1
|
Klemm C, Ólafsson G, Wood HR, Mellor C, Zabet NR, Thorpe PH. Proteome-wide forced interactions reveal a functional map of cell-cycle phospho-regulation in S. cerevisiae. Nucleus 2024; 15:2420129. [PMID: 39618027 PMCID: PMC11622623 DOI: 10.1080/19491034.2024.2420129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 12/08/2024] Open
Abstract
Dynamic protein phosphorylation and dephosphorylation play an essential role in cell cycle progression. Kinases and phosphatases are generally highly conserved across eukaryotes, underlining their importance for post-translational regulation of substrate proteins. In recent years, advances in phospho-proteomics have shed light on protein phosphorylation dynamics throughout the cell cycle, and ongoing progress in bioinformatics has significantly improved annotation of specific phosphorylation events to a given kinase. However, the functional impact of individual phosphorylation events on cell cycle progression is often unclear. To address this question, we used the Synthetic Physical Interactions (SPI) method, which enables the systematic recruitment of phospho-regulators to most yeast proteins. Using this method, we identified several putative novel targets involved in chromosome segregation and cytokinesis. The SPI method monitors cell growth and, therefore, serves as a tool to determine the impact of protein phosphorylation on cell cycle progression.
Collapse
Affiliation(s)
- Cinzia Klemm
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Guðjón Ólafsson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Henry Richard Wood
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Caitlin Mellor
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Nicolae Radu Zabet
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Peter Harold Thorpe
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Alonso-Ramos P, Carballo JA. Decoding the Nucleolar Role in Meiotic Recombination and Cell Cycle Control: Insights into Cdc14 Function. Int J Mol Sci 2024; 25:12861. [PMID: 39684572 DOI: 10.3390/ijms252312861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators. This phase separation characteristic of the nucleolus is vital for the specific and timely release of Cdc14, required for most essential functions of phosphatase in the cell cycle. While mitosis distributes chromosomes to daughter cells, meiosis is a specialized division process that produces gametes and introduces genetic diversity. Central to meiosis is meiotic recombination, which enhances genetic diversity by generating crossover and non-crossover products. This process begins with the introduction of double-strand breaks, which are then processed by numerous repair enzymes. Meiotic recombination and progression are regulated by proteins and feedback mechanisms. CDKs and polo-like kinase Cdc5 drive recombination through positive feedback, while phosphatases like Cdc14 are crucial for activating Yen1, a Holliday junction resolvase involved in repairing unresolved recombination intermediates in both mitosis and meiosis. Cdc14 is released from the nucleolus in a regulated manner, especially during the transition between meiosis I and II, where it helps inactivate CDK activity and promote proper chromosome segregation. This review integrates current knowledge, providing a synthesis of these interconnected processes and an overview of the mechanisms governing cell cycle regulation and meiotic recombination.
Collapse
Affiliation(s)
- Paula Alonso-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Jesús A Carballo
- Instituto de Biología Funcional y Genómica, IBFG, CSIC-USAL, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Williams KS, Secomb TW, El-Kareh AW. An autonomous mathematical model for the mammalian cell cycle. J Theor Biol 2023; 569:111533. [PMID: 37196820 DOI: 10.1016/j.jtbi.2023.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
A mathematical model for the mammalian cell cycle is developed as a system of 13 coupled nonlinear ordinary differential equations. The variables and interactions included in the model are based on detailed consideration of available experimental data. A novel feature of the model is inclusion of cycle tasks such as origin licensing and initiation, nuclear envelope breakdown and kinetochore attachment, and their interactions with controllers (molecular complexes involved in cycle control). Other key features are that the model is autonomous, except for a dependence on external growth factors; the variables are continuous in time, without instantaneous resets at phase boundaries; mechanisms to prevent rereplication are included; and cycle progression is independent of cell size. Eight variables represent cell cycle controllers: the Cyclin D1-Cdk4/6 complex, APCCdh1, SCFβTrCP, Cdc25A, MPF, NuMA, the securin-separase complex, and separase. Five variables represent task completion, with four for the status of origins and one for kinetochore attachment. The model predicts distinct behaviors corresponding to the main phases of the cell cycle, showing that the principal features of the mammalian cell cycle, including restriction point behavior, can be accounted for in a quantitative mechanistic way based on known interactions among cycle controllers and their coupling to tasks. The model is robust to parameter changes, in that cycling is maintained over at least a five-fold range of each parameter when varied individually. The model is suitable for exploring how extracellular factors affect cell cycle progression, including responses to metabolic conditions and to anti-cancer therapies.
