1
|
Khandjian EW, Moss T, Rose TM, Robert C, Davidovic L. The fragile X proteins' enigma: to be or not to be nucleolar. Front Cell Dev Biol 2024; 12:1448209. [PMID: 39156973 PMCID: PMC11327008 DOI: 10.3389/fcell.2024.1448209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Affiliation(s)
- Edouard W. Khandjian
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, et Centre de Recherche Cervo, Québec, QC, Canada
| | - Tom Moss
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, et Centre de Recherche sur le Cancer, Axe Oncologie, Centre de Recherche du CHUQ, Université Laval, Québec, QC, Canada
| | - Timothy M. Rose
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Claude Robert
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - Laetitia Davidovic
- Centre National de la Recherche Scientifique UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Inserm U1318, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
2
|
Ledoux N, Lelong EIJ, Simard A, Hussein S, Adjibade P, Lambert JP, Mazroui R. The Identification of Nuclear FMRP Isoform Iso6 Partners. Cells 2023; 12:2807. [PMID: 38132127 PMCID: PMC10742089 DOI: 10.3390/cells12242807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
A deficiency of FMRP, a canonical RNA-binding protein, causes the development of Fragile X Syndrome (FXS), which is characterised by multiple phenotypes, including neurodevelopmental disorders, intellectual disability, and autism. Due to the alternative splicing of the encoding FMR1 gene, multiple FMRP isoforms are produced consisting of full-length predominantly cytoplasmic (i.e., iso1) isoforms involved in translation and truncated nuclear (i.e., iso6) isoforms with orphan functions. However, we recently implicated nuclear FMRP isoforms in DNA damage response, showing that they negatively regulate the accumulation of anaphase DNA genomic instability bridges. This finding provided evidence that the cytoplasmic and nuclear functions of FMRP are uncoupled played by respective cytoplasmic and nuclear isoforms, potentially involving specific interactions. While interaction partners of cytoplasmic FMRP have been reported, the identity of nuclear FMRP isoform partners remains to be established. Using affinity purification coupled with mass spectrometry, we mapped the nuclear interactome of the FMRP isoform iso6 in U2OS. In doing so, we found FMRP nuclear interaction partners to be involved in RNA processing, pre-mRNA splicing, ribosome biogenesis, DNA replication and damage response, chromatin remodeling and chromosome segregation. By comparing interactions between nuclear iso6 and cytoplasmic iso1, we report a set of partners that bind specifically to the nuclear isoforms, mainly proteins involved in DNA-associated processes and proteasomal proteins, which is consistent with our finding that proteasome targets the nuclear FMRP iso6. The specific interactions with the nuclear isoform 6 are regulated by replication stress, while those with the cytoplasmic isoform 1 are largely insensitive to such stress, further supporting a specific role of nuclear isoforms in DNA damage response induced by replicative stress, potentially regulated by the proteasome.
Collapse
Affiliation(s)
- Nassim Ledoux
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Emeline I. J. Lelong
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Alexandre Simard
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Samer Hussein
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Pauline Adjibade
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Jean-Philippe Lambert
- Centre de Recherche du CHU de Québec—Université Laval, Axe Endocrinologie et néphrologie, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada;
- PROTEO, Le Regroupement Québécois De Recherche Sur La Fonction, L’ingénierie et Les Applications des Protéines, Université Laval, Québec, QC G1V 0A6, Canada
| | - Rachid Mazroui
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| |
Collapse
|
3
|
Jung S, Shah S, Han G, Richter JD. FMRP deficiency leads to multifactorial dysregulation of splicing and mislocalization of MBNL1 to the cytoplasm. PLoS Biol 2023; 21:e3002417. [PMID: 38048343 PMCID: PMC10721184 DOI: 10.1371/journal.pbio.3002417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 12/14/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that is often modeled in Fmr1 knockout mice where the RNA-binding protein FMRP is absent. Here, we show that in Fmr1-deficient mice, RNA mis-splicing occurs in several brain regions and peripheral tissues. To assess molecular mechanisms of splicing mis-regulation, we employed N2A cells depleted of Fmr1. In the absence of FMRP, RNA-specific exon skipping events are linked to the splicing factors hnRNPF, PTBP1, and MBNL1. FMRP regulates the translation of Mbnl1 mRNA as well as Mbnl1 RNA auto-splicing. Elevated Mbnl1 auto-splicing in FMRP-deficient cells results in the loss of a nuclear localization signal (NLS)-containing exon. This in turn alters the nucleus-to-cytoplasm ratio of MBNL1. This redistribution of MBNL1 isoforms in Fmr1-deficient cells could result in downstream splicing changes in other RNAs. Indeed, further investigation revealed that splicing disruptions resulting from Fmr1 depletion could be rescued by overexpression of nuclear MBNL1. Altered Mbnl1 auto-splicing also occurs in human FXS postmortem brain. These data suggest that FMRP-controlled translation and RNA processing may cascade into a general dys-regulation of splicing in Fmr1-deficient cells.
