1
|
Baehr S, Ho WC, Perez S, Cenzano A, Hancock K, Patrick L, Brown A, Miller S, Lynch M. Consideration of a Liquid Mutation-Accumulation Experiment to Measure Mutation Rates by Successive Serial Dilution. Genome Biol Evol 2025; 17:evaf049. [PMID: 40088461 PMCID: PMC11973482 DOI: 10.1093/gbe/evaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 03/17/2025] Open
Abstract
The mutation-accumulation (MA) experiment is a fixture of evolutionary biology, though its execution is laborious. MA experiments typically take between months and years to acquire sufficient mutations to measure DNA mutation rates and mutation spectra. MA experiments for many organisms rely on colony formation on agar plates and repetitive streaking, an environment which at first glance appears somewhat contrived, a poor imitation of actual environmental living conditions. We propose that a fully liquid-phase MA experiment may at times more accurately reflect the environment of an organism. We note also that whereas automation of streaking plates is a daunting prospect, automation of liquid handling, and serial dilution is already commonplace. In principle, this type of MA experiment can be automated so as to reduce the human capital requirements of measuring mutation rates. We demonstrate that a liquid MA recapitulates the mutation rate estimated for MMR-E. coli in liquid LB culture vs. plate Lysogeny Broth culture. We detect a modified mutation spectrum with a transition skew of 4.7:1 of A:T→G:C vs. G:C→A:T mutations, highlighting the potential role of tautomerization as a mechanism of DNA mutation.
Collapse
Affiliation(s)
- Stephan Baehr
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Wei-Chin Ho
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Biology, University of Texas, Tyler, TX, USA
| | - Samuel Perez
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alyssa Cenzano
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Biology, ASU Preparatory Academy Polytechnic High School, Mesa, AZ, USA
| | - Katelyn Hancock
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Lea Patrick
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Adalyn Brown
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Samuel Miller
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
2
|
Santos AL, Liu D, van Venrooy A, Beckham JL, Oliver A, Tegos GP, Tour JM. Nonlethal Molecular Nanomachines Potentiate Antibiotic Activity Against Gram-Negative Bacteria by Increasing Cell Permeability and Attenuating Efflux. ACS NANO 2024; 18:3023-3042. [PMID: 38241477 DOI: 10.1021/acsnano.3c08041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Antibiotic resistance is a pressing public health threat. Despite rising resistance, antibiotic development, especially for Gram-negative bacteria, has stagnated. As the traditional antibiotic research and development pipeline struggles to address this growing concern, alternative solutions become imperative. Synthetic molecular nanomachines (MNMs) are molecular structures that rotate unidirectionally in a controlled manner in response to a stimulus, such as light, resulting in a mechanical action that can propel molecules to drill into cell membranes, causing rapid cell death. Due to their broad destructive capabilities, clinical translation of MNMs remains challenging. Hence, here, we explore the ability of nonlethal visible-light-activated MNMs to potentiate conventional antibiotics against Gram-negative bacteria. Nonlethal MNMs enhanced the antibacterial activity of various classes of conventional antibiotics against Gram-negative bacteria, including those typically effective only against Gram-positive strains, reducing the antibiotic concentration required for bactericidal action. Our study also revealed that MNMs bind to the negatively charged phospholipids of the bacterial inner membrane, leading to permeabilization of the cell envelope and impairment of efflux pump activity following light activation of MNMs. The combined effects of MNMs on membrane permeability and efflux pumps resulted in increased antibiotic accumulation inside the cell, reversing antibiotic resistance and attenuating its development. These results identify nonlethal MNMs as pleiotropic antibiotic enhancers or adjuvants. The combination of MNMs with traditional antibiotics is a promising strategy against multidrug-resistant Gram-negative infections. This approach can reduce the amount of antibiotics needed and slow down antibiotic resistance development, thereby preserving the effectiveness of our current antibiotics.
