1
|
Kim EN, Seok HY, Lim JS, Koh J, Bae JM, Kim CJ, Ryu GH, Ok YJ, Choi JS, Cho CH, Oh SJ. CRP deposition in human abdominal aortic aneurysm is associated with transcriptome alterations toward aneurysmal pathogenesis: insights from in situ spatial whole transcriptomic analysis. Front Immunol 2024; 15:1475051. [PMID: 39737187 PMCID: PMC11682986 DOI: 10.3389/fimmu.2024.1475051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Background We investigated the effects of C-reactive protein (CRP) deposition on the vessel walls in abdominal aortic aneurysm (AAA) by analyzing spatially resolved changes in gene expression. Our aim was to elucidate the pathways that contribute to disease progression. Methods AAA specimens from surgically resected formalin-fixed paraffin-embedded tissues were categorized into the AAA-high CRP [serum CRP ≥ 0.1 mg/dL, diffuse and strong immunohistochemistry (IHC); n = 7 (12 cores)] and AAA-low-CRP [serum CRP < 0.1 mg/dL, weak IHC; n = 3 (5 cores)] groups. Normal aorta specimens obtained during heart transplantation were used as the control group [n = 3 (6 cores)]. Spatially resolved whole transcriptomic analysis was performed, focusing on CD68-positive macrophages, CD45-positive lymphocytes, and αSMA-positive vascular smooth muscle cells. Results Spatial whole transcriptomic analysis revealed significant differential expression of 1,086, 1,629, and 1,281 genes between high-CRP and low-CRP groups within CD68-, CD45-, and αSMA-positive cells, respectively. Gene ontology (GO) analysis of CD68-positive macrophages identified clusters related to inflammation, apoptosis, and immune response, with signal transducer and activator of transcription 3 implicated across three processes. Notably, genes involved in blood vessel diameter maintenance were significantly downregulated in the high-CRP group. GO analysis of lymphocytes showed upregulation of leukocyte rolling and the apoptosis pathway, whereas, in smooth muscle cells, genes associated with Nuclear factor kappa B (NF-κB) signaling and c-Jun N-terminal Kinase (JNK) pathway were upregulated, and those related to blood pressure regulation were downregulated in the high-CRP group. Discussion CRP deposition was associated with significant transcriptomic changes in macrophages, lymphocytes, and vascular smooth muscle cells in AAA, suggesting its potential role in promoting pro-inflammatory and apoptotic processes, as well as contributing to the degradation of vascular structure and elasticity.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/immunology
- Transcriptome
- Male
- Gene Expression Profiling
- C-Reactive Protein/genetics
- C-Reactive Protein/analysis
- C-Reactive Protein/metabolism
- Female
- Aged
- Macrophages/metabolism
- Macrophages/immunology
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Eun Na Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Young Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ga-Hyeon Ryu
- Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - You Jung Ok
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Sung Choi
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chung-Hyun Cho
- Department of Biomedical Sciences and Pharmacology , College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Se Jin Oh
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Akula S, Alvarado-Vazquez A, Haide Mendez Enriquez E, Bal G, Franke K, Wernersson S, Hallgren J, Pejler G, Babina M, Hellman L. Characterization of Freshly Isolated Human Peripheral Blood B Cells, Monocytes, CD4+ and CD8+ T Cells, and Skin Mast Cells by Quantitative Transcriptomics. Int J Mol Sci 2024; 25:13050. [PMID: 39684762 DOI: 10.3390/ijms252313050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Quantitative transcriptomics offers a new way to obtain a detailed picture of freshly isolated cells. By direct isolation, the cells are unaffected by in vitro culture, and the isolation at cold temperatures maintains the cells relatively unaltered in phenotype by avoiding activation through receptor cross-linking or plastic adherence. Simultaneous analysis of several cell types provides the opportunity to obtain detailed pictures of transcriptomic differences between them. Here, we present such an analysis focusing on four human blood cell populations and compare those to isolated human skin mast cells. Pure CD19+ peripheral blood B cells, CD14+ monocytes, and CD4+ and CD8+ T cells were obtained by fluorescence-activated cell sorting, and KIT+ human connective tissue mast cells (MCs) were purified by MACS sorting from healthy skin. Detailed information concerning expression levels of the different granule proteases, protease inhibitors, Fc receptors, other receptors, transcription factors, cell signaling components, cytoskeletal proteins, and many other protein families relevant to the functions of these cells were obtained and comprehensively discussed. The MC granule proteases were found exclusively in the MC samples, and the T-cell granzymes in the T cells, of which several were present in both CD4+ and CD8+ T cells. High levels of CD4 were also observed in MCs and monocytes. We found a large variation between the different cell populations in the expression of Fc receptors, as well as for lipid mediators, proteoglycan synthesis enzymes, cytokines, cytokine receptors, and transcription factors. This detailed quantitative comparative analysis of more than 780 proteins of importance for the function of these populations can now serve as a good reference material for research into how these entities shape the role of these cells in immunity and tissue homeostasis.