Collapse
Affiliation(s)
- Suna Jung
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sneha Shah
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Geongoo Han
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Joel D. Richter
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
4
|
Wang X, Sela-Donenfeld D, Wang Y. Axonal and presynaptic FMRP: Localization, signal, and functional implications. Hear Res 2023; 430:108720. [PMID: 36809742 PMCID: PMC9998378 DOI: 10.1016/j.heares.2023.108720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Fragile X mental retardation protein (FMRP) binds a selected set of mRNAs and proteins to guide neural circuit assembly and regulate synaptic plasticity. Loss of FMRP is responsible for Fragile X syndrome, a neuropsychiatric disorder characterized with auditory processing problems and social difficulty. FMRP actions in synaptic formation, maturation, and plasticity are site-specific among the four compartments of a synapse: presynaptic and postsynaptic neurons, astrocytes, and extracellular matrix. This review summarizes advancements in understanding FMRP localization, signals, and functional roles in axons and presynaptic terminals.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
5
|
Wang X, Fan Q, Yu X, Wang Y. Cellular distribution of the Fragile X mental retardation protein in the inner ear: a developmental and comparative study in the mouse, rat, gerbil, and chicken. J Comp Neurol 2023; 531:149-169. [PMID: 36222577 PMCID: PMC9691623 DOI: 10.1002/cne.25420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
The Fragile X mental retardation protein (FMRP) is an mRNA binding protein that is essential for neural circuit assembly and synaptic plasticity. Loss of functional FMRP leads to Fragile X syndrome (FXS), a neurodevelopmental disorder characterized by sensory dysfunction including abnormal auditory processing. While the central mechanisms of FMRP regulation have been studied in the brain, whether FMRP is expressed in the auditory periphery and how it develops and functions remains unknown. In this study, we characterized the spatiotemporal distribution pattern of FMRP immunoreactivity in the inner ear of mice, rats, gerbils, and chickens. Across species, FMRP was expressed in hair cells and supporting cells, with a particularly high level in immature hair cells during the prehearing period. Interestingly, the distribution of cytoplasmic FMRP displayed an age-dependent translocation in hair cells, and this feature was conserved across species. In the auditory ganglion (AG), FMRP immunoreactivity was detected in neuronal cell bodies as well as their peripheral and central processes. Distinct from hair cells, FMRP intensity in AG neurons was high both during development and after maturation. Additionally, FMRP was evident in mature glial cells surrounding AG neurons. Together, these observations demonstrate distinct developmental trajectories across cell types in the auditory periphery. Given the importance of peripheral inputs to the maturation of auditory circuits, these findings implicate involvement of FMRP in inner ear development as well as a potential contribution of periphery FMRP to the generation of auditory dysfunction in FXS.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, College of Medicine, Jinan University, Guangzhou 510632, China
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Qiwei Fan
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, College of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaoyan Yu
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
6
|
Binda O, Juillard F, Ducassou JN, Kleijwegt C, Paris G, Didillon A, Baklouti F, Corpet A, Couté Y, Côté J, Lomonte P. SMA-linked SMN mutants prevent phase separation properties and SMN interactions with FMRP family members. Life Sci Alliance 2022; 6:6/1/e202201429. [PMID: 36375840 PMCID: PMC9684302 DOI: 10.26508/lsa.202201429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Although recent advances in gene therapy provide hope for spinal muscular atrophy (SMA) patients, the pathology remains the leading genetic cause of infant mortality. SMA is a monogenic pathology that originates from the loss of the SMN1 gene in most cases or mutations in rare cases. Interestingly, several SMN1 mutations occur within the TUDOR methylarginine reader domain of SMN. We hypothesized that in SMN1 mutant cases, SMA may emerge from aberrant protein-protein interactions between SMN and key neuronal factors. Using a BioID proteomic approach, we have identified and validated a number of SMN-interacting proteins, including fragile X mental retardation protein (FMRP) family members (FMRFM). Importantly, SMA-linked SMNTUDOR mutant forms (SMNST) failed to interact with FMRFM In agreement with the recent work, we define biochemically that SMN forms droplets in vitro and these droplets are stabilized by RNA, suggesting that SMN could be involved in the formation of membraneless organelles, such as Cajal nuclear bodies. Finally, we found that SMN and FMRP co-fractionate with polysomes, in an RNA-dependent manner, suggesting a potential role in localized translation in motor neurons.
Collapse
Affiliation(s)
- Olivier Binda
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France .,University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Franceline Juillard
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| | - Julia Novion Ducassou
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Constance Kleijwegt
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France,Université de Montpellier, CNRS UMR 9002, Institut de Génétique Humaine, Montpellier, France
| | - Geneviève Paris
- University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Andréanne Didillon
- University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Faouzi Baklouti
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| | - Armelle Corpet
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Jocelyn Côté
- University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Patrick Lomonte
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| |
Collapse
|
7
|
Gene therapy using human FMRP isoforms driven by the human FMR1 promoter rescues fragile X syndrome mouse deficits. Mol Ther Methods Clin Dev 2022; 27:246-258. [PMID: 36320413 PMCID: PMC9593309 DOI: 10.1016/j.omtm.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
Abstract
Fragile X syndrome (FXS) is caused by the loss of the fragile X messenger ribonucleoprotein 1 (FMRP) encoded by the FMR1 gene. Gene therapy using adeno-associated virus (AAV) to restore FMRP expression is a promising therapeutic strategy. However, so far AAV gene therapy tests for FXS only utilized rodent FMRPs driven by promoters other than the human FMR1 promoter. Restoration of human FMRP in appropriate cell types and at physiological levels, preferably driven by the human FMR1 promoter, would be more suitable for its clinical use. Herein, we generated two human FMR1 promoter subdomains that effectively drive gene expression. When AAVs expressing two different human FMRP isoforms under the control of a human FMR1 promoter subdomain were administered into bilateral ventricles of neonatal Fmr1 -/y and wild-type (WT) mice, both human FMRP isoforms were expressed throughout the brain in a pattern reminiscent to that of mouse FMRP. Importantly, human FMRP expression attenuated social behavior deficits and stereotyped and repetitive behavior, and reversed dysmorphological dendritic spines in Fmr1 -/y mice, without affecting WT mouse behaviors. Our results demonstrate that human FMR1 promoter can effectively drive human FMRP expression in the brain to attenuate Fmr1 -/y mouse deficits, strengthening the notion of using AAV gene therapy for FXS treatment.
