1
|
White DS, Dunyak BM, Vaillancourt FH, Hoskins AA. A sequential binding mechanism for 5' splice site recognition and modulation for the human U1 snRNP. Nat Commun 2024; 15:8776. [PMID: 39389991 PMCID: PMC11467380 DOI: 10.1038/s41467-024-53124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Splice site recognition is essential for defining the transcriptome. Drugs like risdiplam and branaplam change how human U1 snRNP recognizes particular 5' splice sites (5'SS) and promote U1 snRNP binding and splicing at these locations. Despite the therapeutic potential of 5'SS modulators, the complexity of their interactions and snRNP substrates have precluded defining a mechanism for 5'SS modulation. We have determined a sequential binding mechanism for modulation of -1A bulged 5'SS by branaplam using a combination of ensemble kinetic measurements and colocalization single molecule spectroscopy (CoSMoS). Our mechanism establishes that U1-C protein binds reversibly to U1 snRNP, and branaplam binds to the U1 snRNP/U1-C complex only after it has engaged with a -1A bulged 5'SS. Obligate orders of binding and unbinding explain how reversible branaplam interactions cause formation of long-lived U1 snRNP/5'SS complexes. Branaplam targets a ribonucleoprotein, not only an RNA duplex, and its action depends on fundamental properties of 5'SS recognition.
Collapse
Affiliation(s)
- David S White
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Element Biosciences, San Diego, CA, USA
| | | | | | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Mangilet AF, Weber J, Schüler S, Adler M, Mjema EY, Heilmann P, Herold A, Renneberg M, Nagel L, Droste-Borel I, Streicher S, Schmutzer T, Rot G, Macek B, Schmidtke C, Laubinger S. The Arabidopsis U1 snRNP regulates mRNA 3'-end processing. NATURE PLANTS 2024; 10:1514-1531. [PMID: 39313562 PMCID: PMC11489095 DOI: 10.1038/s41477-024-01796-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
The removal of introns by the spliceosome is a key gene regulatory mechanism in eukaryotes, with the U1 snRNP subunit playing a crucial role in the early stages of splicing. Studies in metazoans show that the U1 snRNP also conducts splicing-independent functions, but the lack of genetic tools and knowledge about U1 snRNP-associated proteins have limited the study of such splicing-independent functions in plants. Here we describe an RNA-centric approach that identified more than 200 proteins associated with the Arabidopsis U1 snRNP and revealed a tight link to mRNA cleavage and polyadenylation factors. Interestingly, we found that the U1 snRNP protects mRNAs against premature cleavage and polyadenylation within introns-a mechanism known as telescripting in metazoans-while also influencing alternative polyadenylation site selection in 3'-UTRs. Overall, our work provides a comprehensive view of U1 snRNP interactors and reveals novel functions in regulating mRNA 3'-end processing in Arabidopsis, laying the groundwork for understanding non-canonical functions of plant U1 snRNPs.
Collapse
Affiliation(s)
- Anchilie F Mangilet
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Max Planck Institute for Plant Breeding Research (MPIPZ), Cologne, Germany
| | - Joachim Weber
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sandra Schüler
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Manon Adler
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Eneza Yoeli Mjema
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Paula Heilmann
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Angie Herold
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Monique Renneberg
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Luise Nagel
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Samuel Streicher
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gregor Rot
- Institute of Molecular Life Sciences of the University of Zurich and Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Boris Macek
- Proteome Center, University of Tuebingen, Tuebingen, Germany
| | - Cornelius Schmidtke
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sascha Laubinger
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
3
|
Jia Z, Wang J, Meng X, Yang X, Tian Y, Wang B, Chen M, Yang J, Das D, Cao Y. Evolution and stress response potential of the plant splicing factor U1C. Sci Rep 2024; 14:17212. [PMID: 39060315 PMCID: PMC11282270 DOI: 10.1038/s41598-024-68190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Alternative splicing is a crucial process in multicellular eukaryote, facilitated by the assembly of spliceosomal complexes comprising numerous small ribonucleoproteins. At an early stage, U1C is thought to be required for 5' splice site recognition and base pairing. However, a systematic analysis of the U1C gene family in response to developmental cues and stress conditions has not yet been conducted in plants. This study identified 114 U1C genes in 72 plant species using basic bioinformatics analyses. Phylogenetic analysis was used to compare gene and protein structures, promoter motifs, and tissue- and stress-specific expression levels, revealing their functional commonalities or diversity in response to developmental cues, such as embryonic expression, or stress treatments, including drought and heat. Fluorescence quantitative expression analysis showed that U1C gene expression changed under salt, low temperature, drought, and Cd stress in rice seedlings. However, gene expression in shoots and roots was not consistent under different stress conditions, suggesting a complex regulatory mechanism. This research provides foundational insights into the U1C gene family's role in plant development and stress responses, highlighting potential targets for future studies.