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Abigail Alvarado-Vazquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Erika Haide Mendez Enriquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gürkan Bal
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sara Wernersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Tesla R, Guhl C, Werthmann GC, Dixon D, Cenik B, Addepalli Y, Liang J, Fass DM, Rosenthal Z, Haggarty SJ, Williams NS, Posner BA, Ready JM, Herz J. Benzoxazole-derivatives enhance progranulin expression and reverse the aberrant lysosomal proteome caused by GRN haploinsufficiency. Nat Commun 2024; 15:6125. [PMID: 39033178 PMCID: PMC11271458 DOI: 10.1038/s41467-024-50076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous loss-of-function mutations in the GRN gene are a major cause of hereditary frontotemporal dementia. The mechanisms linking frontotemporal dementia pathogenesis to progranulin deficiency are not well understood, and there is currently no treatment. Our strategy to prevent the onset and progression of frontotemporal dementia in patients with GRN mutations is to utilize small molecule positive regulators of GRN expression to boost progranulin levels from the remaining functional GRN allele, thus restoring progranulin levels back to normal within the brain. This work describes a series of blood-brain-barrier-penetrant small molecules which significantly increase progranulin protein levels in human cellular models, correct progranulin protein deficiency in Grn+/- mouse brains, and reverse lysosomal proteome aberrations, a phenotypic hallmark of frontotemporal dementia, more efficiently than the previously described small molecule suberoylanilide hydroxamic acid. These molecules will allow further elucidation of the cellular functions of progranulin and its role in frontotemporal dementia and will also serve as lead structures for further drug development.
Collapse
Affiliation(s)
- Rachel Tesla
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gordon C Werthmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Danielle Dixon
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Basar Cenik
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Yesu Addepalli
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jue Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary Rosenthal
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Center for Translational Neurodegeneration Research, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Zhou Y, Khan H, Xiao J, Cheang WS. Effects of Arachidonic Acid Metabolites on Cardiovascular Health and Disease. Int J Mol Sci 2021; 22:12029. [PMID: 34769460 PMCID: PMC8584625 DOI: 10.3390/ijms222112029] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid (AA) is an essential fatty acid that is released by phospholipids in cell membranes and metabolized by cyclooxygenase (COX), cytochrome P450 (CYP) enzymes, and lipid oxygenase (LOX) pathways to regulate complex cardiovascular function under physiological and pathological conditions. Various AA metabolites include prostaglandins, prostacyclin, thromboxanes, hydroxyeicosatetraenoic acids, leukotrienes, lipoxins, and epoxyeicosatrienoic acids. The AA metabolites play important and differential roles in the modulation of vascular tone, and cardiovascular complications including atherosclerosis, hypertension, and myocardial infarction upon actions to different receptors and vascular beds. This article reviews the roles of AA metabolism in cardiovascular health and disease as well as their potential therapeutic implication.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Wai San Cheang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China;
| |
Collapse
|
5
|
Gugatschka M, Darnhofer B, Grossmann T, Schittmayer M, Hortobagyi D, Kirsch A, Karpf E, Brcic L, Birner-Gruenberger R, Karbiener M. Proteomic Analysis of Vocal Fold Fibroblasts Exposed to Cigarette Smoke Extract: Exploring the Pathophysiology of Reinke's Edema. Mol Cell Proteomics 2019; 18:1511-1525. [PMID: 31123107 PMCID: PMC6683006 DOI: 10.1074/mcp.ra119.001272] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/17/2019] [Indexed: 11/06/2022] Open
Abstract