Collapse
Affiliation(s)
| | - Timothy W Secomb
- BIO5 Institute, University of Arizona, Tucson, AZ, USA; Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
4
|
Abstract
In this chapter, detailed procedures for stable isotope labeling with amino acids in cell culture, SILAC labeling of yeast auxotroph, optimization and evaluation of phosphopeptide enrichment, and sample preparation and analysis by high-resolution LC-MS/M, identification of phosphosites, and quantification methods are described.We report methods for the application of double SILAC to yeast using a combination of labeled lysine and labeled arginine.The combination of SILAC-based quantitation with phosphopeptides enrichment by TiO2 in a batch that enables measurement of protein posttranslational modifications is a powerful application to analyze the global phosphoproteome for studies in signaling pathways.
Collapse
Affiliation(s)
- María Luisa Hernáez
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Concha Gil
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
- Departamento de Microbiología y Parasitología. Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
5
|
Moyano-Rodríguez Y, Vaquero D, Vilalta-Castany O, Foltman M, Sanchez-Diaz A, Queralt E. PP2A-Cdc55 phosphatase regulates actomyosin ring contraction and septum formation during cytokinesis. Cell Mol Life Sci 2022; 79:165. [PMID: 35230542 PMCID: PMC8888506 DOI: 10.1007/s00018-022-04209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/03/2022]
Abstract
Eukaryotic cells divide and separate all their components after chromosome segregation by a process called cytokinesis to complete cell division. Cytokinesis is highly regulated by the recruitment of the components to the division site and through post-translational modifications such as phosphorylations. The budding yeast mitotic kinases Cdc28-Clb2, Cdc5, and Dbf2-Mob1 phosphorylate several cytokinetic proteins contributing to the regulation of cytokinesis. The PP2A-Cdc55 phosphatase regulates mitosis counteracting Cdk1- and Cdc5-dependent phosphorylation. This prompted us to propose that PP2A-Cdc55 could also be counteracting the mitotic kinases during cytokinesis. Here we show that in the absence of Cdc55, AMR contraction and the primary septum formation occur asymmetrically to one side of the bud neck supporting a role for PP2A-Cdc55 in cytokinesis regulation. In addition, by in vivo and in vitro assays, we show that PP2A-Cdc55 dephosphorylates the chitin synthase II (Chs2 in budding yeast) a component of the Ingression Progression Complexes (IPCs) involved in cytokinesis. Interestingly, the non-phosphorylable version of Chs2 rescues the asymmetric AMR contraction and the defective septa formation observed in cdc55∆ mutant cells. Therefore, timely dephosphorylation of the Chs2 by PP2A-Cdc55 is crucial for proper actomyosin ring contraction. These findings reveal a new mechanism of cytokinesis regulation by the PP2A-Cdc55 phosphatase and extend our knowledge of the involvement of multiple phosphatases during cytokinesis.
Collapse
Affiliation(s)
- Yolanda Moyano-Rodríguez
- Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Vaquero
- Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig 11, Valencia, Spain
| | - Odena Vilalta-Castany
- Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Magdalena Foltman
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain.,Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Alberto Sanchez-Diaz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain.,Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Ethel Queralt
- Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain. .,Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig 11, Valencia, Spain.
| |
Collapse
|
6
|
Kocakaplan D, Karabürk H, Dilege C, Kirdök I, Bektas SN, Caydasi AK. Protein phosphatase 1 in association with Bud14 inhibits mitotic exit in Saccharomyces cerevisiae. eLife 2021; 10:72833. [PMID: 34633288 PMCID: PMC8577847 DOI: 10.7554/elife.72833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Mitotic exit in budding yeast is dependent on correct orientation of the mitotic spindle along the cell polarity axis. When accurate positioning of the spindle fails, a surveillance mechanism named the spindle position checkpoint (SPOC) prevents cells from exiting mitosis. Mutants with a defective SPOC become multinucleated and lose their genomic integrity. Yet, a comprehensive understanding of the SPOC mechanism is missing. In this study, we identified the type 1 protein phosphatase, Glc7, in association with its regulatory protein Bud14 as a novel checkpoint component. We further showed that Glc7-Bud14 promotes dephosphorylation of the SPOC effector protein Bfa1. Our results suggest a model in which two mechanisms act in parallel for a robust checkpoint response: first, the SPOC kinase Kin4 isolates Bfa1 away from the inhibitory kinase Cdc5, and second, Glc7-Bud14 dephosphorylates Bfa1 to fully activate the checkpoint effector.