Collapse
Affiliation(s)
- Zichang Jia
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, China
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Junjie Wang
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Xiangfeng Meng
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Xue Yang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Moxian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65201, USA.
| | - Yunying Cao
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
4
|
Willems P, Van Ruyskensvelde V, Maruta T, Pottie R, Fernández-Fernández ÁD, Pauwels J, Hannah MA, Gevaert K, Van Breusegem F, Van der Kelen K. Mutation of Arabidopsis SME1 and Sm core assembly improves oxidative stress resilience. Free Radic Biol Med 2023; 200:117-129. [PMID: 36870374 DOI: 10.1016/j.freeradbiomed.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Alternative splicing is a key posttranscriptional gene regulatory process, acting in diverse adaptive and basal plant processes. Splicing of precursor-messenger RNA (pre-mRNA) is catalyzed by a dynamic ribonucleoprotein complex, designated the spliceosome. In a suppressor screen, we identified a nonsense mutation in the Smith (Sm) antigen protein SME1 to alleviate photorespiratory H2O2-dependent cell death in catalase deficient plants. Similar attenuation of cell death was observed upon chemical inhibition of the spliceosome, suggesting pre-mRNA splicing inhibition to be responsible for the observed cell death alleviation. Furthermore, the sme1-2 mutants showed increased tolerance to the reactive oxygen species inducing herbicide methyl viologen. Both an mRNA-seq and shotgun proteomic analysis in sme1-2 mutants displayed a constitutive molecular stress response, together with extensive alterations in pre-mRNA splicing of transcripts encoding metabolic enzymes and RNA binding proteins, even under unstressed conditions. Using SME1 as a bait to identify protein interactors, we provide experimental evidence for almost 50 homologs of the mammalian spliceosome-associated protein to reside in the Arabidopsis thaliana spliceosome complexes and propose roles in pre-mRNA splicing for four uncharacterized plant proteins. Furthermore, as for sme1-2, a mutant in the Sm core assembly protein ICLN resulted in a decreased sensitivity to methyl viologen. Taken together, these data show that both a perturbed Sm core composition and assembly results in the activation of a defense response and in enhanced resilience to oxidative stress.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark 75, 9052, Ghent, Belgium; Center for Medical Biotechnology, VIB, Technologiepark 75, 9052, Ghent, Belgium.
| | - Valerie Van Ruyskensvelde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| | - Takanori Maruta
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium; Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan.
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| | - Álvaro D Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| | - Jarne Pauwels
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, 9052, Ghent, Belgium; Center for Medical Biotechnology, VIB, Technologiepark 75, 9052, Ghent, Belgium.
| | - Matthew A Hannah
- BASF Belgium Coordination Center, Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium.
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, 9052, Ghent, Belgium; Center for Medical Biotechnology, VIB, Technologiepark 75, 9052, Ghent, Belgium.
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| | - Katrien Van der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
5
|
Casteels T, Bajew S, Reiniš J, Enders L, Schuster M, Fontaine F, Müller AC, Wagner BK, Bock C, Kubicek S. SMNDC1 links chromatin remodeling and splicing to regulate pancreatic hormone expression. Cell Rep 2022; 40:111288. [PMID: 36044849 DOI: 10.1016/j.celrep.2022.111288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/06/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Insulin expression is primarily restricted to the pancreatic β cells, which are physically or functionally depleted in diabetes. Identifying targetable pathways repressing insulin in non-β cells, particularly in the developmentally related glucagon-secreting α cells, is an important aim of regenerative medicine. Here, we perform an RNA interference screen in a murine α cell line to identify silencers of insulin expression. We discover that knockdown of the splicing factor Smndc1 triggers a global repression of α cell gene-expression programs in favor of increased β cell markers. Mechanistically, Smndc1 knockdown upregulates the β cell transcription factor Pdx1 by modulating the activities of the BAF and Atrx chromatin remodeling complexes. SMNDC1's repressive role is conserved in human pancreatic islets, its loss triggering enhanced insulin secretion and PDX1 expression. Our study identifies Smndc1 as a key factor connecting splicing and chromatin remodeling to the control of insulin expression in human and mouse islet cells.