Collapse
|
8
|
Khandjian EW, Robert C, Davidovic L. FMRP, a multifunctional RNA-binding protein in quest of a new identity. Front Genet 2022; 13:976480. [PMID: 36035132 PMCID: PMC9399724 DOI: 10.3389/fgene.2022.976480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Edouard W. Khandjian
- Centre de Recherche CERVO, Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- *Correspondence: Edouard W. Khandjian,
| | - Claude Robert
- Département des Sciences Animales, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec City, QC, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Québec City, QC, Canada
| | - Laetitia Davidovic
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
9
|
Donnard E, Shu H, Garber M. Single cell transcriptomics reveals dysregulated cellular and molecular networks in a fragile X syndrome model. PLoS Genet 2022; 18:e1010221. [PMID: 35675353 PMCID: PMC9212148 DOI: 10.1371/journal.pgen.1010221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/21/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Despite advances in understanding the pathophysiology of Fragile X syndrome (FXS), its molecular basis is still poorly understood. Whole brain tissue expression profiles have proved surprisingly uninformative, therefore we applied single cell RNA sequencing to profile an FMRP deficient mouse model with higher resolution. We found that the absence of FMRP results in highly cell type specific gene expression changes that are strongest among specific neuronal types, where FMRP-bound mRNAs were prominently downregulated. Metabolic pathways including translation and respiration are significantly upregulated across most cell types with the notable exception of excitatory neurons. These effects point to a potential difference in the activity of mTOR pathways, and together with other dysregulated pathways, suggest an excitatory-inhibitory imbalance in the Fmr1-knock out cortex that is exacerbated by astrocytes. Our data demonstrate that FMRP loss affects abundance of key cellular communication genes that potentially affect neuronal synapses and provide a resource for interrogating the biological basis of this disorder. Fragile X syndrome is a leading genetic cause of inherited intellectual disability and autism spectrum disorder. It results from the inactivation of a single gene, FMR1 and hence the loss of its encoded protein FMRP. Despite decades of intensive research, we still lack an overview of the molecular and biological consequences of the disease. Using single cell RNA sequencing, we profiled cells from the brain of healthy mice and of knock-out mice lacking the FMRP protein, a common model for this disease, to identify molecular changes that happen across different cell types. We find neurons are the most impacted cell type, where genes in multiple pathways are similarly impacted. This includes transcripts known to be bound by FMRP, which are collectively decreased only in neurons but not in other cell types. Our results show how the loss of FMRP affects the intricate interactions between different brain cell types, which could provide new perspectives to the development of therapeutic interventions.
Collapse
Affiliation(s)
- Elisa Donnard
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ED); (HS); (MG)
| | - Huan Shu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ED); (HS); (MG)
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Dermatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ED); (HS); (MG)
| |
Collapse
|
10
|
Corrêa-Velloso JC, Linardi AM, Glaser T, Velloso FJ, Rivas MP, Leite REP, Grinberg LT, Ulrich H, Akins MR, Chiavegatto S, Haddad LA. Fmr1 exon 14 skipping in late embryonic development of the rat forebrain. BMC Neurosci 2022; 23:32. [PMID: 35641906 PMCID: PMC9158170 DOI: 10.1186/s12868-022-00711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragile X syndrome, the major cause of inherited intellectual disability among men, is due to deficiency of the synaptic functional regulator FMR1 protein (FMRP), encoded by the FMRP translational regulator 1 (FMR1) gene. FMR1 alternative splicing produces distinct transcripts that may consequently impact FMRP functional roles. In transcripts without exon 14 the translational reading frame is shifted. For deepening current knowledge of the differential expression of Fmr1 exon 14 along the rat nervous system development, we conducted a descriptive study employing quantitative RT-PCR and BLAST of RNA-Seq datasets. RESULTS We observed in the rat forebrain progressive decline of total Fmr1 mRNA from E11 to P112 albeit an elevation on P3; and exon-14 skipping in E17-E20 with downregulation of the resulting mRNA. We tested if the reduced detection of messages without exon 14 could be explained by nonsense-mediated mRNA decay (NMD) vulnerability, but knocking down UPF1, a major component of this pathway, did not increase their quantities. Conversely, it significantly decreased FMR1 mRNA having exon 13 joined with either exon 14 or exon 15 site A. CONCLUSIONS The forebrain in the third embryonic week of the rat development is a period with significant skipping of Fmr1 exon 14. This alternative splicing event chronologically precedes a reduction of total Fmr1 mRNA, suggesting that it may be part of combinatorial mechanisms downregulating the gene's expression in the late embryonic period. The decay of FMR1 mRNA without exon 14 should be mediated by a pathway different from NMD. Finally, we provide evidence of FMR1 mRNA stabilization by UPF1, likely depending on FMRP.
Collapse
Affiliation(s)
- Juliana C Corrêa-Velloso
- Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277 # 327, São Paulo, SP, 05508-090, Brazil
| | - Alessandra M Linardi
- Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277 # 327, São Paulo, SP, 05508-090, Brazil
| | - Talita Glaser
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernando J Velloso
- Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277 # 327, São Paulo, SP, 05508-090, Brazil
| | - Maria P Rivas
- Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277 # 327, São Paulo, SP, 05508-090, Brazil
| | - Renata E P Leite
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lea T Grinberg
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Michael R Akins
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Silvana Chiavegatto
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.,Department of Psychiatry, Instituto de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luciana A Haddad
- Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277 # 327, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
11
|
Hooper AW, Wong H, Niibori Y, Abdoli R, Karumuthil-Melethil S, Qiao C, Danos O, Bruder JT, Hampson DR. Gene therapy using an ortholog of human fragile X mental retardation protein partially rescues behavioral abnormalities and EEG activity. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:196-209. [PMID: 34485605 PMCID: PMC8399347 DOI: 10.1016/j.omtm.2021.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/30/2021] [Indexed: 01/28/2023]
Abstract
Fragile X syndrome (FXS), a neurodevelopmental disorder with no known cure, is caused by a lack of expression of the fragile X mental retardation protein (FMRP). As a single-gene disorder, FXS is an excellent candidate for viral-vector-based gene therapy, although that is complicated by the existence of multiple isoforms of FMRP, whose individual cellular functions are unknown. We studied the effects of rat and mouse orthologs of human isoform 17, a major expressed isoform of FMRP. Injection of neonatal Fmr1 knockout rats and mice with adeno-associated viral vectors (AAV9 serotype) under the control of an MeCP2 mini-promoter resulted in widespread distribution of the FMRP transgenes throughout the telencephalon and diencephalon. Transgene expression occurred mainly in non-GABAergic neurons, with little expression in glia. Early postnatal treatment resulted in partial rescue of the Fmr1 KO rat phenotype, including improved social dominance in treated Fmr1 KO females and partial rescue of locomotor activity in males. Electro-encephalogram (EEG) recordings showed correction of abnormal slow-wave activity during the sleep-like state in male Fmr1 KO rats. These findings support the use of AAV-based gene therapy as a treatment for FXS and specifically demonstrate the potential therapeutic benefit of human FMRP isoform 17 orthologs.
