1
|
Sun X, Decker J, Sanchez-Luege N, Rebay I. Inter-plane feedback coordinates cell morphogenesis and maintains 3D tissue organization in the Drosophila pupal retina. Development 2024; 151:dev201757. [PMID: 38533736 PMCID: PMC11006395 DOI: 10.1242/dev.201757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/12/2024] [Indexed: 03/28/2024]
Abstract
How complex organs coordinate cellular morphogenetic events to achieve three-dimensional (3D) form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina, where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells (IOPCs) organize tissue pattern to support retinal integrity. Our experiments show that photoreceptor and IOPC terminal differentiation is unexpectedly interdependent, connected by an intercellular feedback mechanism that coordinates and promotes morphogenetic change across orthogonal tissue planes to ensure correct 3D retinal pattern. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
Collapse
Affiliation(s)
- Xiao Sun
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jacob Decker
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Nicelio Sanchez-Luege
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Sun X, Decker J, Sanchez-Luege N, Rebay I. Orthogonal coupling of a 3D cytoskeletal scaffold coordinates cell morphogenesis and maintains tissue organization in the Drosophila pupal retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531386. [PMID: 36945525 PMCID: PMC10028844 DOI: 10.1101/2023.03.06.531386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How complex three-dimensional (3D) organs coordinate cellular morphogenetic events to achieve the correct final form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells coordinately organize tissue pattern to support retinal integrity. Our experiments revealed an unanticipated intercellular feedback mechanism whereby correct cellular differentiation of either cell type can non-autonomously induce cytoskeletal remodeling in the other Abl mutant cell type, restoring retinal pattern and integrity. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
Collapse
|
3
|
Rylee J, Mahato S, Aldrich J, Bergh E, Sizemore B, Feder LE, Grega S, Helms K, Maar M, Britt SG, Zelhof AC. A TRiP RNAi screen to identify molecules necessary for Drosophila photoreceptor differentiation. G3 GENES|GENOMES|GENETICS 2022; 12:6758253. [DOI: 10.1093/g3journal/jkac257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Drosophila rhabdomeric terminal photoreceptor differentiation is an extended process taking several days to complete. Following ommatidial patterning by the morphogenetic furrow, photoreceptors are sequentially recruited and specified, and terminal differentiation begins. Key events of terminal differentiation include the establishment of apical and basolateral domains, rhabdomere and stalk formation, inter-rhabdomeral space formation, and expression of phototransduction machinery. While many key regulators of these processes have been identified, the complete network of transcription factors to downstream effector molecules necessary for regulating each of these major events remains incomplete. Here, we report an RNAi screen to identify additional molecules and cellular pathways required for photoreceptor terminal differentiation. First, we tested several eye-specific GAL4 drivers for correct spatial and temporal specificity and identified Pph13-GAL4 as the most appropriate GAL4 line for our screen. We screened lines available through the Transgenic RNAi Project and isolated lines that when combined with Pph13-GAL4 resulted in the loss of the deep pseudopupil, as a readout for abnormal differentiation. In the end, we screened 6,189 lines, representing 3,971 genes, and have identified 64 genes, illuminating potential new regulatory molecules and cellular pathways for the differentiation and organization of Drosophila rhabdomeric photoreceptors.