Collapse
Affiliation(s)
- Tamara Casteels
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Simon Bajew
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Jiří Reiniš
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Lennart Enders
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Frédéric Fontaine
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria; Medical University of Vienna, Center for Medical Statistics, Informatics, and Intelligent Systems, Institute of Artificial Intelligence, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria.
| |
Collapse
|
6
|
Lee ES, Smith HW, Wolf EJ, Guvenek A, Wang YE, Emili A, Tian B, Palazzo AF. ZFC3H1 and U1-70K promote the nuclear retention of mRNAs with 5' splice site motifs within nuclear speckles. RNA (NEW YORK, N.Y.) 2022; 28:878-894. [PMID: 35351812 PMCID: PMC9074902 DOI: 10.1261/rna.079104.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/12/2022] [Indexed: 05/22/2023]
Abstract
Quality control of mRNA represents an important regulatory mechanism for gene expression in eukaryotes. One component of this quality control is the nuclear retention and decay of misprocessed RNAs. Previously, we demonstrated that mature mRNAs containing a 5' splice site (5'SS) motif, which is typically found in misprocessed RNAs such as intronic polyadenylated (IPA) transcripts, are nuclear retained and degraded. Using high-throughput sequencing of cellular fractions, we now demonstrate that IPA transcripts require the zinc finger protein ZFC3H1 for their nuclear retention and degradation. Using reporter mRNAs, we demonstrate that ZFC3H1 promotes the nuclear retention of mRNAs with intact 5'SS motifs by sequestering them into nuclear speckles. Furthermore, we find that U1-70K, a component of the spliceosomal U1 snRNP, is also required for the nuclear retention of these reporter mRNAs and likely functions in the same pathway as ZFC3H1. Finally, we show that the disassembly of nuclear speckles impairs the nuclear retention of reporter mRNAs with 5'SS motifs. Our results highlight a splicing independent role of U1 snRNP and indicate that it works in conjunction with ZFC3H1 in preventing the nuclear export of misprocessed mRNAs by sequestering them into nuclear speckles.
Collapse
Affiliation(s)
- Eliza S Lee
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | - Harrison W Smith
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | - Eric J Wolf
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Aysegul Guvenek
- Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Yifan E Wang
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | - Andrew Emili
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Bin Tian
- Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
7
|
Nakaya T. A specific gene-splicing alteration in the SNRNP70 gene as a hallmark of an ALS subtype. Gene 2022; 818:146203. [PMID: 35101583 DOI: 10.1016/j.gene.2022.146203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) has been considered as one of the progressive neurodegenerative diseases. Numerous genetic factors in divergent molecular pathways have been identified as causative factors of ALS. However, the underlying molecular mechanism that causes this disease remains undetermined; as a result, this has driven the search to find consensus disease-specific hallmarks. In this study, we focused on the alteration of the ratio of two specific gene-splicing events in the SNRNP70 gene from RNA-seq data derived from patients with ALS and control subjects. The splicing profile was significantly and specifically changed in one previously identified ALS subtype. Conversely, the gene expression profile of other ALS cases containing a splicing alteration in the SNRNP70 gene was similar to that of the subtype, whereas ALS cases without this change have exhibited less similarity. These results indicate that this splicing event in the SNRNP70 gene could represent a novel and broadly applicable molecular hallmark of a subtype of ALS.
Collapse
Affiliation(s)
- Tadashi Nakaya
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan.
| |
Collapse
|
8
|
The upstream 5' splice site remains associated to the transcription machinery during intron synthesis. Nat Commun 2021; 12:4545. [PMID: 34315864 PMCID: PMC8316553 DOI: 10.1038/s41467-021-24774-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
In the earliest step of spliceosome assembly, the two splice sites flanking an intron are brought into proximity by U1 snRNP and U2AF along with other proteins. The mechanism that facilitates this intron looping is poorly understood. Using a CRISPR interference-based approach to halt RNA polymerase II transcription in the middle of introns in human cells, we discovered that the nascent 5′ splice site base pairs with a U1 snRNA that is tethered to RNA polymerase II during intron synthesis. This association functionally corresponds with splicing outcome, involves bona fide 5′ splice sites and cryptic intronic sites, and occurs transcriptome-wide. Overall, our findings reveal that the upstream 5′ splice sites remain attached to the transcriptional machinery during intron synthesis and are thus brought into proximity of the 3′ splice sites; potentially mediating the rapid splicing of long introns. We know that most splicing reactions take place co-transcriptionally, but how the transcription machinery facilitate splicing of introns is unknown. Here the authors show that the 5′ splice site remains associated with the transcription machinery during intron synthesis through U1 snRNP, providing a basis for the rapid splicing reaction of introns.