Collapse
Affiliation(s)
- Alexander W.M. Hooper
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Hayes Wong
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Yosuke Niibori
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Rozita Abdoli
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | | | - Chunping Qiao
- Research and Early Development, REGENXBIO Inc. Rockville, Maryland, U.S.A. 20850
| | - Olivier Danos
- Research and Early Development, REGENXBIO Inc. Rockville, Maryland, U.S.A. 20850
| | - Joseph T. Bruder
- Research and Early Development, REGENXBIO Inc. Rockville, Maryland, U.S.A. 20850
| | - David R. Hampson
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3M2
- Corresponding author: David R. Hampson, PhD, Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, Univerity of Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
12
|
Dionne O, Corbin F. An "Omic" Overview of Fragile X Syndrome. BIOLOGY 2021; 10:433. [PMID: 34068266 PMCID: PMC8153138 DOI: 10.3390/biology10050433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder associated with a wide range of cognitive, behavioral and medical problems. It arises from the silencing of the fragile X mental retardation 1 (FMR1) gene and, consequently, in the absence of its encoded protein, FMRP (fragile X mental retardation protein). FMRP is a ubiquitously expressed and multifunctional RNA-binding protein, primarily considered as a translational regulator. Pre-clinical studies of the past two decades have therefore focused on this function to relate FMRP's absence to the molecular mechanisms underlying FXS physiopathology. Based on these data, successful pharmacological strategies were developed to rescue fragile X phenotype in animal models. Unfortunately, these results did not translate into humans as clinical trials using same therapeutic approaches did not reach the expected outcomes. These failures highlight the need to put into perspective the different functions of FMRP in order to get a more comprehensive understanding of FXS pathophysiology. This work presents a review of FMRP's involvement on noteworthy molecular mechanisms that may ultimately contribute to various biochemical alterations composing the fragile X phenotype.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC J1H 5H4, Canada;
| | | |
Collapse
|
13
|
Taha MS, Haghighi F, Stefanski A, Nakhaei-Rad S, Kazemein Jasemi NS, Al Kabbani MA, Görg B, Fujii M, Lang PA, Häussinger D, Piekorz RP, Stühler K, Ahmadian MR. Novel FMRP interaction networks linked to cellular stress. FEBS J 2020; 288:837-860. [PMID: 32525608 DOI: 10.1111/febs.15443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.
Collapse
Affiliation(s)
- Mohamed S Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.,Research on Children with Special Needs Department, Medical Research Branch, National Research Centre, Cairo, Egypt
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Phillip A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
14
|
Suardi GAM, Haddad LA. FMRP ribonucleoprotein complexes and RNA homeostasis. ADVANCES IN GENETICS 2020; 105:95-136. [PMID: 32560791 DOI: 10.1016/bs.adgen.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Fragile Mental Retardation 1 gene (FMR1), at Xq27.3, encodes the fragile mental retardation protein (FMRP), and displays in its 5'-untranslated region a series of polymorphic CGG triplet repeats that may undergo dynamic mutation. Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability among men, and is most frequently due to FMR1 full mutation and consequent transcription repression. FMR1 premutations may associate with at least two other clinical conditions, named fragile X-associated primary ovarian insufficiency (FXPOI) and tremor and ataxia syndrome (FXTAS). While FXPOI and FXTAS appear to be mediated by FMR1 mRNA accumulation, relative reduction of FMRP, and triplet repeat translation, FXS is due to the lack of the RNA-binding protein FMRP. Besides its function as mRNA translation repressor in neuronal and stem/progenitor cells, RNA editing roles have been assigned to FMRP. In this review, we provide a brief description of FMR1 transcribed microsatellite and associated clinical disorders, and discuss FMRP molecular roles in ribonucleoprotein complex assembly and trafficking, as well as aspects of RNA homeostasis affected in FXS cells.
Collapse
Affiliation(s)
- Gabriela Aparecida Marcondes Suardi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Amaral Haddad
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
15
|
Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease. Acta Neuropathol 2020; 139:319-345. [PMID: 31768670 DOI: 10.1007/s00401-019-02099-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the gradual appearance of α-synuclein (α-syn)-containing neuronal protein aggregates. Although the exact mechanism of α-syn-mediated cell death remains elusive, recent research suggests that α-syn-induced alterations in neuronal excitability contribute to cell death in PD. Because the fragile X mental retardation protein (FMRP) controls the expression and function of numerous neuronal genes related to neuronal excitability and synaptic function, we here investigated the role of FMRP in α-syn-associated pathological changes in cell culture and mouse models of PD as well as in post-mortem human brain tissue from PD patients. We found FMRP to be decreased in cultured DA neurons and in the mouse brain in response to α-syn overexpression. FMRP was, furthermore, lost in the SNc of PD patients and in patients with early stages of incidental Lewy body disease (iLBD). Unlike fragile X syndrome (FXS), FMR1 expression in response to α-syn was regulated by a mechanism involving Protein Kinase C (PKC) and cAMP response element-binding protein (CREB). Reminiscent of FXS neurons, α-syn-overexpressing cells exhibited an increase in membrane N-type calcium channels, increased phosphorylation of ERK1/2, eIF4E and S6, increased overall protein synthesis, and increased expression of Matrix Metalloproteinase 9 (MMP9). FMRP affected neuronal function in a PD animal model, because FMRP-KO mice were resistant to the effect of α-syn on striatal dopamine release. In summary, our results thus reveal a new role of FMRP in PD and support the examination of FMRP-regulated genes in PD disease progression.