Collapse
Affiliation(s)
- Johnathan Rylee
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Simpla Mahato
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - John Aldrich
- Department of Neurology and Ophthalmology, Dell Medical School, University of Texas , Austin, TX 78712, USA
| | - Emma Bergh
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Brandon Sizemore
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Lauren E Feder
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Shaun Grega
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Kennedy Helms
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Megan Maar
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Steven G Britt
- Department of Neurology and Ophthalmology, Dell Medical School, University of Texas , Austin, TX 78712, USA
| | - Andrew C Zelhof
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| |
Collapse
|
4
|
McCulloch KJ, Macias-Muñoz A, Briscoe AD. Insect opsins and evo-devo: what have we learned in 25 years? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210288. [PMID: 36058243 PMCID: PMC9441233 DOI: 10.1098/rstb.2021.0288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
The visual pigments known as opsins are the primary molecular basis for colour vision in animals. Insects are among the most diverse of animal groups and their visual systems reflect a variety of life histories. The study of insect opsins in the fruit fly Drosophila melanogaster has led to major advances in the fields of neuroscience, development and evolution. In the last 25 years, research in D. melanogaster has improved our understanding of opsin genotype-phenotype relationships while comparative work in other insects has expanded our understanding of the evolution of insect eyes via gene duplication, coexpression and homologue switching. Even so, until recently, technology and sampling have limited our understanding of the fundamental mechanisms that evolution uses to shape the diversity of insect eyes. With the advent of genome editing and in vitro expression assays, the study of insect opsins is poised to reveal new frontiers in evolutionary biology, visual neuroscience, and animal behaviour. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Kyle J. McCulloch
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
6
|
Hartenstein V, Yuan M, Younossi-Hartenstein A, Karandikar A, Bernardo-Garcia FJ, Sprecher S, Knust E. Serial electron microscopic reconstruction of the drosophila larval eye: Photoreceptors with a rudimentary rhabdomere of microvillar-like processes. Dev Biol 2019; 453:56-67. [PMID: 31158364 DOI: 10.1016/j.ydbio.2019.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/26/2022]
Abstract
Photoreceptor cells (PRCs) across the animal kingdom are characterized by a stacking of apical membranes to accommodate the high abundance of photopigment. In arthropods and many other invertebrate phyla PRC membrane stacks adopt the shape of densely packed microvilli that form a structure called rhabdomere. PRCs and surrounding accessory cells, including pigment cells and lens-forming cells, are grouped in stereotyped units, the ommatidia. In larvae of holometabolan insects, eyes (called stemmata) are reduced in terms of number and composition of ommatidia. The stemma of Drosophila (Bolwig organ) is reduced to a bilateral cluster of subepidermal PRCs, lacking all other cell types. In the present paper we have analyzed the development and fine structure of the Drosophila larval PRCs. Shortly after their appearance in the embryonic head ectoderm, PRC precursors delaminate and lose expression of apical markers of epithelial cells, including Crumbs and several centrosome-associated proteins. In the early first instar larva, PRCs show an expanded, irregularly shaped apical surface that is folded into multiple horizontal microvillar-like processes (MLPs). Apical PRC membranes and MLPs are covered with a layer of extracellular matrix. MLPs are predominantly aligned along an axis that extends ventro-anteriorly to dorso-posteriorly, but vary in length, diameter, and spacing. Individual MLPs present a "beaded" shape, with thick segments (0.2-0.3 μm diameter) alternating with thin segments (>0.1 μm). We show that loss of the glycoprotein Chaoptin, which is absolutely essential for rhabdomere formation in the adult PRCs, does not lead to severe abnormalities in larval PRCs.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Michaela Yuan
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Aanavi Karandikar
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Simon Sprecher
- Department of Biology, University of Fribourg, 10, Ch. du Musée, 1700, Fribourg, Switzerland
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| |
Collapse
|
7
|
Kacsoh BZ, Barton S, Jiang Y, Zhou N, Mooney SD, Friedberg I, Radivojac P, Greene CS, Bosco G. New Drosophila Long-Term Memory Genes Revealed by Assessing Computational Function Prediction Methods. G3 (BETHESDA, MD.) 2019; 9:251-267. [PMID: 30463884 PMCID: PMC6325913 DOI: 10.1534/g3.118.200867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/20/2018] [Indexed: 01/26/2023]
Abstract
A major bottleneck to our understanding of the genetic and molecular foundation of life lies in the ability to assign function to a gene and, subsequently, a protein. Traditional molecular and genetic experiments can provide the most reliable forms of identification, but are generally low-throughput, making such discovery and assignment a daunting task. The bottleneck has led to an increasing role for computational approaches. The Critical Assessment of Functional Annotation (CAFA) effort seeks to measure the performance of computational methods. In CAFA3, we performed selected screens, including an effort focused on long-term memory. We used homology and previous CAFA predictions to identify 29 key Drosophila genes, which we tested via a long-term memory screen. We identify 11 novel genes that are involved in long-term memory formation and show a high level of connectivity with previously identified learning and memory genes. Our study provides first higher-order behavioral assay and organism screen used for CAFA assessments and revealed previously uncharacterized roles of multiple genes as possible regulators of neuronal plasticity at the boundary of information acquisition and memory formation.