Collapse
|
9
|
Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22105110. [PMID: 34065983 PMCID: PMC8150589 DOI: 10.3390/ijms22105110] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of messenger RNA (mRNA) processing—in particular mRNA splicing—is a hallmark of cancer. Compared to normal cells, cancer cells frequently present aberrant mRNA splicing, which promotes cancer progression and treatment resistance. This hallmark provides opportunities for developing new targeted cancer treatments. Splicing of precursor mRNA into mature mRNA is executed by a dynamic complex of proteins and small RNAs called the spliceosome. Spliceosomes are part of the supraspliceosome, a macromolecular structure where all co-transcriptional mRNA processing activities in the cell nucleus are coordinated. Here we review the biology of the mRNA splicing machinery in the context of other mRNA processing activities in the supraspliceosome and present current knowledge of its dysregulation in lung cancer. In addition, we review investigations to discover therapeutic targets in the spliceosome and give an overview of inhibitors and modulators of the mRNA splicing process identified so far. Together, this provides insight into the value of targeting the spliceosome as a possible new treatment for lung cancer.
Collapse
|
10
|
Abstract
U1 snRNP is one of the most abundant ribonucleoprotein (RNP) complexes in eukaryotic cells and is estimated to be approximately 1 million copies per cell. Apart from its canonical role in mRNA splicing, this complex has emerged as a key regulator of eukaryotic mRNA length via inhibition of mRNA 3'-end processing at numerous intronic polyadenylation sites, in a process that is also termed 'U1 snRNP telescripting'. Several reviews have extensively described the concept of U1 telescripting and subsequently highlighted its potential impacts in mRNA metabolism. Here, we review what is currently known regarding the underlying mechanisms of this important phenomenon and discuss open questions and future challenges.
Collapse
Affiliation(s)
- Yi Ran
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yanhui Deng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Zhu W, Wei X, Wang Y, Li J, Peng L, Zhang K, Bai B. Effects of U1 Small Nuclear Ribonucleoprotein Inhibition on the Expression of Genes Involved in Alzheimer's Disease. ACS OMEGA 2020; 5:25306-25311. [PMID: 33043209 PMCID: PMC7542834 DOI: 10.1021/acsomega.0c03568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Deposition and dysfunction of U1 small nuclear ribonucleoprotein (snRNP) have been revealed in Alzheimer's disease (AD), but whether U1 is involved in the amyloid precursor protein (APP) and Tau pathways remains unclear. Here, we investigate this by inhibiting the U1 components in cultured cells and examining the expression changes of AD-related genes to these two canonic pathways. We find that knockdown of U1-70K and U1C increases the protein expressions of APP and GSK-3β while reduces that of Nicastrin in a dose-dependent manner. Knockdown of U1A shows no effects on the expression of these proteins. The real-time PCR results show that the mRNA expression levels of APP, Nicastrin and GSK-3β are unchanged, decreased, and increased, respectively. In addition, U1-70K knockdown suppresses Tau phosphorylation and causes altered splicing of Tau exon 10. This study suggests that the effect of U1 snRNP knockdown is component-specific and more likely involved in APP deregulation in AD.
Collapse
Affiliation(s)
- Wenbo Zhu
- Department
of Laboratory Medicine, Nanjing Drum Tower
Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
- Department
of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Xuefei Wei
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Yanyang Wang
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Jingjing Li
- Center
for Precision Medicine, Nanjing Drum Tower Hospital,The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Lu Peng
- Department
of Laboratory Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Kui Zhang
- Department
of Laboratory Medicine, Nanjing Drum Tower
Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
- Department
of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Bing Bai
- Department
of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
- Center
for Precision Medicine, Nanjing Drum Tower Hospital,The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| |
Collapse
|
12
|
Lemaire S, Fontrodona N, Aubé F, Claude JB, Polvèche H, Modolo L, Bourgeois CF, Mortreux F, Auboeuf D. Characterizing the interplay between gene nucleotide composition bias and splicing. Genome Biol 2019; 20:259. [PMID: 31783898 PMCID: PMC6883713 DOI: 10.1186/s13059-019-1869-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nucleotide composition bias plays an important role in the 1D and 3D organization of the human genome. Here, we investigate the potential interplay between nucleotide composition bias and the regulation of exon recognition during splicing. RESULTS By analyzing dozens of RNA-seq datasets, we identify two groups of splicing factors that activate either about 3200 GC-rich exons or about 4000 AT-rich exons. We show that splicing factor-dependent GC-rich exons have predicted RNA secondary structures at 5' ss and are dependent on U1 snRNP-associated proteins. In contrast, splicing factor-dependent AT-rich exons have a large number of decoy branch points, SF1- or U2AF2-binding sites and are dependent on U2 snRNP-associated proteins. Nucleotide composition bias also influences local chromatin organization, with consequences for exon recognition during splicing. Interestingly, the GC content of exons correlates with that of their hosting genes, isochores, and topologically associated domains. CONCLUSIONS We propose that regional nucleotide composition bias over several dozens of kilobase pairs leaves a local footprint at the exon level and induces constraints during splicing that can be alleviated by local chromatin organization at the DNA level and recruitment of specific splicing factors at the RNA level. Therefore, nucleotide composition bias establishes a direct link between genome organization and local regulatory processes, like alternative splicing.