Collapse
Affiliation(s)
- Ana L Santos
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, 07120 Palma, Spain
| | - Dongdong Liu
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Alexis van Venrooy
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jacob L Beckham
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Antonio Oliver
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, 07120 Palma, Spain
- Servicio de Microbiologia, Hospital Universitari Son Espases, 07120 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - George P Tegos
- Office of Research, Faxton St. Luke's Healthcare, Mohawk Valley Health System, 1676 Sunset Avenue, Utica, New York 13502, United States
| | - James M Tour
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- NanoCarbon Center and Rice Advanced Materials Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Bolten S, Belias A, Weigand KA, Pajor M, Qian C, Ivanek R, Wiedmann M. Population dynamics of Listeria spp., Salmonella spp., and Escherichia coli on fresh produce: A scoping review. Compr Rev Food Sci Food Saf 2023; 22:4537-4572. [PMID: 37942966 DOI: 10.1111/1541-4337.13233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 11/10/2023]
Abstract
Collation of the current scope of literature related to population dynamics (i.e., growth, die-off, survival) of foodborne pathogens on fresh produce can aid in informing future research directions and help stakeholders identify relevant research literature. A scoping review was conducted to gather and synthesize literature that investigates population dynamics of pathogenic and non-pathogenic Listeria spp., Salmonella spp., and Escherichia coli on whole unprocessed fresh produce (defined as produce not having undergone chopping, cutting, homogenization, irradiation, or pasteurization). Literature sources were identified using an exhaustive search of research and industry reports published prior to September 23, 2021, followed by screening for relevance based on strict, a priori eligibility criteria. A total of 277 studies that met all eligibility criteria were subjected to an in-depth qualitative review of various factors (e.g., produce commodities, study settings, inoculation methodologies) that affect population dynamics. Included studies represent investigations of population dynamics on produce before (i.e., pre-harvest; n = 143) and after (i.e., post-harvest; n = 144) harvest. Several knowledge gaps were identified, including the limited representation of (i) pre-harvest studies that investigated population dynamics of Listeria spp. on produce (n = 13, 9% of pre-harvest studies), (ii) pre-harvest studies that were carried out on non-sprouts produce types grown using hydroponic cultivation practices (n = 7, 5% of pre-harvest studies), and (iii) post-harvest studies that reported the relative humidity conditions under which experiments were carried out (n = 56, 39% of post-harvest studies). These and other knowledge gaps summarized in this scoping review represent areas of research that can be investigated in future studies.
Collapse
Affiliation(s)
- Samantha Bolten
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Alexandra Belias
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Kelly A Weigand
- Cary Veterinary Medical Library, Auburn University, Auburn, Alabama, USA
- Flower-Sprecher Veterinary Library, Cornell University, Ithaca, New York, USA
| | - Magdalena Pajor
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Chenhao Qian
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Kelbrick M, Hesse E, O' Brien S. Cultivating antimicrobial resistance: how intensive agriculture ploughs the way for antibiotic resistance. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001384. [PMID: 37606636 PMCID: PMC10482381 DOI: 10.1099/mic.0.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to public health, global food security and animal welfare. Despite efforts in antibiotic stewardship, AMR continues to rise worldwide. Anthropogenic activities, particularly intensive agriculture, play an integral role in the dissemination of AMR genes within natural microbial communities - which current antibiotic stewardship typically overlooks. In this review, we examine the impact of anthropogenically induced temperature fluctuations, increased soil salinity, soil fertility loss, and contaminants such as metals and pesticides on the de novo evolution and dissemination of AMR in the environment. These stressors can select for AMR - even in the absence of antibiotics - via mechanisms such as cross-resistance, co-resistance and co-regulation. Moreover, anthropogenic stressors can prime bacterial physiology against stress, potentially widening the window of opportunity for the de novo evolution of AMR. However, research to date is typically limited to the study of single isolated bacterial species - we lack data on how intensive agricultural practices drive AMR over evolutionary timescales in more complex microbial communities. Furthermore, a multidisciplinary approach to fighting AMR is urgently needed, as it is clear that the drivers of AMR extend far beyond the clinical environment.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O' Brien
- Department of Microbiology, Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
5
|