Collapse
Affiliation(s)
- Balint Z Kacsoh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Stephen Barton
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Yuxiang Jiang
- Department of Computer Science, Indiana University, Bloomington, IN
| | - Naihui Zhou
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011
| | - Predrag Radivojac
- College of Computer and Information Science, Northeastern University, Boston, MA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, PA, 19104
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| |
Collapse
|
8
|
Edelvio DBG, Leo RLD, Rita DCMDM. Actinomycetes bioactive compounds: Biological control of fungi and phytopathogenic insect. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajb2017.16323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Mishra AK, Bernardo-Garcia FJ, Fritsch C, Humberg TH, Egger B, Sprecher SG. Patterning mechanisms diversify neuroepithelial domains in the Drosophila optic placode. PLoS Genet 2018; 14:e1007353. [PMID: 29677185 PMCID: PMC5937791 DOI: 10.1371/journal.pgen.1007353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/07/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
The central nervous system develops from monolayered neuroepithelial sheets. In a first step patterning mechanisms subdivide the seemingly uniform epithelia into domains allowing an increase of neuronal diversity in a tightly controlled spatial and temporal manner. In Drosophila, neuroepithelial patterning of the embryonic optic placode gives rise to the larval eye primordium, consisting of two photoreceptor (PR) precursor types (primary and secondary), as well as the optic lobe primordium, which during larval and pupal stages develops into the prominent optic ganglia. Here, we characterize a genetic network that regulates the balance between larval eye and optic lobe precursors, as well as between primary and secondary PR precursors. In a first step the proneural factor Atonal (Ato) specifies larval eye precursors, while the orphan nuclear receptor Tailless (Tll) is crucial for the specification of optic lobe precursors. The Hedgehog and Notch signaling pathways act upstream of Ato and Tll to coordinate neural precursor specification in a timely manner. The correct spatial placement of the boundary between Ato and Tll in turn is required to control the precise number of primary and secondary PR precursors. In a second step, Notch signaling also controls a binary cell fate decision, thus, acts at the top of a cascade of transcription factor interactions to define PR subtype identity. Our model serves as an example of how combinatorial action of cell extrinsic and cell intrinsic factors control neural tissue patterning.
Collapse
Affiliation(s)
| | | | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G. Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Humberg TH, Bruegger P, Afonso B, Zlatic M, Truman JW, Gershow M, Samuel A, Sprecher SG. Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues. Nat Commun 2018; 9:1260. [PMID: 29593252 PMCID: PMC5871836 DOI: 10.1038/s41467-018-03520-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/21/2018] [Indexed: 11/09/2022] Open
Abstract
To integrate changing environmental cues with high spatial and temporal resolution is critical for animals to orient themselves. Drosophila larvae show an effective motor program to navigate away from light sources. How the larval visual circuit processes light stimuli to control navigational decision remains unknown. The larval visual system is composed of two sensory input channels, Rhodopsin5 (Rh5) and Rhodopsin6 (Rh6) expressing photoreceptors (PRs). We here characterize how spatial and temporal information are used to control navigation. Rh6-PRs are required to perceive temporal changes of light intensity during head casts, while Rh5-PRs are required to control behaviors that allow navigation in response to spatial cues. We characterize how distinct behaviors are modulated and identify parallel acting and converging features of the visual circuit. Functional features of the larval visual circuit highlight the principle of how early in a sensory circuit distinct behaviors may be computed by partly overlapping sensory pathways.