Collapse
Affiliation(s)
- Dilara Kocakaplan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Hüseyin Karabürk
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Cansu Dilege
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Idil Kirdök
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Nur Bektas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ayse Koca Caydasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
7
|
Jiménez J, Queralt E, Posas F, de Nadal E. The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis. Cell Cycle 2020; 19:2105-2118. [PMID: 32794416 PMCID: PMC7513861 DOI: 10.1080/15384101.2020.1804222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During evolution, cells have developed a plethora of mechanisms to optimize survival in a changing and unpredictable environment. In this regard, they have evolved networks that include environmental sensors, signaling transduction molecules and response mechanisms. Hog1 (yeast) and p38 (mammals) stress-activated protein kinases (SAPKs) are activated upon stress and they drive a full collection of cell adaptive responses aimed to maximize survival. SAPKs are extensively used to learn about the mechanisms through which cells adapt to changing environments. In addition to regulating gene expression and metabolism, SAPKs control cell cycle progression. In this review, we will discuss the latest findings related to the SAPK-driven regulation of mitosis upon osmostress in yeast.
Collapse
Affiliation(s)
- Javier Jiménez
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Department of Ciències Bàsiques, Facultat De Medicina I Ciències De La Salut, Universitat Internacional De Catalunya , Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Institut d'Investigacions Biomèdica De Bellvitge (IDIBELL), L'Hospitalet De Llobregat , Barcelona, Spain
| | - Francesc Posas
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| | - Eulàlia de Nadal
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| |
Collapse
|
8
|
PP2A Functions during Mitosis and Cytokinesis in Yeasts. Int J Mol Sci 2019; 21:ijms21010264. [PMID: 31906018 PMCID: PMC6981662 DOI: 10.3390/ijms21010264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Protein phosphorylation is a common mechanism for the regulation of cell cycle progression. The opposing functions of cell cycle kinases and phosphatases are crucial for accurate chromosome segregation and exit from mitosis. Protein phosphatases 2A are heterotrimeric complexes that play essential roles in cell growth, proliferation, and regulation of the cell cycle. Here, we review the function of the protein phosphatase 2A family as the counteracting force for the mitotic kinases. We focus on recent findings in the regulation of mitotic exit and cytokinesis by PP2A phosphatases in S. cerevisiae and other fungal species.
Collapse
|
9
|
Xu H, Whiteway M, Jiang L. The tricarboxylic acid cycle, cell wall integrity pathway, cytokinesis and intracellular pH homeostasis are involved in the sensitivity of Candida albicans cells to high levels of extracellular calcium. Genomics 2019; 111:1226-1230. [DOI: 10.1016/j.ygeno.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
|
10
|
Játiva S, Calabria I, Moyano-Rodriguez Y, Garcia P, Queralt E. Cdc14 activation requires coordinated Cdk1-dependent phosphorylation of Net1 and PP2A-Cdc55 at anaphase onset. Cell Mol Life Sci 2019; 76:3601-3620. [PMID: 30927017 PMCID: PMC11105415 DOI: 10.1007/s00018-019-03086-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 01/21/2023]
Abstract
Exit from mitosis and completion of cytokinesis require the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. In budding yeast, Cdc14 phosphatase is a key mitotic regulator that is activated in anaphase to counteract Cdk activity. In metaphase, Cdc14 is kept inactive in the nucleolus, where it is sequestered by its inhibitor, Net1. At anaphase onset, downregulation of PP2ACdc55 phosphatase by separase and Zds1 protein promotes Net1 phosphorylation and, consequently, Cdc14 release from the nucleolus. The mechanism by which PP2ACdc55 activity is downregulated during anaphase remains to be elucidated. Here, we demonstrate that Cdc55 regulatory subunit is phosphorylated in anaphase in a Cdk1-Clb2-dependent manner. Interestingly, cdc55-ED phosphomimetic mutant inactivates PP2ACdc55 phosphatase activity towards Net1 and promotes Cdc14 activation. Separase and Zds1 facilitate Cdk-dependent Net1 phosphorylation and Cdc14 release from the nucleolus by modulating PP2ACdc55 activity via Cdc55 phosphorylation. In addition, human Cdk1-CyclinB1 phosphorylates human B55, indicating that the mechanism is conserved in higher eukaryotes.