Collapse
Affiliation(s)
- Sébastien Lemaire
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Nicolas Fontrodona
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Fabien Aubé
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Jean-Baptiste Claude
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | | | - Laurent Modolo
- LBMC Biocomputing Center, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Cyril F Bourgeois
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
13
|
Loerch S, Leach JR, Horner SW, Maji D, Jenkins JL, Pulvino MJ, Kielkopf CL. The pre-mRNA splicing and transcription factor Tat-SF1 is a functional partner of the spliceosome SF3b1 subunit via a U2AF homology motif interface. J Biol Chem 2018; 294:2892-2902. [PMID: 30567737 DOI: 10.1074/jbc.ra118.006764] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/10/2018] [Indexed: 01/09/2023] Open
Abstract
The transcription elongation and pre-mRNA splicing factor Tat-SF1 associates with the U2 small nuclear ribonucleoprotein (snRNP) of the spliceosome. However, the direct binding partner and underlying interactions mediating the Tat-SF1-U2 snRNP association remain unknown. Here, we identified SF3b1 as a Tat-SF1-interacting subunit of the U2 snRNP. Our 1.1 Å resolution crystal structure revealed that Tat-SF1 contains a U2AF homology motif (UHM) protein-protein interaction module. We demonstrated that Tat-SF1 preferentially and directly binds the SF3b1 subunit compared with other U2AF ligand motif (ULM)-containing splicing factors, and further established that SF3b1 association depends on the integrity of the Tat-SF1 UHM. We next compared the Tat-SF1-binding affinities for each of the five known SF3b1 ULMs and then determined the structures of representative high- and low-affinity SF3b1 ULM complexes with the Tat-SF1 UHM at 1.9 Å and 2.1 Å resolutions, respectively. These structures revealed a canonical UHM-ULM interface, comprising a Tat-SF1 binding pocket for a ULM tryptophan (SF3b1 Trp338) and electrostatic interactions with a basic ULM tail. Importantly, we found that SF3b1 regulates Tat-SF1 levels and that these two factors influence expression of overlapping representative transcripts, consistent with a functional partnership of Tat-SF1 and SF3b1. Altogether, these results define a new molecular interface of the Tat-SF1-U2 snRNP complex for gene regulation.
Collapse
Affiliation(s)
- Sarah Loerch
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Justin R Leach
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Steven W Horner
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Debanjana Maji
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jermaine L Jenkins
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Mary J Pulvino
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Clara L Kielkopf
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
14
|
Kemmerer K, Fischer S, Weigand JE. Auto- and cross-regulation of the hnRNPs D and DL. RNA (NEW YORK, N.Y.) 2018; 24:324-331. [PMID: 29263134 PMCID: PMC5824352 DOI: 10.1261/rna.063420.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/18/2017] [Indexed: 05/17/2023]
Abstract
HnRNP D, better known as AUF1, is an extensively studied protein that controls a variety of cellular pathways. Consequently, its expression has to be tightly regulated to prevent the onset of pathologies. In contrast, the cellular functions and regulation of its ubiquitously expressed paralog hnRNP DL are barely explored. Here, we present an intricate crosstalk between these two proteins. Both hnRNP D and DL are able to control their own expression by alternative splicing of cassette exons in their 3'UTRs. Exon inclusion produces mRNAs degraded by nonsense-mediated decay. Moreover, hnRNP D and DL control the expression of one another by the same mechanism. Thus, we identified two novel ways of how hnRNP D expression is controlled. The tight interconnection of expression control directly links hnRNP DL to hnRNP D-related diseases and emphasizes the importance of a systematic analysis of its cellular functions.