Collapse
Affiliation(s)
| | - Pascal Bruegger
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Bruno Afonso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, VA, USA
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, VA, USA.,Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, UK
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, VA, USA
| | - Marc Gershow
- Department of Physics and Center for Neural Science, New York University, New York, 10003, NY, USA
| | - Aravinthan Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, 02138, MA, USA
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
11
|
Larderet I, Fritsch PM, Gendre N, Neagu-Maier GL, Fetter RD, Schneider-Mizell CM, Truman JW, Zlatic M, Cardona A, Sprecher SG. Organization of the Drosophila larval visual circuit. eLife 2017; 6:28387. [PMID: 30726702 PMCID: PMC5577918 DOI: 10.7554/elife.28387] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022] Open
Abstract
Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.
Collapse
Affiliation(s)
- Ivan Larderet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Nanae Gendre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
The Function and Evolution of Nuclear Receptors in Insect Embryonic Development. Curr Top Dev Biol 2017; 125:39-70. [DOI: 10.1016/bs.ctdb.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Bernardo-Garcia FJ, Humberg TH, Fritsch C, Sprecher SG. Successive requirement of Glass and Hazy for photoreceptor specification and maintenance in Drosophila. Fly (Austin) 2016; 11:112-120. [PMID: 27723419 PMCID: PMC5406162 DOI: 10.1080/19336934.2016.1244591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Development of the insect compound eye requires a highly controlled interplay between transcription factors. However, the genetic mechanisms that link early eye field specification to photoreceptor terminal differentiation and fate maintenance remain largely unknown. Here, we decipher the function of 2 transcription factors, Glass and Hazy, which play a central role during photoreceptor development. The regulatory interactions between Glass and Hazy suggest that they function together in a coherent feed-forward loop in all types of Drosophila photoreceptors. While the glass mutant eye lacks the expression of virtually all photoreceptor genes, young hazy mutants correctly express most phototransduction genes. Interestingly, the expression of these genes is drastically reduced in old hazy mutants. This age-dependent loss of the phototransduction cascade correlates with a loss of phototaxis in old hazy mutant flies. We conclude that Glass can either directly or indirectly initiate the expression of most phototransduction proteins in a Hazy-independent manner, and that Hazy is mainly required for the maintenance of functional photoreceptors in adult flies.
Collapse
Affiliation(s)
| | | | - Cornelia Fritsch
- a Department of Biology , University of Fribourg , Fribourg , Switzerland
| | - Simon G Sprecher
- a Department of Biology , University of Fribourg , Fribourg , Switzerland
| |
Collapse
|
14
|
Bire S, Casteret S, Piégu B, Beauclair L, Moiré N, Arensbuger P, Bigot Y. Mariner Transposons Contain a Silencer: Possible Role of the Polycomb Repressive Complex 2. PLoS Genet 2016; 12:e1005902. [PMID: 26939020 PMCID: PMC4777549 DOI: 10.1371/journal.pgen.1005902] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/05/2016] [Indexed: 12/31/2022] Open
Abstract
Transposable elements are driving forces for establishing genetic innovations such as transcriptional regulatory networks in eukaryotic genomes. Here, we describe a silencer situated in the last 300 bp of the Mos1 transposase open reading frame (ORF) which functions in vertebrate and arthropod cells. Functional silencers are also found at similar locations within three other animal mariner elements, i.e. IS630-Tc1-mariner (ITm) DD34D elements, Himar1, Hsmar1 and Mcmar1. These silencers are able to impact eukaryotic promoters monitoring strong, moderate or low expression as well as those of mariner elements located upstream of the transposase ORF. We report that the silencing involves at least two transcription factors (TFs) that are conserved within animal species, NFAT-5 and Alx1. These cooperatively act with YY1 to trigger the silencing activity. Four other housekeeping transcription factors (TFs), neuron restrictive silencer factor (NRSF), GAGA factor (GAF) and GTGT factor (GTF), were also found to have binding sites within mariner silencers but their impact in modulating the silencer activity remains to be further specified. Interestingly, an NRSF binding site was found to overlap a 30 bp motif coding a highly conserved