Collapse
Affiliation(s)
- Soraya Játiva
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Genomics Unit, Medical Research Institute La Fe, Valencia, Spain
| | - Yolanda Moyano-Rodriguez
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Patricia Garcia
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
11
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
12
|
Baro B, Játiva S, Calabria I, Vinaixa J, Bech-Serra JJ, de LaTorre C, Rodrigues J, Hernáez ML, Gil C, Barceló-Batllori S, Larsen MR, Queralt E. SILAC-based phosphoproteomics reveals new PP2A-Cdc55-regulated processes in budding yeast. Gigascience 2018; 7:4982941. [PMID: 29688323 PMCID: PMC5967524 DOI: 10.1093/gigascience/giy047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/18/2018] [Indexed: 01/12/2023] Open
Abstract
Background Protein phosphatase 2A (PP2A) is a family of conserved serine/threonine phosphatases involved in several essential aspects of cell growth and proliferation. PP2ACdc55 phosphatase has been extensively related to cell cycle events in budding yeast; however, few PP2ACdc55 substrates have been identified. Here, we performed a quantitative mass spectrometry approach to reveal new substrates of PP2ACdc55 phosphatase and new PP2A-related processes in mitotic arrested cells. Results We identified 62 statistically significant PP2ACdc55 substrates involved mainly in actin-cytoskeleton organization. In addition, we validated new PP2ACdc55 substrates such as Slk19 and Lte1, involved in early and late anaphase pathways, and Zeo1, a component of the cell wall integrity pathway. Finally, we constructed docking models of Cdc55 and its substrate Mob1. We found that the predominant interface on Cdc55 is mediated by a protruding loop consisting of residues 84–90, thus highlighting the relevance of these aminoacids for substrate interaction. Conclusions We used phosphoproteomics of Cdc55-deficient cells to uncover new PP2ACdc55 substrates and functions in mitosis. As expected, several hyperphosphorylated proteins corresponded to Cdk1-dependent substrates, although other kinases’ consensus motifs were also enriched in our dataset, suggesting that PP2ACdc55 counteracts and regulates other kinases distinct from Cdk1. Indeed, Pkc1 emerged as a novel node of PP2ACdc55 regulation, highlighting a major role of PP2ACdc55 in actin cytoskeleton and cytokinesis, gene ontology terms significantly enriched in the PP2ACdc55-dependent phosphoproteome.
Collapse
Affiliation(s)
- Barbara Baro
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Soraya Játiva
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Inés Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Judith Vinaixa
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Joan-Josep Bech-Serra
- IDIBELL Proteomics Unit, Institut d'Investigacions Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carolina de LaTorre
- IDIBELL Proteomics Unit, Institut d'Investigacions Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - João Rodrigues
- Structural Biology Department, School of Medicine, Stanford, California, USA
| | - María Luisa Hernáez
- Proteomics Unit, Parque Científico de Madrid, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Concha Gil
- Proteomics Unit, Parque Científico de Madrid, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Barceló-Batllori
- IDIBELL Proteomics Unit, Institut d'Investigacions Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, Odense M, Denmark
| | - Ethel Queralt
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
13
|
Geymonat M, Segal M. Intrinsic and Extrinsic Determinants Linking Spindle Pole Fate, Spindle Polarity, and Asymmetric Cell Division in the Budding Yeast S. cerevisiae. Results Probl Cell Differ 2017; 61:49-82. [PMID: 28409300 DOI: 10.1007/978-3-319-53150-2_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The budding yeast S. cerevisiae is a powerful model to understand the multiple layers of control driving an asymmetric cell division. In budding yeast, asymmetric targeting of the spindle poles to the mother and bud cell compartments respectively orients the mitotic spindle along the mother-bud axis. This program exploits an intrinsic functional asymmetry arising from the age distinction between the spindle poles-one inherited from the preceding division and the other newly assembled. Extrinsic mechanisms convert this age distinction into differential fate. Execution of this program couples spindle orientation with the segregation of the older spindle pole to the bud. Remarkably, similar stereotyped patterns of inheritance occur in self-renewing stem cell divisions underscoring the general importance of studying spindle polarity and differential fate in yeast. Here, we review the mechanisms accounting for this pivotal interplay between intrinsic and extrinsic asymmetries that translate spindle pole age into differential fate.