Gutiérrez R, Ram Y, Berman J, Carstens Marques de Sousa K, Nachum-Biala Y, Britzi M, Elad D, Glaser G, Covo S, Harrus S. Adaptive resistance mutations at supra-inhibitory concentrations independent of SOS mutagenesis. Mol Biol Evol 2021; 38:4095-4115. [PMID: 34175952 PMCID: PMC8476149 DOI: 10.1093/molbev/msab196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emergence of resistant bacteria during antimicrobial treatment is one of the most critical and universal health threats. It is known that several stress-induced mutagenesis and heteroresistance mechanisms can enhance microbial adaptation to antibiotics. Here, we demonstrate that the pathogen Bartonella can undergo stress-induced mutagenesis despite the fact it lacks error-prone polymerases, the rpoS gene and functional UV-induced mutagenesis. We demonstrate that Bartonella acquire de novo single mutations during rifampicin exposure at suprainhibitory concentrations at a much higher rate than expected from spontaneous fluctuations. This is while exhibiting a minimal heteroresistance capacity. The emerged resistant mutants acquired a single rpoB mutation, whereas no other mutations were found in their whole genome. Interestingly, the emergence of resistance in Bartonella occurred only during gradual exposure to the antibiotic, indicating that Bartonella sense and react to the changing environment. Using a mathematical model, we demonstrated that, to reproduce the experimental results, mutation rates should be transiently increased over 1,000-folds, and a larger population size or greater heteroresistance capacity is required. RNA expression analysis suggests that the increased mutation rate is due to downregulation of key DNA repair genes (mutS, mutY, and recA), associated with DNA breaks caused by massive prophage inductions. These results provide new evidence of the hazard of antibiotic overuse in medicine and agriculture.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.,The Center for Research in Tropical Diseases, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.,School of Computer Science, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Judith Berman
- Shmunis School of Biomedicine and Cancer, Faculty of Life Sciences, Tel Aviv University, Tel Aviv University, Ramat Aviv, Israel
| | | | - Yaarit Nachum-Biala
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Malka Britzi
- The National Residue Control Laboratory, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Daniel Elad
- Department of Clinical Bacteriology and Mycology, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Gad Glaser
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shimon Harrus
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Balbontín R, Frazão N, Gordo I. DNA Breaks-Mediated Fitness Cost Reveals RNase HI as a New Target for Selectively Eliminating Antibiotic-Resistant Bacteria. Mol Biol Evol 2021; 38:3220-3234. [PMID: 33830249 PMCID: PMC8321526 DOI: 10.1093/molbev/msab093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance often generates defects in bacterial growth called fitness cost. Understanding the causes of this cost is of paramount importance, as it is one of the main determinants of the prevalence of resistances upon reducing antibiotics use. Here we show that the fitness costs of antibiotic resistance mutations that affect transcription and translation in Escherichia coli strongly correlate with DNA breaks, which are generated via transcription–translation uncoupling, increased formation of RNA–DNA hybrids (R-loops), and elevated replication–transcription conflicts. We also demonstrated that the mechanisms generating DNA breaks are repeatedly targeted by compensatory evolution, and that DNA breaks and the cost of resistance can be increased by targeting the RNase HI, which specifically degrades R-loops. We further show that the DNA damage and thus the fitness cost caused by lack of RNase HI function drive resistant clones to extinction in populations with high initial frequency of resistance, both in laboratory conditions and in a mouse model of gut colonization. Thus, RNase HI provides a target specific against resistant bacteria, which we validate using a repurposed drug. In summary, we revealed key mechanisms underlying the fitness cost of antibiotic resistance mutations that can be exploited to specifically eliminate resistant bacteria.
Collapse
Affiliation(s)
| | | | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
7
|
Radial Expansion Facilitates the Maintenance of Double Antibiotic Resistances. Antimicrob Agents Chemother 2020; 64:AAC.00668-20. [PMID: 32540973 DOI: 10.1128/aac.00668-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
Most microbes live in spatially confined subpopulations. Under spatial structure conditions, the efficacy of natural selection is often reduced (relative to homogeneous conditions) due to the increased importance of genetic drift and local competition. Additionally, under spatial structure conditions, the fittest genotype may not always be the one with better access to the heterogeneous distribution of nutrients. The effect of radial expansion may be particularly relevant for the elimination of antibiotic resistance mutations, as their dynamics within bacterial populations are strongly dependent on their growth rate. Here, we use Escherichia coli to systematically compare the allele frequency of streptomycin, rifampin, and fluoroquinolone single and double resistance mutants after 24 h of coexistence with a susceptible strain under radial expansion (local competition) and homogeneous (global competition) conditions. We show that there is a significant effect of structure on the maintenance of double resistances which is not observed for single resistances. Radial expansion also facilitates the persistence of double resistances when competing against their single counterparts. Importantly, we found that spatial structure reduces the rate of compensation of the double mutant RpsLK43T RpoBH526Y and that a strongly compensatory mutation in homogeneous conditions becomes deleterious under spatial structure conditions. Overall, our results unravel the importance of spatial structure for facilitating the maintenance and accumulation of multiple resistances over time and for determining the identity of compensatory mutations.