Reinke's edema is a smoking-associated, benign, mostly bilateral lesion of the vocal folds leading to difficulties in breathing and voice problems. Pronounced histological changes such as damaged microvessels or immune cell infiltration have been described in the vocal fold connective tissue, the lamina propria Thus, vocal fold fibroblasts, the main cell type of the lamina propria, have been postulated to play a critical role in disease mediation. Yet information about the pathophysiology is still scarce and treatment is only surgical, i.e. symptomatic. To explore the pathophysiology of Reinke's edema, we exposed near-primary human vocal fold fibroblasts to medium conditioned with cigarette smoke extract for 24 h as well as 4 days followed by quantitative mass spectrometry.Proteomic analyses after 24 h revealed that cigarette smoke increased proteins previously described to be involved in oxidative stress responses in other contexts. Correspondingly, gene sets linked to metabolism of xenobiotics and reactive oxygen species were significantly enriched among cigarette smoke-induced proteins. Among the proteins most downregulated by cigarette smoke, we identified fibrillar collagens COL1A1 and COL1A2; this reduction was validated by complementary methods. Further, we found a significant increase of UDP-glucose 6-dehydrogenase, generating a building block for biosynthesis of hyaluronan, another crucial component of the vocal fold lamina propria In line with this result, hyaluronan levels were significantly increased because of cigarette smoke exposure. Long term treatment of 4 days did not lead to significant changes.The current findings corroborate previous studies but also reveal new insights in possible disease mechanisms of Reinke's edema. We postulate that changes in the composition of the vocal folds' extracellular matrix -reduction of collagen fibrils, increase of hyaluronan- may lead to the clinical findings. This might ease the identification of better, disease-specific treatment options.
Collapse
Affiliation(s)
- Markus Gugatschka
- ‡Division of Phoniatrics, Medical University of Graz, Graz, Austria.
| | - Barbara Darnhofer
- ¶Omics Center Graz, BioTechMed-Graz, Graz, Austria; ‖Austrian Center of Industrial Biotechnology, Graz, Austria
| | - Tanja Grossmann
- ‡Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Matthias Schittmayer
- §Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; ¶Omics Center Graz, BioTechMed-Graz, Graz, Austria; ‖Austrian Center of Industrial Biotechnology, Graz, Austria
| | - David Hortobagyi
- ‡Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Andrijana Kirsch
- ‡Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Eva Karpf
- **Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Luka Brcic
- **Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- §Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; ¶Omics Center Graz, BioTechMed-Graz, Graz, Austria; ‖Austrian Center of Industrial Biotechnology, Graz, Austria; **Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michael Karbiener
- ‡Division of Phoniatrics, Medical University of Graz, Graz, Austria; §§Takeda, Vienna, Austria
| |
Collapse
|
6
|
Khavrutskii IV, Compton JR, Jurkouich KM, Legler PM. Paired Carboxylic Acids in Enzymes and Their Role in Selective Substrate Binding, Catalysis, and Unusually Shifted p Ka Values. Biochemistry 2019; 58:5351-5365. [PMID: 31192586 DOI: 10.1021/acs.biochem.9b00429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cathepsin A (CatA, EC 3.4.16.5, UniProtKB P10619 ) is a human lysosomal carboxypeptidase. Counterintuitively, crystal structures of CatA and its homologues show a cluster of Glu and Asp residues binding the C-terminal carboxylic acid of the product or inhibitor. Each of these enzymes functions in an acidic environment and contains a highly conserved pair of Glu residues with side chain carboxyl group oxygens that are approximately 2.3-2.6 Å apart. In small molecules, carboxyl groups separated by ∼3 Å can overcome the repulsive interaction by protonation of one of the two groups. The pKa of one group increases (pKa ∼ 11) and can be as much as ∼6 pH units higher than the paired group. Consequently, at low and neutral pH, one carboxylate can carry a net negative charge while the other can remain protonated and neutral. In CatA, E69 and E149 form a Glu pair that is important to catalysis as evidenced by the 56-fold decrease in kcat/Km in the E69Q/E149Q variant. Here, we have measured the pH dependencies of log(kcat), log(Km), and log(kcat/Km) for wild type CatA and its variants and have compared the measured pKa with calculated values. We propose a substrate-assisted mechanism in which the high pKa of E149 (>8.5) favors the binding of the carboxylate form of the substrate and promotes the abstraction of the proton from H429 of the catalytic triad effectively decreasing its pKa in a low-pH environment. We also identify a similar motif consisting of a pair of histidines in S-formylglutathione hydrolase.