Collapse
|
16
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
The Application of Adeno-Associated Viral Vector Gene Therapy to the Treatment of Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020032. [PMID: 30717399 PMCID: PMC6406794 DOI: 10.3390/brainsci9020032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/18/2023] Open
Abstract
Viral vector-mediated gene therapy has grown by leaps and bounds over the past several years. Although the reasons for this progress are varied, a deeper understanding of the basic biology of the viruses, the identification of new and improved versions of viral vectors, and simply the vast experience gained by extensive testing in both animal models of disease and in clinical trials, have been key factors. Several studies have investigated the efficacy of adeno-associated viral (AAV) vectors in the mouse model of fragile X syndrome where AAVs have been used to express fragile X mental retardation protein (FMRP), which is missing or highly reduced in the disorder. These studies have demonstrated a range of efficacies in different tests from full correction, to partial rescue, to no effect. Here we provide a backdrop of recent advances in AAV gene therapy as applied to central nervous system disorders, outline the salient features of the fragile X studies, and discuss several key issues for moving forward. Collectively, the findings to date from the mouse studies on fragile X syndrome, and data from clinical trials testing AAVs in other neurological conditions, indicate that AAV-mediated gene therapy could be a viable strategy for treating fragile X syndrome.
Collapse
|
18
|
Leboucher A, Pisani DF, Martinez-Gili L, Chilloux J, Bermudez-Martin P, Van Dijck A, Ganief T, Macek B, Becker JAJ, Le Merrer J, Kooy RF, Amri EZ, Khandjian EW, Dumas ME, Davidovic L. The translational regulator FMRP controls lipid and glucose metabolism in mice and humans. Mol Metab 2019; 21:22-35. [PMID: 30686771 PMCID: PMC6407369 DOI: 10.1016/j.molmet.2019.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Objectives The Fragile X Mental Retardation Protein (FMRP) is a widely expressed RNA-binding protein involved in translation regulation. Since the absence of FMRP leads to Fragile X Syndrome (FXS) and autism, FMRP has been extensively studied in brain. The functions of FMRP in peripheral organs and on metabolic homeostasis remain elusive; therefore, we sought to investigate the systemic consequences of its absence. Methods Using metabolomics, in vivo metabolic phenotyping of the Fmr1-KO FXS mouse model and in vitro approaches, we show that the absence of FMRP induced a metabolic shift towards enhanced glucose tolerance and insulin sensitivity, reduced adiposity, and increased β-adrenergic-driven lipolysis and lipid utilization. Results Combining proteomics and cellular assays, we highlight that FMRP loss increased hepatic protein synthesis and impacted pathways notably linked to lipid metabolism. Mapping metabolomic and proteomic phenotypes onto a signaling and metabolic network, we predicted that the coordinated metabolic response to FMRP loss was mediated by dysregulation in the abundances of specific hepatic proteins. We experimentally validated these predictions, demonstrating that the translational regulator FMRP associates with a subset of mRNAs involved in lipid metabolism. Finally, we highlight that FXS patients mirror metabolic variations observed in Fmr1-KO mice with reduced circulating glucose and insulin and increased free fatty acids. Conclusions Loss of FMRP results in a widespread coordinated systemic response that notably involves upregulation of protein translation in the liver, increased utilization of lipids, and significant changes in metabolic homeostasis. Our study unravels metabolic phenotypes in FXS and further supports the importance of translational regulation in the homeostatic control of systemic metabolism. Loss of the translational regulator FMRP impacts glucose and lipid homeostasis in mouse and human. FMR1-deficiency modifies blood metabolic markers. Loss of FMRP enhances the insulin response and lipolysis. Loss of FMRP exaggerates hepatic protein synthesis. FMRP controls the translation of key hepatic proteins involved in lipid metabolism.
Collapse
Affiliation(s)
- Antoine Leboucher
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Laura Martinez-Gili
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Julien Chilloux
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Patricia Bermudez-Martin
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital of Antwerp, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium
| | | | | | - Jérôme A J Becker
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Inserm, Université François Rabelais, IFCE, 37380, Nouzilly, France
| | - Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Inserm, Université François Rabelais, IFCE, 37380, Nouzilly, France
| | - R Frank Kooy
- Department of Medical Genetics, University and University Hospital of Antwerp, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Edouard W Khandjian
- Centre de Recherche CERVO, Institut en Santé Mentale de Québec, PQ, Canada; Département de Psychiatrie et des Neurosciences, Faculté de Médecine, Université Laval, Québec, PQ, Canada
| | - Marc-Emmanuel Dumas
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Laetitia Davidovic
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| |
Collapse
|
19
|
Izumikawa K, Ishikawa H, Simpson RJ, Takahashi N. Modulating the expression of Chtop, a versatile regulator of gene-specific transcription and mRNA export. RNA Biol 2018; 15:849-855. [PMID: 29683372 DOI: 10.1080/15476286.2018.1465795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Chtop binds competitively to the arginine methyltransferases PRMT1 and PRMT5, thereby promoting the asymmetric or symmetric methylation of arginine residues, respectively. In cooperation with PRMT1, Chtop activates transcription of certain gene groups, such as the estrogen-inducible genes in breast cancer cells, the 5-hydroxymethylcytosine-modified genes involved in glioblastomagenesis, or the Zbp-89-dependent genes in erythroleukemia cells. Chtop also represses expression of the fetal γ-globin gene. In addition, Chtop is a component of the TREX complex that links transcription elongation to mRNA export. The regulation of Chtop expression is, therefore, a key process during the expression of certain gene groups and pathogenesis of certain diseases. Our recent study revealed that cellular levels of Chtop are strictly autoregulated by a mechanism involving intron retention and nonsense-mediated mRNA decay. Here, we summarize roles of Chtop in gene-specific expression and highlight our recent findings concerning the autoregulation of Chtop.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Hideaki Ishikawa
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Richard J Simpson
- b Global Innovation Research Organizations, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan.,c La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University , Bundoora Victoria , Australia
| | - Nobuhiro Takahashi
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan.,b Global Innovation Research Organizations, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| |
Collapse
|
20
|
Li Z, Lai ZW, Christiano R, Gazos-Lopes F, Walther TC, Farese RV. Global Analyses of Selective Insulin Resistance in Hepatocytes Caused by Palmitate Lipotoxicity. Mol Cell Proteomics 2018; 17:836-849. [PMID: 29414761 DOI: 10.1074/mcp.ra117.000560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity is tightly linked to hepatic steatosis and insulin resistance. One feature of this association is the paradox of selective insulin resistance: insulin fails to suppress hepatic gluconeogenesis but activates lipid synthesis in the liver. How lipid accumulation interferes selectively with some branches of hepatic insulin signaling is not well understood. Here we provide a resource, based on unbiased approaches and established in a simple cell culture system, to enable investigations of the phenomenon of selective insulin resistance. We analyzed the phosphoproteome of insulin-treated human hepatoma cells and identified sites in which palmitate selectively impairs insulin signaling. As an example, we show that palmitate interferes with insulin signaling to FoxO1, a key transcription factor regulating gluconeogenesis, and identify altered FoxO1 cellular compartmentalization as a contributing mechanism for selective insulin resistance. This model system, together with our comprehensive characterization of the proteome, phosphoproteome, and lipidome changes in response to palmitate treatment, provides a novel and useful resource for unraveling the mechanisms underlying selective insulin resistance.