Collapse
|
8
|
Maudsdotter L, Ushijima Y, Morikawa K. Fitness of Spontaneous Rifampicin-Resistant Staphylococcus aureus Isolates in a Biofilm Environment. Front Microbiol 2019; 10:988. [PMID: 31134027 PMCID: PMC6514104 DOI: 10.3389/fmicb.2019.00988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/18/2019] [Indexed: 11/25/2022] Open
Abstract
Biofilms of S. aureus accumulate cells resistant to the antibiotic rifampicin. We show here that the accumulation of rifampicin resistant mutants (RifR) in biofilms is not equable but rather is a local event, suggesting that the growth of a few locally emerged mutants is responsible for this. Competition assays demonstrated that, compared to wild-type bacteria, the isolated RifR mutants have a growth advantage in biofilms, but not in planktonic culture. To gain insight into the mechanism of the growth advantage, we tested the involvement of the two-component systems (TCS) that sense and respond to environmental changes. We found that a deletion of SrrAB or NreBC has a drastic effect on the growth advantage of RifR mutants, suggesting the importance of oxygen/respiration responses. All six of the RifR isolates tested showed increased resistance to at least one of the common stresses found in the biofilm environment (i.e., oxidative, nitric acid, and organic acid stress). The RifR mutants also had a growth advantage in a biofilm flow model, which highlights the physiological relevance of our findings.
Collapse
Affiliation(s)
- Lisa Maudsdotter
- Department of Biomedical Science, University of Tsukuba, Tsukuba, Japan
| | - Yuri Ushijima
- Department of Biomedical Science, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Morikawa
- Department of Biomedical Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Szafrańska AK, Junker V, Steglich M, Nübel U. Rapid cell division of Staphylococcus aureus during colonization of the human nose. BMC Genomics 2019; 20:229. [PMID: 30894139 PMCID: PMC6425579 DOI: 10.1186/s12864-019-5604-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease. RESULTS In this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours. CONCLUSIONS The cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal.
Collapse
Affiliation(s)
- Anna K Szafrańska
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig site, Germany
| | - Vera Junker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Matthias Steglich
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig site, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany. .,German Center for Infection Research (DZIF), Braunschweig site, Germany. .,Braunschweig Integrated Centre of Systems Biology (BRICS), Technical University Braunschweig, Braunschweig, Germany.
| |
Collapse
|
10
|
Danchin A. Bacteria in the ageing gut: did the taming of fire promote a long human lifespan? Environ Microbiol 2018; 20:1966-1987. [PMID: 29727052 DOI: 10.1111/1462-2920.14255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Unique among animals as they evolved towards Homo sapiens, hominins progressively cooked their food on a routine basis. Cooked products are characterized by singular chemical compounds, derived from the pervasive Maillard reaction. This same reaction is omnipresent in normal metabolism involving carbonyls and amines, and its products accumulate with age. The gut microbiota acts as a first line of defence against the toxicity of cooked Maillard compounds, that also selectively shape the microbial flora, letting specific metabolites to reach the blood stream. Positive selection of metabolic functions allowed the body of hominins who tamed fire to use and dispose of these age-related compounds. I propose here that, as a hopeful accidental consequence, this resulted in extending human lifespan far beyond that of our great ape cousins. The limited data exploring the role of taming fire on the human genetic setup and on its microbiota is discussed in relation with ageing.
Collapse
Affiliation(s)
- Antoine Danchin
- Integromics, Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, Paris, 75013, France.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong University, 21 Sassoon Road, Pokfulam, Hong Kong
| |
Collapse
|
11
|
Yannai A, Katz S, Hershberg R. The Codon Usage of Lowly Expressed Genes Is Subject to Natural Selection. Genome Biol Evol 2018; 10:1237-1246. [PMID: 29688501 PMCID: PMC5961134 DOI: 10.1093/gbe/evy084] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2018] [Indexed: 12/21/2022] Open
Abstract
Codon usage bias affects the genomes of organisms from all kingdoms of life and results from both background substitution biases and natural selection. Natural selection on codon usage to increase translation accuracy and efficiency has long been known to affect gene sequences. Such selection is stronger on highly, compared with lowly expressed genes, resulting in higher levels of codon bias within genes with higher expression levels. Additionally, selection on translation accuracy affects more strongly codons encoding conserved amino acids, since these will more often affect protein folding and/or function. By applying tests of selection on the gene sequences of the bacterium Escherichia coli, we demonstrate that both highly and lowly expressed genes display signals of selection on codon usage. Such signals are found for both conserved and less conserved amino acid positions, even within the 10% of E. coli genes expressed at the lowest levels. We further demonstrate experimentally that single synonymous codon replacements within a lowly expressed, essential gene can carry substantial effects on bacterial fitness. Combined, our results demonstrate that even within genes expressed at relatively low levels there is substantial selection on codon usage and that single synonymous codon replacements within such genes can have a marked effect on bacterial fitness.