Collapse
Affiliation(s)
- Marco Geymonat
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Marisa Segal
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
14
|
Queralt E, Rodriguez-Rodriguez JA. A New Methodology for the Quantification of In Vivo Cdc14 Phosphatase Activity. Methods Mol Biol 2017; 1505:89-96. [PMID: 27826859 DOI: 10.1007/978-1-4939-6502-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The phosphatase Cdc14 has a pivotal function in the mitotic exit of Saccharomyces cerevisiae. During interphase, Cdc14 remains inactive in the nucleolus bound to the inhibitor Net1. Cdc14 activation occurs in the metaphase to anaphase transition and it is promoted by at least two signaling pathways called FEAR (CdcFourteen Early Anaphase Release) and MEN (Mitotic Exit Network). These two pathways act in parallel and target the phosphorylation of Net1, thus decreasing Net1 affinity for Cdc14. The activity of Cdc14 can be used as a readout to assay functional interactions of different components of the mitotic exit signaling pathways.
Collapse
Affiliation(s)
- Ethel Queralt
- Cancer Epigenetics & Biology Program, IDIBELL,Hospitalet de Llobregat, Barcelona, Spain.
| | | |
Collapse
|
15
|
Asymmetric Localization of Components and Regulators of the Mitotic Exit Network at Spindle Pole Bodies. Methods Mol Biol 2017; 1505:183-193. [PMID: 27826865 DOI: 10.1007/978-1-4939-6502-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Most proteins of the Mitotic Exit Network (MEN) and their upstream regulators localize at spindle pole bodies (SPBs) at least in some stages of the cell cycle. Studying the SPB localization of MEN factors has been extremely useful to elucidate their biological roles, organize them in a hierarchical pathway, and define their dynamics under different conditions.Recruitment to SPBs of the small GTPase Tem1 and the downstream kinases Cdc15 and Mob1/Dbf2 is thought to be essential for Cdc14 activation and mitotic exit, while that of the upstream Tem1 regulators (the Kin4 kinase and the GTPase activating protein Bub2-Bfa1) is important for MEN inhibition upon spindle mispositioning. Here, we describe the detailed fluorescence microscopy procedures that we use in our lab to analyze the localization at SPBs of Mitotic Exit Network (MEN) components tagged with GFP or HA epitopes.
Collapse
|
16
|
Abstract
The Hippo pathway is an essential tumor suppressor signaling network that coordinates cell proliferation, death, and differentiation in higher eukaryotes. Intriguingly, the core components of the Hippo pathway are conserved from yeast to man, with the yeast analogs of mammalian MST1/2 (fly Hippo), MOB1 (fly Mats), LATS1/2 (fly Warts), and NDR1/2 (fly Tricornered) functioning as essential components of the mitotic exit network (MEN). Here, we update our previous summary of mitotic functions of Hippo core components in Drosophila melanogaster and mammals, with particular emphasis on similarities between the yeast MEN pathway and mitotic Hippo signaling. Mitotic functions of YAP and TAZ, the two main effectors of Hippo signaling, are also discussed.
Collapse
Affiliation(s)
- Alexander Hergovich
- Tumour Suppressor Signalling Networks Laboratory, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
17
|
Abstract
The Mitotic Exit Network (MEN) is an essential signaling pathway, closely related to the Hippo pathway in mammals, which promotes mitotic exit and initiates cytokinesis in the budding yeast Saccharomyces cerevisiae. Here, we summarize the current knowledge about the MEN components and their regulation.
Collapse
Affiliation(s)
- Bàrbara Baro
- Department of Pediatrics, Division of Infectious Diseases,Stanford University School of Medicine, Stanford, CA, USA.
| | - Ethel Queralt
- Cancer Epigenetics & Biology Program, Hospitalet de Llobregat, Barcelona, Spain.