PHxxYSPDLAPxD peptide in mariner transposases. We also present experimental evidence that silencing is mainly achieved by co-opting the host Polycomb Repressive Complex 2 pathway. However, we observe that when PRC2 is impaired another host silencing pathway potentially takes over to maintain weak silencer activity. Mariner silencers harbour features of Polycomb Response Elements, which are probably a way for mariner elements to self-repress their transcription and mobility in somatic and germinal cells when the required TFs are expressed. At the evolutionary scale, mariner elements, through their exaptation, might have been a source of silencers playing a role in the chromatin configuration in eukaryotic genomes. Transposons are mobile DNA sequences that have long co-evolved with the genome of their hosts. Consequently, they are involved in the generation of mutations, as well as the creation of genes and regulatory networks. Controlling the transposon activity, and consequently its negative effects on both the host soma and germ line, is a challenge for the survival of both the host and the transposon. To silence transposons, hosts often use defence mechanisms involving DNA methylation and RNA interference pathways. Here we show that mariner transposons can self-regulate their activity by using a silencer element located in their DNA sequence. The silencer element interferes with host housekeeping protein transcription factors involved in the polycomb silencing pathways. As the regulation of chromatin configuration by polycomb is an important regulator of animal development, our findings open the possibility that mariner silencers might have been exapted during animal evolution to participate in certain regulation pathways of their hosts. Since some of the TFs involved in mariner silencer activity play a role at different stages of nervous system development and neuron differentiation, it might be possible that mariner transposons can be active during some steps of cell differentiation. Interestingly, mariner transposons (i.e. IS630-Tc1-mariner (ITm) DD34D transposons) have so far only been found in genomes of animals having a nervous system.
Collapse
Affiliation(s)
- Solenne Bire
- PRC, UMR INRA-CNRS 7247, PRC, Nouzilly, France
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | | | | | | | | | - Peter Arensbuger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, United States of America
| | - Yves Bigot
- PRC, UMR INRA-CNRS 7247, PRC, Nouzilly, France
- * E-mail:
| |
Collapse
|
15
|
Rister J, Razzaq A, Boodram P, Desai N, Tsanis C, Chen H, Jukam D, Desplan C. Single-base pair differences in a shared motif determine differential Rhodopsin expression. Science 2016; 350:1258-61. [PMID: 26785491 DOI: 10.1126/science.aab3417] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The final identity and functional properties of a neuron are specified by terminal differentiation genes, which are controlled by specific motifs in compact regulatory regions. To determine how these sequences integrate inputs from transcription factors that specify cell types, we compared the regulatory mechanism of Drosophila Rhodopsin genes that are expressed in subsets of photoreceptors to that of phototransduction genes that are expressed broadly, in all photoreceptors. Both sets of genes share an 11-base pair (bp) activator motif. Broadly expressed genes contain a palindromic version that mediates expression in all photoreceptors. In contrast, each Rhodopsin exhibits characteristic single-bp substitutions that break the symmetry of the palindrome and generate activator or repressor motifs critical for restricting expression to photoreceptor subsets. Sensory neuron subtypes can therefore evolve through single-bp changes in short regulatory motifs, allowing the discrimination of a wide spectrum of stimuli.
Collapse
Affiliation(s)
- Jens Rister
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Ansa Razzaq
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Pamela Boodram
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Nisha Desai
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Cleopatra Tsanis
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Hongtao Chen
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - David Jukam
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Claude Desplan
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA.
| |
Collapse
|
16
|
Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli. Dev Biol 2016; 410:164-177. [PMID: 26769100 DOI: 10.1016/j.ydbio.2015.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
Abstract
Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli.
Collapse
|