Collapse
Affiliation(s)
- Katrin Kemmerer
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Sandra Fischer
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Julia E Weigand
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
15
|
Yin S, Lopez-Gonzalez R, Kunz RC, Gangopadhyay J, Borufka C, Gygi SP, Gao FB, Reed R. Evidence that C9ORF72 Dipeptide Repeat Proteins Associate with U2 snRNP to Cause Mis-splicing in ALS/FTD Patients. Cell Rep 2017; 19:2244-2256. [PMID: 28614712 PMCID: PMC5653973 DOI: 10.1016/j.celrep.2017.05.056] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/04/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Hexanucleotide repeat expansion in the C9ORF72 gene results in production of dipeptide repeat (DPR) proteins that may disrupt pre-mRNA splicing in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. At present, the mechanisms underlying this mis-splicing are not understood. Here, we show that addition of proline-arginine (PR) and glycine-arginine (GR) toxic DPR peptides to nuclear extracts blocks spliceosome assembly and splicing, but not other types of RNA processing. Proteomic and biochemical analyses identified the U2 small nuclear ribonucleoprotein particle (snRNP) as a major interactor of PR and GR peptides. In addition, U2 snRNP, but not other splicing factors, mislocalizes from the nucleus to the cytoplasm both in C9ORF72 patient induced pluripotent stem cell (iPSC)-derived motor neurons and in HeLa cells treated with the toxic peptides. Bioinformatic studies support a specific role for U2-snRNP-dependent mis-splicing in C9ORF72 patient brains. Together, our data indicate that DPR-mediated dysfunction of U2 snRNP could account for as much as ∼44% of the mis-spliced cassette exons in C9ORF72 patient brains.
Collapse
Affiliation(s)
- Shanye Yin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Rodrigo Lopez-Gonzalez
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ryan C Kunz
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Jaya Gangopadhyay
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Carl Borufka
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Verbeeren J, Verma B, Niemelä EH, Yap K, Makeyev EV, Frilander MJ. Alternative exon definition events control the choice between nuclear retention and cytoplasmic export of U11/U12-65K mRNA. PLoS Genet 2017; 13:e1006824. [PMID: 28549066 PMCID: PMC5473595 DOI: 10.1371/journal.pgen.1006824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/16/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Cellular homeostasis of the minor spliceosome is regulated by a negative feed-back loop that targets U11-48K and U11/U12-65K mRNAs encoding essential components of the U12-type intron-specific U11/U12 di-snRNP. This involves interaction of the U11 snRNP with an evolutionarily conserved splicing enhancer giving rise to unproductive mRNA isoforms. In the case of U11/U12-65K, this mechanism controls the length of the 3′ untranslated region (3′UTR). We show that this process is dynamically regulated in developing neurons and some other cell types, and involves a binary switch between translation-competent mRNAs with a short 3′UTR to non-productive isoforms with a long 3′UTR that are retained in the nucleus or/and spliced to the downstream amylase locus. Importantly, the choice between these alternatives is determined by alternative terminal exon definition events regulated by conserved U12- and U2-type 5′ splice sites as well as sequence signals used for pre-mRNA cleavage and polyadenylation. We additionally show that U11 snRNP binding to the U11/U12-65K mRNA species with a long 3′UTR is required for their nuclear retention. Together, our studies uncover an intricate molecular circuitry regulating the abundance of a key spliceosomal protein and shed new light on the mechanisms limiting the export of non-productively spliced mRNAs from the nucleus to the cytoplasm. The cellular homeostasis of many components of the eukaryotic RNA processing machinery is regulated via negative feed-back pathways that result in the formation of both productive and non-productive mRNA species. Typically, the formation of non-productive mRNAs species results from changes in alternative splicing that disrupt the reading frame of the protein coding region and leads to destabilization of the mRNA. Here, we have investigated the homeostasis regulation of the U11/U12-65K mRNA that encodes an essential protein component of the minor (U12-dependent) spliceosome intron recognition complex. We show that homeostasis is regulated at the level of nuclear mRNA export and mRNA 3′-end formation, and that it can be further regulated during neuronal differentiation. We describe a multilayered regulatory system utilizing alternative exon definition interactions that use the input from both spliceosomes and the polyadenylation machinery to decide between productive and non-productive mRNA formation. Because the 65K protein is an essential component of the minor spliceosome, this regulatory pathway can potentially affect the expression of ~700 genes containing U12-type introns.