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio, s/n. P.C.T. Cartuja 93., 41092, Sevilla, Spain.
| |
Collapse
|
18
|
Tatjer L, González A, Serra-Cardona A, Barceló A, Casamayor A, Ariño J. The Saccharomyces cerevisiae Ptc1 protein phosphatase attenuates G2-M cell cycle blockage caused by activation of the cell wall integrity pathway. Mol Microbiol 2016; 101:671-87. [PMID: 27169355 DOI: 10.1111/mmi.13416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 01/24/2023]
Abstract
Lack of the yeast Ptc1 Ser/Thr protein phosphatase results in numerous phenotypic defects. A parallel search for high-copy number suppressors of three of these phenotypes (sensitivity to Calcofluor White, rapamycin and alkaline pH), allowed the isolation of 25 suppressor genes, which could be assigned to three main functional categories: maintenance of cell wall integrity (CWI), vacuolar function and protein sorting, and cell cycle regulation. The characterization of these genetic interactions strengthens the relevant role of Ptc1 in downregulating the Slt2-mediated CWI pathway. We show that under stress conditions activating the CWI pathway the ptc1 mutant displays hyperphosphorylated Cdc28 kinase and that these cells accumulate with duplicated DNA content, indicative of a G2-M arrest. Clb2-associated Cdc28 activity was also reduced in ptc1 cells. These alterations are attenuated by mutation of the MKK1 gene, encoding a MAP kinase kinase upstream Slt2. Therefore, our data show that Ptc1 is required for proper G2-M cell cycle transition after activation of the CWI pathway.
Collapse
Affiliation(s)
- Laura Tatjer
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Asier González
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Albert Serra-Cardona
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Anna Barceló
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
19
|
Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1. Cell Rep 2016; 15:2050-62. [DOI: 10.1016/j.celrep.2016.04.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/08/2016] [Accepted: 04/22/2016] [Indexed: 12/19/2022] Open
|
20
|
Scarfone I, Venturetti M, Hotz M, Lengefeld J, Barral Y, Piatti S. Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit. PLoS Genet 2015; 11:e1004938. [PMID: 25658911 PMCID: PMC4450052 DOI: 10.1371/journal.pgen.1004938] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck) and the division axis (i.e., the mother-bud axis). A surveillance mechanism called spindle position checkpoint (SPOC) delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN) kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1 complex is crucial to control Kar9 distribution and spindle positioning during mitosis.
Collapse
Affiliation(s)
- Ilaria Scarfone
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
- Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Marianna Venturetti
- Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Manuel Hotz
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Yves Barral
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Simonetta Piatti
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
- Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca, Milano, Italy
- * E-mail:
| |
Collapse
|
21
|
Rossio V, Kazatskaya A, Hirabayashi M, Yoshida S. Comparative genetic analysis of PP2A-Cdc55 regulators in budding yeast. Cell Cycle 2014; 13:2073-83. [PMID: 24800822 DOI: 10.4161/cc.29064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cdc55, a regulatory B subunit of the protein phosphatase 2A (PP2A) complex, plays various functions during mitosis. Sequestration of Cdc55 from the nucleus by Zds1 and Zds2 is important for robust activation of mitotic Cdk1 and mitotic progression in budding yeast. However, Zds1-family proteins are found only in fungi but not in higher eukaryotes. In animal cells, highly conserved ENSA/ARPP-19 family proteins bind and inhibit PP2A-B55 activity for mitotic entry. In this study, we compared the relative contribution of Zds1/Zds2 and ENSA-family proteins Igo1/Igo2 on Cdc55 functions in budding yeast mitosis. We confirmed that Igo1/Igo2 can inhibit Cdc55 in early mitosis, but their contribution to Cdc55 regulation is relatively minor compared with the role of Zds1/Zds2. In contrast to Zds1, which primarily localized to the sites of cell polarity and in the cytoplasm, Igo1 is localized in the nucleus, suggesting that Igo1/Igo2 inhibit Cdc55 in a manner distinct from Zds1/Zds2. Our analysis confirmed an evolutionarily conserved function of ENSA-family proteins in inhibiting PP2A-Cdc55, and we propose that Zds1-dependent sequestration of PP2A-Cdc55 from the nucleus is uniquely evolved to facilitate closed mitosis in fungal species.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; Waltham, MA USA
| | - Anna Kazatskaya
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; Waltham, MA USA
| | - Mayo Hirabayashi
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; Waltham, MA USA
| | - Satoshi Yoshida
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; Waltham, MA USA
| |
Collapse
|