Collapse
Affiliation(s)
- Ilja V Khavrutskii
- Armed Forces Radiobiology Research Institute , Uniformed Services University , Bethesda , Maryland 20889-5648 , United States
| | - Jaimee R Compton
- U.S. Naval Research Laboratory , 4555 Overlook Avenue , Washington, D.C. 20375 , United States
| | - Kayla M Jurkouich
- Department of Biomedical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Patricia M Legler
- U.S. Naval Research Laboratory , 4555 Overlook Avenue , Washington, D.C. 20375 , United States
| |
Collapse
|
7
|
Differential Gene Expression Profile of Renin-Angiotensin System in the Left Atrium in Mitral Regurgitation Patients. DISEASE MARKERS 2018; 2018:6924608. [PMID: 30581499 PMCID: PMC6276386 DOI: 10.1155/2018/6924608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022]
Abstract
Background Left atrial enlargement is a mortality and heart failure risk factor in primary mitral regurgitation (MR) patients. Pig models of MR have shown differential expression of genes linked to the renin-angiotensin system. Therefore, the aim of this study was to investigate the key genes of the renin-angiotensin that are expressed differentially in the left atrial myocardium in MR patients. Methods Quantitative RT-PCR was used to compare gene expression in the renin-angiotensin system in the left atrium in MR patients, aortic valve disease patients, and normal subjects. Results Plasma angiotensin II concentrations did not significantly differ between MR patients and aortic valve disease patients (P = 0.582). Compared to normal controls, however, MR patients had significantly downregulated expressions of angiotensin-converting enzyme, angiotensin I converting enzyme 2, type 1 angiotensin II receptor, glutamyl aminopeptidase, angiotensinogen, cathepsin A (CTSA), thimet oligopeptidase 1, neurolysin, alanyl aminopeptidase, cathepsin G, leucyl/cystinyl aminopeptidase (LNPEP), neprilysin, and carboxypeptidase A3 in the left atrium. The MR patients also had significantly upregulated expressions of MAS1 oncogene (MAS1) and mineralocorticoid receptor compared to normal controls. Additionally, in comparison with aortic valve disease patients, MR patients had significantly downregulated CTSA and LNPEP expression and significantly upregulated MAS1 expression in the left atrium. Conclusions Expressions of genes in the renin-angiotensin system, especially CTSA, LNPEP, and MAS1, in the left atrium in MR patients significantly differed from expressions of these genes in aortic valve disease patients and normal controls. Notably, differences in expression were independent of circulating angiotensin II levels. The results of this study provide a rationale for pharmacological therapies or posttranslational regulation therapies targeting genes expressed differentially in the renin-angiotensin system to remedy structural remodeling associated with atrial enlargement and heart failure progression in patients with MR.
Collapse
|
8
|
van Rooden EJ, van Esbroeck ACM, Baggelaar MP, Deng H, Florea BI, Marques ARA, Ottenhoff R, Boot RG, Overkleeft HS, Aerts JMFG, van der Stelt M. Chemical Proteomic Analysis of Serine Hydrolase Activity in Niemann-Pick Type C Mouse Brain. Front Neurosci 2018; 12:440. [PMID: 30018533 PMCID: PMC6037894 DOI: 10.3389/fnins.2018.00440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid system (ECS) is considered to be an endogenous protective system in various neurodegenerative diseases. Niemann-Pick type C (NPC) is a neurodegenerative disease in which the role of the ECS has not been studied yet. Most of the endocannabinoid enzymes are serine hydrolases, which can be studied using activity-based protein profiling (ABPP). Here, we report the serine hydrolase activity in brain proteomes of a NPC mouse model as measured by ABPP. Two ABPP methods are used: a gel-based method and a chemical proteomics method. The activities of the following endocannabinoid enzymes were quantified: diacylglycerol lipase (DAGL) α, α/β-hydrolase domain-containing protein 4, α/β-hydrolase domain-containing protein 6, α/β-hydrolase domain-containing protein 12, fatty acid amide hydrolase, and monoacylglycerol lipase. Using the gel-based method, two bands were observed for DAGL α. Only the upper band corresponding to this enzyme was significantly decreased in the NPC mouse model. Chemical proteomics showed that three lysosomal serine hydrolase activities (retinoid-inducible serine carboxypeptidase, cathepsin A, and palmitoyl-protein thioesterase 1) were increased in Niemann-Pick C1 protein knockout mouse brain compared to wild-type brain, whereas no difference in endocannabinoid hydrolase activity was observed. We conclude that these targets might be interesting therapeutic targets for future validation studies.