Collapse
Affiliation(s)
- Zhihuan Li
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115.,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124
| | - Zon Weng Lai
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115.,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124
| | - Romain Christiano
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115.,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124
| | - Felipe Gazos-Lopes
- ‖Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115
| | - Tobias C Walther
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115; .,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124.,**Howard Hughes Medical Institute, Boston, Massachusetts, 02115
| | - Robert V Farese
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115.,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124
| |
Collapse
|
21
|
Okray Z, de Esch CEF, Van Esch H, Devriendt K, Claeys A, Yan J, Verbeeck J, Froyen G, Willemsen R, de Vrij FMS, Hassan BA. A novel fragile X syndrome mutation reveals a conserved role for the carboxy-terminus in FMRP localization and function. EMBO Mol Med 2015; 7:423-37. [PMID: 25693964 PMCID: PMC4403044 DOI: 10.15252/emmm.201404576] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss of function of the FMR1 gene leads to fragile X syndrome (FXS), the most common form of intellectual disability. The loss of FMR1 function is usually caused by epigenetic silencing of the FMR1 promoter leading to expansion and subsequent methylation of a CGG repeat in the 5′ untranslated region. Very few coding sequence variations have been experimentally characterized and shown to be causal to the disease. Here, we describe a novel FMR1 mutation and reveal an unexpected nuclear export function for the C-terminus of FMRP. We screened a cohort of patients with typical FXS symptoms who tested negative for CGG repeat expansion in the FMR1 locus. In one patient, we identified a guanine insertion in FMR1 exon 15. This mutation alters the open reading frame creating a short novel C-terminal sequence, followed by a stop codon. We find that this novel peptide encodes a functional nuclear localization signal (NLS) targeting the patient FMRP to the nucleolus in human cells. We also reveal an evolutionarily conserved nuclear export function associated with the endogenous C-terminus of FMRP. In vivo analyses in Drosophila demonstrate that a patient-mimetic mutation alters the localization and function of Dfmrp in neurons, leading to neomorphic neuronal phenotypes.
Collapse
Affiliation(s)
- Zeynep Okray
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium Program in Molecular and Developmental Genetics, Doctoral School of Biomedical Sciences, University of Leuven, Leuven, Belgium
| | - Celine E F de Esch
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hilde Van Esch
- Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Koen Devriendt
- Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Annelies Claeys
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Jiekun Yan
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Jelle Verbeeck
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Guy Froyen
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium Program in Molecular and Developmental Genetics, Doctoral School of Biomedical Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Gross C, Hoffmann A, Bassell GJ, Berry-Kravis EM. Therapeutic Strategies in Fragile X Syndrome: From Bench to Bedside and Back. Neurotherapeutics 2015; 12:584-608. [PMID: 25986746 PMCID: PMC4489963 DOI: 10.1007/s13311-015-0355-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS), an inherited intellectual disability often associated with autism, is caused by the loss of expression of the fragile X mental retardation protein. Tremendous progress in basic, preclinical, and translational clinical research has elucidated a variety of molecular-, cellular-, and system-level defects in FXS. This has led to the development of several promising therapeutic strategies, some of which have been tested in larger-scale controlled clinical trials. Here, we will summarize recent advances in understanding molecular functions of fragile X mental retardation protein beyond the well-known role as an mRNA-binding protein, and will describe current developments and emerging limitations in the use of the FXS mouse model as a preclinical tool to identify therapeutic targets. We will review the results of recent clinical trials conducted in FXS that were based on some of the preclinical findings, and discuss how the observed outcomes and obstacles will inform future therapy development in FXS and other autism spectrum disorders.