Collapse
Affiliation(s)
- Adi Yannai
- Rachel and Menachem Mendelovitch Evolutionary Processes of Mutation and Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sophia Katz
- Rachel and Menachem Mendelovitch Evolutionary Processes of Mutation and Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel and Menachem Mendelovitch Evolutionary Processes of Mutation and Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Younas M, Siddiqui F, Noreen Z, Bokhari SS, Gomez-Duarte OG, Wren BW, Bokhari H. Characterization of enteropathogenic Escherichia coli of clinical origin from the pediatric population in Pakistan. Trans R Soc Trop Med Hyg 2017; 110:414-20. [PMID: 27496516 DOI: 10.1093/trstmh/trw047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/13/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Enteropathogenic Escherichia coli (EPEC) is one of the leading causes of watery diarrhea among children. METHODS In this study EPEC isolates from the pediatric population of Pakistan (2010-2012) were subjected to phylotyping, antibiotic susceptibility, extended-spectrum beta-lactamase (ESBL) profiling and evaluation of one representative strain from each panel of phylotypesin Galleria mellonella, infection model. RESULTS A total of 46/225 (20.4%) stool samples were positive for EPEC. Isolates mainly belong to D phylogroup (18, 39%) followed by nontypeable (10, 22%), B1 (9, 20%), B2 (8, 17%) and A (1, 2%). High resistance was observed for ampicillin (42, 91%), erythromycin (41, 89%), cefaclor (37, 80%), trimethoprim/sulfamethoxazole (36, 78%), tetracycline (36, 78%). Among nalidixic acid resistant isolates 13 (28%) showed presence of single nucleotide polymorphism (SNP) in parC (C330-T330) whereas 1 (2%) isolate showed gyrB (A660-T660) SNP. Furthermore, 27 (59%) isolates were ESBL producers. Representative isolates of phlyotypes A and B2 showed enhance killing of G. mellonella compared to ones belonging to phylotypes B1 and D. CONCLUSIONS Non-typeable EPEC strains were frequently observed. ESBL production in ESBL producers was found to be plasmid mediated. No significant association of antibiotic resistance profile with specific phylogroup of EPEC was found, however G. mellonella infection model differentiated representative phylotypes.
Collapse
Affiliation(s)
- Mahwish Younas
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, 44000, Islamabad, Pakistan
| | - Fariha Siddiqui
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, 44000, Islamabad, Pakistan
| | - Zobia Noreen
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, 44000, Islamabad, Pakistan
| | | | - Oscar G Gomez-Duarte
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Habib Bokhari
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, 44000, Islamabad, Pakistan
| |
Collapse
|
13
|
Bleuven C, Landry CR. Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proc Biol Sci 2017; 283:rspb.2016.1458. [PMID: 27798299 DOI: 10.1098/rspb.2016.1458] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022] Open
Abstract
Environmental heterogeneity constitutes an evolutionary challenge for organisms. While evolutionary dynamics under variable conditions has been explored for decades, we still know relatively little about the cellular and molecular mechanisms involved. It is of paramount importance to examine these molecular bases because they may play an important role in shaping the course of evolution. In this review, we examine the diversity of adaptive mechanisms in the face of environmental changes. We exploit the recent literature on microbial systems because those have benefited the most from the recent emergence of genetic engineering and experimental evolution followed by genome sequencing. We identify four emerging trends: (i) an adaptive molecular change in a pathway often results in fitness trade-off in alternative environments but the effects are dependent on a mutation's genetic background; (ii) adaptive changes often modify transcriptional and signalling pathways; (iii) several adaptive changes may occur within the same molecular pathway but be associated with pleiotropy of different signs across environments; (iv) because of their large associated costs, macromolecular changes such as gene amplification and aneuploidy may be a rapid mechanism of adaptation in the short-term only. The course of adaptation in a variable environment, therefore, depends on the complexity of the environment but also on the molecular relationships among the genes involved and between the genes and the phenotypes under selection.