Collapse
Affiliation(s)
- Eva J van Rooden
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | - Marc P Baggelaar
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hui Deng
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Bogdan I Florea
- Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - André R A Marques
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rolf G Boot
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Herman S Overkleeft
- Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Johannes M F G Aerts
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Mario van der Stelt
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
9
|
Sridharan GV, D'Alessandro M, Bale SS, Bhagat V, Gagnon H, Asara JM, Uygun K, Yarmush ML, Saeidi N. Multi-omic network-based interrogation of rat liver metabolism following gastric bypass surgery featuring SWATH proteomics. TECHNOLOGY 2017; 5:139-184. [PMID: 29780857 PMCID: PMC5956888 DOI: 10.1142/s233954781750008x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Morbidly obese patients often elect for Roux-en-Y gastric bypass (RYGB), a form of bariatric surgery that triggers a remarkable 30% reduction in excess body weight and reversal of insulin resistance for those who are type II diabetic. A more complete understanding of the underlying molecular mechanisms that drive the complex metabolic reprogramming post-RYGB could lead to innovative non-invasive therapeutics that mimic the beneficial effects of the surgery, namely weight loss, achievement of glycemic control, or reversal of non-alcoholic steatohepatitis (NASH). To facilitate these discoveries, we hereby demonstrate the first multi-omic interrogation of a rodent RYGB model to reveal tissue-specific pathway modules implicated in the control of body weight regulation and energy homeostasis. In this study, we focus on and evaluate liver metabolism three months following RYGB in rats using both SWATH proteomics, a burgeoning label free approach using high resolution mass spectrometry to quantify protein levels in biological samples, as well as MRM metabolomics. The SWATH analysis enabled the quantification of 1378 proteins in liver tissue extracts, of which we report the significant down-regulation of Thrsp and Acot13 in RYGB as putative targets of lipid metabolism for weight loss. Furthermore, we develop a computational graph-based metabolic network module detection algorithm for the discovery of non-canonical pathways, or sub-networks, enriched with significantly elevated or depleted metabolites and proteins in RYGB-treated rat livers. The analysis revealed a network connection between the depleted protein Baat and the depleted metabolite taurine, corroborating the clinical observation that taurine-conjugated bile acid levels are perturbed post-RYGB.