Collapse
Affiliation(s)
- Christina Gross
- />Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Anne Hoffmann
- />Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612 USA
| | - Gary J. Bassell
- />Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Elizabeth M. Berry-Kravis
- />Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
23
|
Gholizadeh S, Halder SK, Hampson DR. Expression of fragile X mental retardation protein in neurons and glia of the developing and adult mouse brain. Brain Res 2015; 1596:22-30. [DOI: 10.1016/j.brainres.2014.11.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/10/2014] [Indexed: 01/20/2023]
|
24
|
Reduced phenotypic severity following adeno-associated virus-mediated Fmr1 gene delivery in fragile X mice. Neuropsychopharmacology 2014; 39:3100-11. [PMID: 24998620 PMCID: PMC4229583 DOI: 10.1038/npp.2014.167] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/06/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a trinucleotide repeat expansion in the FMR1 gene that codes for fragile X mental retardation protein (FMRP). To determine if FMRP expression in the central nervous system could reverse phenotypic deficits in the Fmr1 knockout (KO) mouse model of FXS, we used a single-stranded adeno-associated viral (AAV) vector with viral capsids from serotype 9 that contained a major isoform of FMRP. FMRP transgene expression was driven by the neuron-selective synapsin-1 promoter. The vector was delivered to the brain via a single bilateral intracerebroventricular injection into neonatal Fmr1 KO mice and transgene expression and behavioral assessments were conducted 22-26 or 50-56 days post injection. Western blotting and immunocytochemical analyses of AAV-FMRP-injected mice revealed FMRP expression in the striatum, hippocampus, retrosplenial cortex, and cingulate cortex. Cellular expression was selective for neurons and reached ∼ 50% of wild-type levels in the hippocampus and cortex at 56 days post injection. The pathologically elevated repetitive behavior and the deficit in social dominance behavior seen in phosphate-buffered saline-injected Fmr1 KO mice were reversed in AAV-FMRP-injected mice. These results provide the first proof of principle that gene therapy can correct specific behavioral abnormalities in the mouse model of FXS.
Collapse
|
25
|
Moutaoufik MT, El Fatimy R, Nassour H, Gareau C, Lang J, Tanguay RM, Mazroui R, Khandjian EW. UVC-induced stress granules in mammalian cells. PLoS One 2014; 9:e112742. [PMID: 25409157 PMCID: PMC4237350 DOI: 10.1371/journal.pone.0112742] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/14/2014] [Indexed: 01/26/2023] Open
Abstract
Stress granules (SGs) are well characterized cytoplasmic RNA bodies that form under various stress conditions. We have observed that exposure of mammalian cells in culture to low doses of UVC induces the formation of discrete cytoplasmic RNA granules that were detected by immunofluorescence staining using antibodies to RNA-binding proteins. UVC-induced cytoplasmic granules are not Processing Bodies (P-bodies) and are bone fide SGs as they contain TIA-1, TIA-1/R, Caprin1, FMRP, G3BP1, PABP1, well known markers, and mRNA. Concomitant with the accumulation of the granules in the cytoplasm, cells enter a quiescent state, as they are arrested in G1 phase of the cell cycle in order to repair DNA damages induced by UVC irradiation. This blockage persists as long as the granules are present. A tight correlation between their decay and re-entry into S-phase was observed. However the kinetics of their formation, their low number per cell, their absence of fusion into larger granules, their persistence over 48 hours and their slow decay, all differ from classical SGs induced by arsenite or heat treatment. The induction of these SGs does not correlate with major translation inhibition nor with phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). We propose that a restricted subset of mRNAs coding for proteins implicated in cell cycling are removed from the translational apparatus and are sequestered in a repressed form in SGs.
Collapse
Affiliation(s)
- Mohamed Taha Moutaoufik
- Centre de recherche, Institut universitaire en santé mentale de Québec, Département de psychiatrie et de neurosciences, Université Laval, Québec, PQ, Canada
| | - Rachid El Fatimy
- Centre de recherche, Institut universitaire en santé mentale de Québec, Département de psychiatrie et de neurosciences, Université Laval, Québec, PQ, Canada
| | - Hassan Nassour
- Centre de recherche du CHU de Québec. Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, PQ, Canada
| | - Cristina Gareau
- Centre de recherche du CHU de Québec. Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, PQ, Canada
| | - Jérôme Lang
- Centre de recherche, Institut universitaire en santé mentale de Québec, Département de psychiatrie et de neurosciences, Université Laval, Québec, PQ, Canada
| | - Robert M. Tanguay
- Laboratoire de génétique cellulaire et du développement, Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, PQ, Canada
| | - Rachid Mazroui
- Centre de recherche du CHU de Québec. Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, PQ, Canada
| | - Edouard W. Khandjian
- Centre de recherche, Institut universitaire en santé mentale de Québec, Département de psychiatrie et de neurosciences, Université Laval, Québec, PQ, Canada
- * E-mail:
| |
Collapse
|
26
|
Niedojadło J, Kubicka E, Kalich B, Smoliński DJ. Poly(A) RNAs including coding proteins RNAs occur in plant Cajal bodies. PLoS One 2014; 9:e111780. [PMID: 25369024 PMCID: PMC4219776 DOI: 10.1371/journal.pone.0111780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The localisation of poly(A) RNA in plant cells containing either reticular (Allium cepa) or chromocentric (Lupinus luteus, Arabidopsis thaliana) nuclei was studied through in situ hybridisation. In both types of nuclei, the amount of poly(A) RNA was much greater in the nucleus than in the cytoplasm. In the nuclei, poly(A) RNA was present in structures resembling nuclear bodies. The molecular composition as well as the characteristic ultrastructure of the bodies containing poly(A) RNA demonstrated that they were Cajal bodies. We showed that some poly(A) RNAs in Cajal bodies code for proteins. However, examination of the localisation of active RNA polymerase II and in situ run-on transcription assays both demonstrated that CBs are not sites of transcription and that BrU-containing RNA accumulates in these structures long after synthesis. In addition, it was demonstrated that accumulation of poly(A) RNA occurs in the nuclei and CBs of hypoxia-treated cells. Our findings indicated that CBs may be involved in the later stages of poly(A) RNA metabolism, playing a role storage or retention.