Collapse
Affiliation(s)
- Clara Bleuven
- Département de Biologie, Université Laval, Québec, Québec, Canada .,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Québec, Canada
| | - Christian R Landry
- Département de Biologie, Université Laval, Québec, Québec, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,Big Data Research Center, Université Laval, Québec, Québec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Québec, Canada
| |
Collapse
|
14
|
Avrani S, Bolotin E, Katz S, Hershberg R. Rapid Genetic Adaptation during the First Four Months of Survival under Resource Exhaustion. Mol Biol Evol 2017; 34:1758-1769. [PMID: 28369614 PMCID: PMC5455981 DOI: 10.1093/molbev/msx118] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Many bacteria, including the model bacterium Escherichia coli can survive for years within spent media, following resource exhaustion. We carried out evolutionary experiments, followed by whole genome sequencing of hundreds of evolved clones to study the dynamics by which E. coli adapts during the first 4 months of survival under resource exhaustion. Our results reveal that bacteria evolving under resource exhaustion are subject to intense selection, manifesting in rapid mutation accumulation, enrichment in functional mutation categories and extremely convergent adaptation. In the most striking example of convergent adaptation, we found that across five independent populations adaptation to conditions of resource exhaustion occurs through mutations to the three same specific positions of the RNA polymerase core enzyme. Mutations to these three sites are strongly antagonistically pleiotropic, in that they sharply reduce exponential growth rates in fresh media. Such antagonistically pleiotropic mutations, combined with the accumulation of additional mutations, severely reduce the ability of bacteria surviving under resource exhaustion to grow exponentially in fresh media. We further demonstrate that the three positions at which these resource exhaustion mutations occur are conserved for the ancestral E. coli allele, across bacterial phyla, with the exception of nonculturable bacteria that carry the resource exhaustion allele at one of these positions, at very high frequencies. Finally, our results demonstrate that adaptation to resource exhaustion is not limited by mutational input and that bacteria are able to rapidly adapt under resource exhaustion in a temporally precise manner through allele frequency fluctuations.
Collapse
Affiliation(s)
- Sarit Avrani
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Evolutionary and Environmental Biology, The Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Evgeni Bolotin
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Evolution of Antibiotic Resistance without Antibiotic Exposure. Antimicrob Agents Chemother 2017; 61:AAC.01495-17. [PMID: 28893783 PMCID: PMC5655081 DOI: 10.1128/aac.01495-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022] Open
Abstract
Antibiotic use is the main driver in the emergence of antibiotic resistance. Another unexplored possibility is that resistance evolves coincidentally in response to other selective pressures. We show that selection in the absence of antibiotics can coselect for decreased susceptibility to several antibiotics. Thus, genetic adaptation of bacteria to natural environments may drive resistance evolution by generating a pool of resistance mutations that selection could act on to enrich resistant mutants when antibiotic exposure occurs.
Collapse
|
16
|
|
17
|
Maharjan RP, Ferenci T. A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input-mutation output relationships. PLoS Biol 2017; 15:e2001477. [PMID: 28594817 PMCID: PMC5464527 DOI: 10.1371/journal.pbio.2001477] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/15/2017] [Indexed: 12/16/2022] Open
Abstract
Environmental stresses increase genetic variation in bacteria, plants, and human cancer cells. The linkage between various environments and mutational outcomes has not been systematically investigated, however. Here, we established the influence of nutritional stresses commonly found in the biosphere (carbon, phosphate, nitrogen, oxygen, or iron limitation) on both the rate and spectrum of mutations in Escherichia coli. We found that each limitation was associated with a remarkably distinct mutational profile. Overall mutation rates were not always elevated, and nitrogen, iron, and oxygen limitation resulted in major spectral changes but no net increase in rate. Our results thus suggest that stress-induced mutagenesis is a diverse series of stress input-mutation output linkages that is distinct in every condition. Environment-specific spectra resulted in the differential emergence of traits needing particular mutations in these settings. Mutations requiring transpositions were highest under iron and oxygen limitation, whereas base-pair substitutions and indels were highest under phosphate limitation. The unexpected diversity of input-output effects explains some important phenomena in the mutational biases of evolving genomes. The prevalence of bacterial insertion sequence transpositions in the mammalian gut or in anaerobically stored cultures is due to environmentally determined mutation availability. Likewise, the much-discussed genomic bias towards transition base substitutions in evolving genomes can now be explained as an environment-specific output. Altogether, our conclusion is that environments influence genetic variation as well as selection.