Collapse
Affiliation(s)
- Jens Verbeeren
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Bhupendra Verma
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Elina H. Niemelä
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Karen Yap
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Eugene V. Makeyev
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Mikko J. Frilander
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
17
|
Zhang N, He L, Feng H, Kong Y, Wang J, Zhang J. RETRACTED ARTICLE: Complex Effect of RNA Spliceosome Inhibition on Amyloid Precursor Protein Expression. Neurochem Res 2016; 41:3417. [DOI: 10.1007/s11064-016-1993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 11/24/2022]
|
18
|
Niemelä EH, Verbeeren J, Singha P, Nurmi V, Frilander MJ. Evolutionarily conserved exon definition interactions with U11 snRNP mediate alternative splicing regulation on U11-48K and U11/U12-65K genes. RNA Biol 2016; 12:1256-64. [PMID: 26479860 DOI: 10.1080/15476286.2015.1096489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Many splicing regulators bind to their own pre-mRNAs to induce alternative splicing that leads to formation of unstable mRNA isoforms. This provides an autoregulatory feedback mechanism that regulates the cellular homeostasis of these factors. We have described such an autoregulatory mechanism for two core protein components, U11-48K and U11/U12-65K, of the U12-dependent spliceosome. This regulatory system uses an atypical splicing enhancer element termed USSE (U11 snRNP-binding splicing enhancer), which contains two U12-type consensus 5' splice sites (5'ss). Evolutionary analysis of the USSE element from a large number of animal and plant species indicate that USSE sequence must be located 25-50 nt downstream from the target 3' splice site (3'ss). Together with functional evidence showing a loss of USSE activity when this distance is reduced and a requirement for RS-domain of U11-35K protein for 3'ss activation, our data suggests that U11 snRNP bound to USSE uses exon definition interactions for regulating alternative splicing. However, unlike standard exon definition where the 5'ss bound by U1 or U11 will be subsequently activated for splicing, the USSE element functions similarly as an exonic splicing enhancer and is involved only in upstream splice site activation but does not function as a splicing donor. Additionally, our evolutionary and functional data suggests that the function of the 5'ss duplication within the USSE elements is to allow binding of two U11/U12 di-snRNPs that stabilize each others' binding through putative mutual interactions.
Collapse
Affiliation(s)
- Elina H Niemelä
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Jens Verbeeren
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Prosanta Singha
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Visa Nurmi
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Mikko J Frilander
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| |
Collapse
|
19
|
Llorian M, Gooding C, Bellora N, Hallegger M, Buckroyd A, Wang X, Rajgor D, Kayikci M, Feltham J, Ule J, Eyras E, Smith CWJ. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators. Nucleic Acids Res 2016; 44:8933-8950. [PMID: 27317697 PMCID: PMC5062968 DOI: 10.1093/nar/gkw560] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is a key component of gene expression programs that drive cellular differentiation. Smooth muscle cells (SMCs) are important in the function of a number of physiological systems; however, investigation of SMC AS has been restricted to a handful of events. We profiled transcriptome changes in mouse de-differentiating SMCs and observed changes in hundreds of AS events. Exons included in differentiated cells were characterized by particularly weak splice sites and by upstream binding sites for Polypyrimidine Tract Binding protein (PTBP1). Consistent with this, knockdown experiments showed that that PTBP1 represses many smooth muscle specific exons. We also observed coordinated splicing changes predicted to downregulate the expression of core components of U1 and U2 snRNPs, splicing regulators and other post-transcriptional factors in differentiated cells. The levels of cognate proteins were lower or similar in differentiated compared to undifferentiated cells. However, levels of snRNAs did not follow the expression of splicing proteins, and in the case of U1 snRNP we saw reciprocal changes in the levels of U1 snRNA and U1 snRNP proteins. Our results suggest that the AS program in differentiated SMCs is orchestrated by the combined influence of auxiliary RNA binding proteins, such as PTBP1, along with altered activity and stoichiometry of the core splicing machinery.
Collapse
Affiliation(s)
- Miriam Llorian
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Clare Gooding
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Nicolas Bellora
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK Catalan Institute for Research and Advanced Studies (ICREA), E08010 Barcelona, Spain
| | - Martina Hallegger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK Computational Genomics, Universitat Pompeu Fabra, E08003 Barcelona, Spain
| | - Adrian Buckroyd
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Xiao Wang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Dipen Rajgor
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Melis Kayikci
- INIBIOMA, CONICET-UNComahue, Bariloche 8400 Río Negro, Argentina
| | - Jack Feltham
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Jernej Ule
- Computational Genomics, Universitat Pompeu Fabra, E08003 Barcelona, Spain
| | - Eduardo Eyras
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher W J Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
20
|
Therapeutic activity of modified U1 core spliceosomal particles. Nat Commun 2016; 7:11168. [PMID: 27041075 PMCID: PMC4822034 DOI: 10.1038/ncomms11168] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/25/2016] [Indexed: 12/15/2022] Open
Abstract
Modified U1 snRNAs bound to intronic sequences downstream of the 5′ splice site correct exon skipping caused by different types of mutations. Here we evaluate the therapeutic activity and structural requirements of these exon-specific U1 snRNA (ExSpeU1) particles. In a severe spinal muscular atrophy, mouse model, ExSpeU1, introduced by germline transgenesis, increases SMN2 exon 7 inclusion, SMN protein production and extends life span. In vitro, RNA mutant analysis and silencing experiments show that while U1A protein is dispensable, the 70K and stem loop IV elements mediate most of the splicing rescue activity through improvement of exon and intron definition. Our findings indicate that precise engineering of the U1 core spliceosomal RNA particle has therapeutic potential in pathologies associated with exon-skipping mutations. Modification of the spliceosome is being tested as a potential therapy for exon-skipping diseases, such as spinal muscular atrophy (SMA). Here the authors show that 70K and stem loop IV structural elements of a modified U1 particle are essential for splicing enhancement and effective treatment of SMA mice.
