP type-1 receptor BMPR1B and is important for both chondrogenesis and digit formation. We report pathogenic variants in BMPR1B that are associated with complex BDA1. A c.975A>C (p.(Lys325Asn)) was identified in the first patient displaying absent middle phalanges and shortened distal phalanges of the toes in addition to the significant shortening of middle phalanges in digits 2, 3 and 5 of the hands. The second patient displayed a combination of brachydactyly and arachnodactyly. The sequencing of BMPR1B in this individual revealed a novel c.447-1G>A at a canonical acceptor splice site of exon 8, which is predicted to create a novel acceptor site, thus leading to a translational reading frameshift. Both mutations are most likely to act in a dominant-negative manner, similar to the effects observed in BMPR1B mutations that cause BDA2. These findings demonstrate that BMPR1B is another gene involved with the pathogenesis of BDA1 and illustrates the continuum of phenotypes between BDA1 and BDA2.
Collapse
|
28
|
Haupt J, Deichsel A, Stange K, Ast C, Bocciardi R, Ravazzolo R, Di Rocco M, Ferrari P, Landi A, Kaplan FS, Shore EM, Reissner C, Seemann P. ACVR1 p.Q207E causes classic fibrodysplasia ossificans progressiva and is functionally distinct from the engineered constitutively active ACVR1 p.Q207D variant. Hum Mol Genet 2014; 23:5364-77. [PMID: 24852373 DOI: 10.1093/hmg/ddu255] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a disabling genetic disorder of progressive heterotopic ossification (HO). Here, we report a patient with an ultra-rare point mutation [c.619C>G, p.Q207E] located in a codon adjacent to the most common FOP mutation [c.617G>A, p.R206H] of Activin A Receptor, type 1 (ACVR1) and that affects the same intracellular amino acid position in the GS activation domain as the engineered constitutively active (c.a.) variant p.Q207D. It was predicted that both mutations at residue 207 have similar functional effects by introducing a negative charge. Transgenic p.Q207D-c.a. mice have served as a model for FOP HO in several in vivo studies. However, we found that the engineered ACVR1(Q207D-c.a.) is significantly more active than the classic FOP mutation ACVR1(R206H) when overexpressed in chicken limbs and in differentiation assays of chondrogenesis, osteogenesis and myogenesis. Importantly, our studies reveal that the ACVR1(Q207E) resembles the classic FOP receptor in these assays, not the engineered ACVR1(Q207D-c.a.). Notably, reporter gene assays revealed that both naturally occurring FOP receptors (ACVR1(R206H) and ACVR1(Q207E)) were activated by BMP7 and were sensitive to deletion of the ligand binding domain, whereas the engineered ACVR1(Q207D-c.a.) exhibited ligand independent activity. We performed an in silico analysis and propose a structural model for p.Q207D-c.a. that irreversibly relocates the GS domain into an activating position, where it becomes ligand independent. We conclude that the engineered p.Q207D-c.a. mutation has severe limitations as a model for FOP, whereas the naturally occurring mutations p.R206H and p.Q207E facilitate receptor activation, albeit in a reversible manner.
Collapse
Affiliation(s)
- Julia Haupt
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany, Department of Orthopaedic Surgery, Perelman School of Medicine
| | - Alexandra Deichsel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany, Berlin Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Katja Stange
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany, Berlin Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Cindy Ast
- Research Group Development and Disease, Max-Planck-Institut für Molekulare Genetik, 14195 Berlin, Germany
| | - Renata Bocciardi
- Medical Genetics Unit, G. Gaslini Institute, and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, 16147 Genova, Italy
| | - Roberto Ravazzolo
- Medical Genetics Unit, G. Gaslini Institute, and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, 16147 Genova, Italy
| | - Maja Di Rocco
- Unit of Rare Diseases, G. Gaslini Institute, 16147 Genova, Italy
| | - Paola Ferrari
- Department of Pediatrics, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Antonio Landi
- Hand Surgery and Microsurgery Unit, Policlinico of Modena, 41100 Modena, Italy
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, Center for Research in FOP and Related Disorders, Perelman School of Medicine, Department of Medicine, Perelman School of Medicine
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, Center for Research in FOP and Related Disorders, Perelman School of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104 PA, USA
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, Universitätsklinikum Münster, 48149 Münster, Germany
| | - Petra Seemann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany, Berlin Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany Research Group Development and Disease, Max-Planck-Institut für Molekulare Genetik, 14195 Berlin, Germany
| |
Collapse
|
29
|
Schatz O, Langer E, Ben-Arie N. Gene dosage of the transcription factor Fingerin (bHLHA9) affects digit development and links syndactyly to ectrodactyly. Hum Mol Genet 2014; 23:5394-401. [PMID: 24852374 DOI: 10.1093/hmg/ddu257] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Distal limb deformities are congenital malformations with phenotypic variability, genetic heterogeneity and complex inheritance. Among these, split-hand/foot malformation is an ectrodactyly with missing central fingers, yielding a lobster claw-like hand, which when combined with long-bone deficiency is defined as split-hand/foot malformation and long-bone deficiency (SHFLD) that is genetically heterogeneous. Copy number variation (CNV) consisting of 17p13.3 duplication was identified in unrelated pedigrees, underlying SHFLD3 (OMIM 612576). Although the transcription factor Fingerin (bHLHA9) is the only complete gene in the critical region, its biological role is not yet known and there are no data supporting its involvement in mammalian limb development. We have generated knockout mice in which only the entire coding region of Fingerin was deleted, and indeed found that most null mice display some limb defects. These include various levels of simple asymmetrical syndactyly, characterized by webbed fingers, generated by incomplete separation of soft, but not skeletal, tissues between forelimb digits 2 and 3. As expected, hand pads of Fingerin null embryos exhibited reduced apoptosis between digital rays 2 and 3. This defect was shown to cause syndactyly when the same limbs were grown ex vivo following the apoptosis assay. Extrapolating from mouse data, we suggest that Fingerin loss-of-function in humans may underlie MSSD syndactyly (OMIM 609432), which was mapped to the same locus. Taken together, Fingerin gene dosage links two different congenital limb malformations, syndactyly and ectrodactyly, which were previously postulated to share a common etiology. These results add limb disorders to the growing list of diseases resulting from CNV.
Collapse
Affiliation(s)
- Omri Schatz
- Department of Cell and Developmental Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Erez Langer
- Department of Cell and Developmental Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nissim Ben-Arie
- Department of Cell and Developmental Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|