Collapse
Affiliation(s)
- Ram P. Maharjan
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Ferenci
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Hershberg R. Mutation--The Engine of Evolution: Studying Mutation and Its Role in the Evolution of Bacteria. Cold Spring Harb Perspect Biol 2015; 7:a018077. [PMID: 26330518 DOI: 10.1101/cshperspect.a018077] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mutation is the engine of evolution in that it generates the genetic variation on which the evolutionary process depends. To understand the evolutionary process we must therefore characterize the rates and patterns of mutation. Starting with the seminal Luria and Delbruck fluctuation experiments in 1943, studies utilizing a variety of approaches have revealed much about mutation rates and patterns and about how these may vary between different bacterial strains and species along the chromosome and between different growth conditions. This work provides a critical overview of the results and conclusions drawn from these studies, of the debate surrounding some of these conclusions, and of the challenges faced when studying mutation and its role in bacterial evolution.
Collapse
Affiliation(s)
- Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
19
|
Miotto P, Cirillo DM, Migliori GB. Drug resistance in Mycobacterium tuberculosis: molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest 2015; 147:1135-1143. [PMID: 25846529 DOI: 10.1378/chest.14-1286] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Physicians are more and more often challenged by difficult-to-treat cases of TB. They include patients infected by strains of Mycobacterium tuberculosis that are resistant to at least isoniazid and rifampicin (multidrug-resistant TB) or to at least one fluoroquinolone (FQ) and one injectable, second-line anti-TB drug in addition to isoniazid and rifampicin (extensively drug-resistant TB). The drug treatment of these cases is very long, toxic, and expensive, and, unfortunately, the proportion of unsatisfactory outcomes is still considerably high. Although FQs and pyrazinamide (PZA) are backbone drugs in the available anti-TB regimens, several uncertainties remain about their mechanisms of action and even more remain about the mechanisms leading to drug resistance. From a clinical point of view, a better understanding of the genetic basis of drug resistance will aid (1) clinicians to provide quality clinical management to both drug-susceptible and drug-resistant TB cases (while preventing emergence of further resistance), and (2) developers of new molecular-based diagnostic assays to better direct their research efforts toward a new generation of sensitive, specific, cheap, and easy-to-use point-of-care diagnostics. In this review we provide an update on the molecular mechanisms leading to FQ- and PZA-resistance in M tuberculosis.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Battista Migliori
- WHO Collaborating Centre for TB and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy.
| |
Collapse
|
20
|
Field W, Hershberg R. Alarmingly High Segregation Frequencies of Quinolone Resistance Alleles within Human and Animal Microbiomes Are Not Explained by Direct Clinical Antibiotic Exposure. Genome Biol Evol 2015; 7:1743-57. [PMID: 26019163 PMCID: PMC4494058 DOI: 10.1093/gbe/evv102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antibiotic resistance poses a major threat to human health. It is therefore important to characterize the frequency of resistance within natural bacterial environments. Many studies have focused on characterizing the frequencies with which horizontally acquired resistance genes segregate within natural bacterial populations. Yet, very little is currently understood regarding the frequency of segregation of resistance alleles occurring within the housekeeping targets of antibiotics. We surveyed a large number of metagenomic datasets extracted from a large variety of host-associated and non host-associated environments for such alleles conferring resistance to three groups of broad spectrum antibiotics: streptomycin, rifamycins, and quinolones. We find notable segregation frequencies of resistance alleles occurring within the target genes of each of the three antibiotics, with quinolone resistance alleles being the most frequent and rifamycin resistance alleles being the least frequent. Resistance allele frequencies varied greatly between different phyla and as a function of environment. The frequency of quinolone resistance alleles was especially high within host-associated environments, where it averaged an alarming ∼40%. Within host-associated environments, resistance to quinolones was most often conferred by a specific resistance allele. High frequencies of quinolone resistance alleles were also found within hosts that were not directly treated with antibiotics. Therefore, the high segregation frequency of quinolone resistance alleles occurring within the housekeeping targets of antibiotics in host-associated environments does not seem to be the sole result of clinical antibiotic usage.
Collapse
Affiliation(s)
- Wesley Field
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
21
|
Abstract
Because mutations are mostly deleterious, mutation rates should be reduced by natural selection. However, mutations also provide the raw material for adaptation. Therefore, evolutionary theory suggests that the mutation rate must balance between adaptability-the ability to adapt-and adaptedness-the ability to remain adapted. We model an asexual population crossing a fitness valley and analyse the rate of complex adaptation with and without stress-induced mutagenesis (SIM)-the increase of mutation rates in response to stress or maladaptation. We show that SIM increases the rate of complex adaptation without reducing the population mean fitness, thus breaking the evolutionary trade-off between adaptability and adaptedness. Our theoretical results support the hypothesis that SIM promotes adaptation and provide quantitative predictions of the rate of complex adaptation with different mutational strategies.