Collapse
Affiliation(s)
- Janusz Niedojadło
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
- * E-mail:
| | - Ewa Kubicka
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Beata Kalich
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Dariusz J. Smoliński
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
27
|
Pretto DI, Eid JS, Yrigollen CM, Tang HT, Loomis EW, Raske C, Durbin-Johnson B, Hagerman PJ, Tassone F. Differential increases of specific FMR1 mRNA isoforms in premutation carriers. J Med Genet 2014; 52:42-52. [PMID: 25358671 DOI: 10.1136/jmedgenet-2014-102593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Over 40% of male and ∼16% of female carriers of a premutation FMR1 allele (55-200 CGG repeats) will develop fragile X-associated tremor/ataxia syndrome, an adult onset neurodegenerative disorder, while about 20% of female carriers will develop fragile X-associated primary ovarian insufficiency. Marked elevation in FMR1 mRNA transcript levels has been observed with premutation alleles, and RNA toxicity due to increased mRNA levels is the leading molecular mechanism proposed for these disorders. However, although the FMR1 gene undergoes alternative splicing, it is unknown whether all or only some of the isoforms are overexpressed in premutation carriers and which isoforms may contribute to the premutation pathology. METHODS To address this question, we have applied a long-read sequencing approach using single-molecule real-time (SMRT) sequencing and qRT-PCR. RESULTS Our SMRT sequencing analysis performed on peripheral blood mononuclear cells, fibroblasts and brain tissue samples derived from premutation carriers and controls revealed the existence of 16 isoforms of 24 predicted variants. Although the relative abundance of all mRNA isoforms was significantly increased in the premutation group, as expected based on the bulk increase in mRNA levels, there was a disproportionate (fourfold to sixfold) increase, relative to the overall increase in mRNA, in the abundance of isoforms spliced at both exons 12 and 14, specifically Iso10 and Iso10b, containing the complete exon 15 and differing only in splicing in exon 17. CONCLUSIONS These findings suggest that RNA toxicity may arise from a relative increase of all FMR1 mRNA isoforms. Interestingly, the Iso10 and Iso10b mRNA isoforms, lacking the C-terminal functional sites for fragile X mental retardation protein function, are the most increased in premutation carriers relative to normal, suggesting a functional relevance in the pathology of FMR1-associated disorders.
Collapse
Affiliation(s)
- Dalyir I Pretto
- Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, California, USA
| | - John S Eid
- Pacific Biosciences, Menlo Park, California, USA
| | - Carolyn M Yrigollen
- Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, California, USA
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, California, USA
| | - Erick W Loomis
- Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, California, USA
| | - Chris Raske
- Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, California, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, University of California Davis, School of Medicine, Davis, California, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, California, USA MIND Institute, University of California Davis Medical Center, Sacramento, California, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, California, USA MIND Institute, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
28
|
Handt M, Epplen A, Hoffjan S, Mese K, Epplen JT, Dekomien G. Point mutation frequency in the FMR1 gene as revealed by fragile X syndrome screening. Mol Cell Probes 2014; 28:279-83. [PMID: 25171808 DOI: 10.1016/j.mcp.2014.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/05/2023]
Abstract
Fragile X syndrome (FXS) is a common cause of intellectual disability, developmental delay and autism spectrum disorders. This syndrome is due to a functional loss of the FMR1 gene product FMRP, and, in most cases, it is caused by CGG repeat expansion in the FMR1 promoter. Yet, also other FMR1 mutations may cause a FXS-like phenotype. Since standard molecular testing does not include the analysis of the FMR1 coding region, the prevalence of point mutations causing FXS is not well known. Here, high resolution melting (HRM) was used to screen for FMR1 gene mutations in 508 males with clinical signs of mental retardation and developmental delay, but without CGG and GCC repeat expansions in the FMR1 gene and AFF2 genes, respectively. Sequence variations were identified by HRM analysis and verified by direct DNA sequencing. Two novel missense mutations (p.Gly482Ser in one patient and p.Arg534His in two unrelated patients), one intronic and two 3'-untranslated region (UTR) variations were identified in the FMR1 gene. Missense mutations in the FMR1 gene might account for a considerable proportion of cases in male patients with FXS-related symptoms, such as those linked to mental retardation and developmental delay.
Collapse
Affiliation(s)
- Maximilian Handt
- Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
| | - Andrea Epplen
- Human Genetics, Ruhr-University, Universitätsstraße 150, 44801 Bochum, Germany
| | - Sabine Hoffjan
- Human Genetics, Ruhr-University, Universitätsstraße 150, 44801 Bochum, Germany
| | - Kemal Mese
- Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
| | - Jörg T Epplen
- Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany; Human Genetics, Ruhr-University, Universitätsstraße 150, 44801 Bochum, Germany
| | - Gabriele Dekomien
- Human Genetics, Ruhr-University, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
29
|
Taha MS, Nouri K, Milroy LG, Moll JM, Herrmann C, Brunsveld L, Piekorz RP, Ahmadian MR. Subcellular fractionation and localization studies reveal a direct interaction of the fragile X mental retardation protein (FMRP) with nucleolin. PLoS One 2014; 9:e91465. [PMID: 24658146 PMCID: PMC3962360 DOI: 10.1371/journal.pone.0091465] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/11/2014] [Indexed: 12/31/2022] Open
Abstract
Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its protein complexes in HeLa cells using confocal imaging as well as detergent-free fractionation and size exclusion protocols. We found FMRP localized exclusively to solid compartments, including cytosolic heavy and light membranes, mitochondria, nuclear membrane and nucleoli. Interestingly, FMRP was associated with nucleolin in both a high molecular weight ribosomal and translation-associated complex (≥6 MDa) in the cytosol, and a low molecular weight complex (∼200 kDa) in the nucleoli. Consistently, we identified two functional nucleolar localization signals (NoLSs) in FMRP that are responsible for a strong nucleolar colocalization of the C-terminus of FMRP with nucleolin, and a direct interaction of the N-terminus of FMRP with the arginine-glycine-glycine (RGG) domain of nucleolin. Taken together, we propose a novel mechanism by which a transient nucleolar localization of FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin and possibly ribosomes, in order to regulate translation of its target mRNAs.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Kazem Nouri
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Lech G. Milroy
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
| | - Jens M. Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Herrmann
- Department of Physical Chemistry I, Ruhr University Bochum, Bochum, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
| | - Roland P. Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|