Collapse
|
21
|
Selection preserves Ubiquitin Specific Protease 4 alternative exon skipping in therian mammals. Sci Rep 2016; 6:20039. [PMID: 26833277 PMCID: PMC4735762 DOI: 10.1038/srep20039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/23/2015] [Indexed: 01/03/2023] Open
Abstract
Ubiquitin specific protease 4 (USP4) is a highly networked deubiquitinating enzyme with reported roles in cancer, innate immunity and RNA splicing. In mammals it has two dominant isoforms arising from inclusion or skipping of exon 7 (E7). We evaluated two plausible mechanisms for the generation of these isoforms: (A) E7 skipping due to a long upstream intron and (B) E7 skipping due to inefficient 5′ splice sites (5′SS) and/or branchpoint sites (BPS). We then assessed whether E7 alternative splicing is maintained by selective pressure or arose from genetic drift. Both transcript variants were generated from a USP4-E7 minigene construct with short flanking introns, an observation consistent with the second mechanism whereby differential splice signal strengths are the basis of E7 skipping. Optimization of the downstream 5′SS eliminated E7 skipping. Experimental validation of the correlation between 5′SS identity and exon skipping in vertebrates pinpointed the +6 site as the key splicing determinant. Therian mammals invariably display a 5′SS configuration favouring alternative splicing and the resulting isoforms have distinct subcellular localizations. We conclude that alternative splicing of mammalian USP4 is under selective maintenance and that long and short USP4 isoforms may target substrates in various cellular compartments.
Collapse
|
22
|
The spliceosome assembly factor GEMIN2 attenuates the effects of temperature on alternative splicing and circadian rhythms. Proc Natl Acad Sci U S A 2015; 112:9382-7. [PMID: 26170331 DOI: 10.1073/pnas.1504541112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms by which poikilothermic organisms ensure that biological processes are robust to temperature changes are largely unknown. Temperature compensation, the ability of circadian rhythms to maintain a relatively constant period over the broad range of temperatures resulting from seasonal fluctuations in environmental conditions, is a defining property of circadian networks. Temperature affects the alternative splicing (AS) of several clock genes in fungi, plants, and flies, but the splicing factors that modulate these effects to ensure clock accuracy throughout the year remain to be identified. Here we show that GEMIN2, a spliceosomal small nuclear ribonucleoprotein assembly factor conserved from yeast to humans, modulates low temperature effects on a large subset of pre-mRNA splicing events. In particular, GEMIN2 controls the AS of several clock genes and attenuates the effects of temperature on the circadian period in Arabidopsis thaliana. We conclude that GEMIN2 is a key component of a posttranscriptional regulatory mechanism that ensures the appropriate acclimation of plants to daily and seasonal changes in temperature conditions.
Collapse
|
23
|
Emerging functions of alternative splicing coupled with nonsense-mediated decay. Biochem Soc Trans 2015; 42:1168-73. [PMID: 25110020 DOI: 10.1042/bst20140066] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Higher eukaryotes rely on AS (alternative splicing) of pre-mRNAs (mRNA precursors) to generate more than one protein product from a single gene and to regulate mRNA stability and translational activity. An important example of the latter function involves an interplay between AS and NMD (nonsense-mediated decay), a cytoplasmic quality control mechanism eliminating mRNAs containing PTCs (premature translation termination codons). Although originally identified as an error surveillance process, AS-NMD additionally provides an efficient strategy for deterministic regulation of gene expression outputs. In this review, we discuss recently published examples of AS-NMD and delineate functional contexts where recurrent use of this mechanism orchestrates expression of important genes.
Collapse
|
24
|
Regulation of gene expression through production of unstable mRNA isoforms. Biochem Soc Trans 2015; 42:1196-205. [PMID: 25110025 DOI: 10.1042/bst20140102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alternative splicing is universally accredited for expanding the information encoded within the transcriptome. In recent years, several tightly regulated alternative splicing events have been reported which do not lead to generation of protein products, but lead to unstable mRNA isoforms. Instead these transcripts are targets for NMD (nonsense-mediated decay) or retained in the nucleus and degraded. In the present review I discuss the regulation of these events, and how many have been implicated in control of gene expression that is instrumental to a number of developmental paradigms. I further discuss their relevance to disease settings and conclude by highlighting technologies that will aid identification of more candidate events in future.
Collapse
|