Collapse
Affiliation(s)
- Yoav Ram
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Maharjan R, Ferenci T. Mutational signatures indicative of environmental stress in bacteria. Mol Biol Evol 2014; 32:380-91. [PMID: 25389207 DOI: 10.1093/molbev/msu306] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evolutionary innovations are dependent on mutations. Mutation rates are increased by adverse conditions in the laboratory, but there is no evidence that stressful environments that do not directly impact on DNA leave a mutational imprint on extant genomes. Mutational spectra in the laboratory are normally determined with unstressed cells but are unavailable with stressed bacteria. To by-pass problems with viability, selection effects, and growth rate differences due to stressful environments, in this study we used a set of genetically engineered strains to identify the mutational spectrum associated with nutritional stress. The strain set members each had a fixed level of the master regulator protein, RpoS, which controls the general stress response of Escherichia coli. By assessing mutations in cycA gene from 485 cycloserine resistant mutants collected from as many independent cultures with three distinct perceived stress (RpoS) levels, we were able establish a dose-dependent relationship between stress and mutational spectra. The altered mutational patterns included base pair substitutions, single base pair indels, longer indels, and transpositions of different insertion sequences. The mutational spectrum of low-RpoS cells closely matches the genome-wide spectrum previously generated in laboratory environments, while the spectra of high RpoS, high perceived stress cells more closely matches spectra found in comparisons of extant genomes. Our results offer an explanation of the uneven mutational profiles such as the transition-transversion biases observed in extant genomes and provide a framework for assessing the contribution of stress-induced mutagenesis to evolutionary transitions and the mutational emergence of antibiotic resistance and disease states.
Collapse
Affiliation(s)
- Ram Maharjan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Thomas Ferenci
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Stress-induced mutation rates show a sigmoidal and saturable increase due to the RpoS sigma factor in Escherichia coli. Genetics 2014; 198:1231-5. [PMID: 25213168 DOI: 10.1534/genetics.114.170258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stress-induced mutagenesis was investigated in the absence of selection for growth fitness by using synthetic biology to control perceived environmental stress in Escherichia coli. We find that controlled intracellular RpoS dosage is central to a sigmoidal, saturable three- to fourfold increase in mutation rates and associated changes in DNA repair proteins.
Collapse
|
24
|
Koch A, Mizrahi V, Warner DF. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin? Emerg Microbes Infect 2014; 3:e17. [PMID: 26038512 PMCID: PMC3975073 DOI: 10.1038/emi.2014.17] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/12/2013] [Accepted: 12/30/2013] [Indexed: 01/08/2023]
Abstract
The emergence of drug-resistant pathogens poses a major threat to public health. Although influenced by multiple factors, high-level resistance is often associated with mutations in target-encoding or related genes. The fitness cost of these mutations is, in turn, a key determinant of the spread of drug-resistant strains. Rifampicin (RIF) is a frontline anti-tuberculosis agent that targets the rpoB-encoded β subunit of the DNA-dependent RNA polymerase (RNAP). In Mycobacterium tuberculosis (Mtb), RIF resistance (RIF(R)) maps to mutations in rpoB that are likely to impact RNAP function and, therefore, the ability of the organism to cause disease. However, while numerous studies have assessed the impact of RIF(R) on key Mtb fitness indicators in vitro, the consequences of rpoB mutations for pathogenesis remain poorly understood. Here, we examine evidence from diverse bacterial systems indicating very specific effects of rpoB polymorphisms on cellular physiology, and consider these observations in the context of Mtb. In addition, we discuss the implications of these findings for the propagation of clinically relevant RIF(R) mutations. While our focus is on RIF, we also highlight results which suggest that drug-independent effects might apply to a broad range of resistance-associated mutations, especially in an obligate pathogen increasingly linked with multidrug resistance.
Collapse
Affiliation(s)
- Anastasia Koch
- Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research Unit, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town , Cape Town 7701, South Africa
| | - Valerie Mizrahi
- Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research Unit, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town , Cape Town 7701, South Africa
| | - Digby F Warner
- Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research Unit, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town , Cape Town 7701, South Africa
| |
Collapse
|