1
|
Wei H, Wang W, Knoshaug EP, Chen X, Van Wychen S, Bomble YJ, Himmel ME, Zhang M. Disruption of the Snf1 Gene Enhances Cell Growth and Reduces the Metabolic Burden in Cellulase-Expressing and Lipid-Accumulating Yarrowia lipolytica. Front Microbiol 2022; 12:757741. [PMID: 35003001 PMCID: PMC8733397 DOI: 10.3389/fmicb.2021.757741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/19/2021] [Indexed: 12/01/2022] Open
Abstract
Yarrowia lipolytica is known to be capable of metabolizing glucose and accumulating lipids intracellularly; however, it lacks the cellulolytic enzymes needed to break down cellulosic biomass directly. To develop Y. lipolytica as a consolidated bioprocessing (CBP) microorganism, we previously expressed the heterologous CBH I, CBH II, and EG II cellulase enzymes both individually and collectively in this microorganism. We concluded that the coexpression of these cellulases resulted in a metabolic drain on the host cells leading to reduced cell growth and lipid accumulation. The current study aims to build a new cellulase coexpressing platform to overcome these hinderances by (1) knocking out the sucrose non-fermenting 1 (Snf1) gene that represses the energetically expensive lipid and protein biosynthesis processes, and (2) knocking in the cellulase cassette fused with the recyclable selection marker URA3 gene in the background of a lipid-accumulating Y. lipolytica strain overexpressing ATP citrate lyase (ACL) and diacylglycerol acyltransferase 1 (DGA1) genes. We have achieved a homologous recombination insertion rate of 58% for integrating the cellulases-URA3 construct at the disrupted Snf1 site in the genome of host cells. Importantly, we observed that the disruption of the Snf1 gene promoted cell growth and lipid accumulation and lowered the cellular saturated fatty acid level and the saturated to unsaturated fatty acid ratio significantly in the transformant YL163t that coexpresses cellulases. The result suggests a lower endoplasmic reticulum stress in YL163t, in comparison with its parent strain Po1g ACL-DGA1. Furthermore, transformant YL163t increased in vitro cellulolytic activity by 30%, whereas the “total in vivo newly formed FAME (fatty acid methyl esters)” increased by 16% in comparison with a random integrative cellulase-expressing Y. lipolytica mutant in the same YNB-Avicel medium. The Snf1 disruption platform demonstrated in this study provides a potent tool for the further development of Y. lipolytica as a robust host for the expression of cellulases and other commercially important proteins.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Wei Wang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Eric P Knoshaug
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Xiaowen Chen
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Stefanie Van Wychen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
2
|
Partner Choice in Spontaneous Mitotic Recombination in Wild Type and Homologous Recombination Mutants of Candida albicans. G3-GENES GENOMES GENETICS 2019; 9:3631-3644. [PMID: 31690596 PMCID: PMC6829120 DOI: 10.1534/g3.119.400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans, the most common fungal pathogen, is a diploid with a genome that is rich in repeats and has high levels of heterozygosity. To study the role of different recombination pathways on direct-repeat recombination, we replaced either allele of the RAD52 gene (Chr6) with the URA-blaster cassette (hisG-URA3-hisG), measured rates of URA3 loss as resistance to 5-fluoroorotic acid (5FOAR) and used CHEF Southern hybridization and SNP-RFLP analysis to identify recombination mechanisms and their frequency in wildtype and recombination mutants. FOAR rates varied little across different strain backgrounds. In contrast, the type and frequency of mechanisms underlying direct repeat recombination varied greatly. For example, wildtype, rad59 and lig4 strains all displayed a bias for URA3 loss via pop-out/deletion vs. inter-homolog recombination and this bias was reduced in rad51 mutants. In addition, in rad51-derived 5FOAR strains direct repeat recombination was associated with ectopic translocation (5%), chromosome loss/truncation (14%) and inter-homolog recombination (6%). In the absence of RAD52, URA3 loss was mostly due to chromosome loss and truncation (80–90%), and the bias of retained allele frequency points to the presence of a recessive lethal allele on Chr6B. However, a few single-strand annealing (SSA)-like events were identified and these were independent of either Rad59 or Lig4. Finally, the specific sizes of Chr6 truncations suggest that the inserted URA-blaster could represent a fragile site.
Collapse
|
3
|
Shubernetskaya O, Skvortsov D, Evfratov S, Rubtsova M, Belova E, Strelkova O, Cherepaninets V, Zhironkina O, Olovnikov A, Zvereva M, Dontsova O, Kireev I. Interstitial telomeric repeats-associated DNA breaks. Nucleus 2017; 8:641-653. [PMID: 28914588 PMCID: PMC5788545 DOI: 10.1080/19491034.2017.1356501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023] Open
Abstract
During a cell's lifespan, DNA break formation is a common event, associated with many processes, from replication to apoptosis. Most of DNA breaks are readily repaired, but some are meant to persist in time, such as the chromosome ends, protected by telomeres. Besides them, eukaryotic genomes comprise shorter stretches of interstitial telomeric repeats. We assumed that the latter may also be associated with the formation of DNA breaks meant to persist in time. In zebrafish and mouse embryos, cells containing numerous breakage foci were identified. These breaks were not associated with apoptosis or replication, nor did they seem to activate DNA damage response machinery. Unlike short-living, accidental sparse breaks, the ones we found seem to be closely associated, forming discrete break foci. A PCR-based method was developed, allowing specific amplification of DNA regions located between inverted telomeric repeats associated with breaks. The cloning and sequencing of such DNA fragments were found to denote some specificity in their distribution for different tissue types and development stages.
Collapse
Affiliation(s)
- Olga Shubernetskaya
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Skvortsov
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Evfratov
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Maria Rubtsova
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Elena Belova
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga Strelkova
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Varvara Cherepaninets
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Oxana Zhironkina
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Maria Zvereva
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga Dontsova
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
| | - Igor Kireev
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|