Collapse
Affiliation(s)
- Gautham Vivek Sridharan
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Matthew D'Alessandro
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Shyam Sundhar Bale
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Vicky Bhagat
- Warren Alpert Medical School of Brown University, 222 Richmond St., Providence, RI 02903, USA
| | - Hugo Gagnon
- Phenoswitch Bioscience, 3001 12e Avenue N, Sherbrooke, QC J1H 5N4, Canada
| | - John M Asara
- Beth Israel Deaconness Medical Center, 3 Blackfan Circle Rm 425, Boston, MA 02115, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Nima Saeidi
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
10
|
Pan X, Wang Y, Lübke T, Hinek A, Pshezhetsky AV. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS One 2017; 12:e0172854. [PMID: 28234994 PMCID: PMC5325571 DOI: 10.1371/journal.pone.0172854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/17/2017] [Indexed: 01/04/2023] Open
Abstract
Vasoactive and mitogenic peptide, endothelin-1 (ET-1) plays an important role in physiology of the ocular tissues by regulating the growth of corneal epithelial cells and maintaining the hemodynamics of intraocular fluids. We have previously established that ET-1 can be degraded in vivo by two lysosomal/secreted serine carboxypeptidases, Cathepsin A (CathA) and Serine Carboxypeptidase 1 (Scpep1) and that gene-targeted CathAS190A/Scpep1-/- mice, deficient in CathA and Scpep1 have a prolonged half-life of circulating ET-1 associated with systemic hypertension. In the current work we report that starting from 6 months of age, ~43% of CathAS190A/Scpep1-/- mice developed corneal clouding that eventually caused vision impairment. Histological evaluation of these mice demonstrated a selective fibrotic thickening and vacuolization of the corneas, resembling human hyperproliferative vesicular corneal stromal dystrophy and coexisting with a peculiar thickening of the skin epidermis. Moreover, we found that cultured corneal epithelial cells, skin fibroblasts and vascular smooth muscle cells derived from CathA/Scpep1-deficient mice, demonstrated a significantly higher proliferative response to treatment with exogenous ET-1, as compared with cells from wild type mice. We also detected increased activation level of ERK1/2 and AKT kinases involved in cell proliferation in the ET-1-treated cultured cells from CathA/Scpep1 deficient mice. Together, results from our experimental model suggest that; in normal tissues the tandem of serine carboxypeptidases, Scpep1 and CathA likely constitutes an important part of the physiological mechanism responsible for the balanced elimination of heightened levels of ET-1 that otherwise would accumulate in tissues and consequently contribute to development of the hyper-proliferative corneal dystrophy and abnormal skin thickening.
Collapse
Affiliation(s)
- Xuefang Pan
- Department of Medical Genetics, CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Yanting Wang
- Cardiovascular Research Program, the Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Torben Lübke
- Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Aleksander Hinek
- Cardiovascular Research Program, the Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Alexey V. Pshezhetsky
- Department of Medical Genetics, CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
11
|
Annunziata I, d'Azzo A. Galactosialidosis: historic aspects and overview of investigated and emerging treatment options. Expert Opin Orphan Drugs 2016; 5:131-141. [PMID: 28603679 DOI: 10.1080/21678707.2016.1266933] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Galactosialidosis is a glycoprotein storage disease caused by mutations in the CTSA gene, encoding lysosomal protective protein/cathepsin A (PPCA). The enzyme's catalytic activity is distinct from its protective function towards β-galactosidase (β-GAL) and neuraminidase 1 (NEU1), with which PPCA forms a complex. In this configuration the two glycosidases acquire their full activity and stability in lysosomes. Deficiency of PPCA results in combined NEU1/β-GAL deficiency. Because of its low incidence, galactosialidosis is considered an orphan disorder with no therapy yet available. AREAS COVERED This review gives a historic overview on the discovery of PPCA, which defined galactosialidosis as a new clinical entity; the evidence for the existence of the PPCA/NEU1/β-GAL complex; the clinical forms of galactosialidosis and disease-causing CTSA mutations. Ppca-/- mice have proven to be a suitable model to test different therapeutic approaches, paving the way for the development of clinical trials for patients with galactosialidosis. EXPERT OPINION Improved understanding of the molecular bases of disease has sparked renewed incentive from clinicians and scientists alike to develop therapies for rare conditions, like GS, and has increased the willingness of biotech companies to invest in the manufacturing of new therapeutics. Both ERT and gene therapy may become available to patients in the near future.
Collapse
Affiliation(s)
- Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
12
|
Mathé-Hubert H, Colinet D, Deleury E, Belghazi M, Ravallec M, Poulain J, Dossat C, Poirié M, Gatti JL. Comparative venomics of Psyttalia lounsburyi and P. concolor, two olive fruit fly parasitoids: a hypothetical role for a GH1 β-glucosidase. Sci Rep 2016; 6:35873. [PMID: 27779241 PMCID: PMC5078806 DOI: 10.1038/srep35873] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/05/2016] [Indexed: 01/22/2023] Open
Abstract
Venom composition of parasitoid wasps attracts increasing interest - notably molecules ensuring parasitism success on arthropod pests - but its variation within and among taxa is not yet understood. We have identified here the main venom proteins of two braconid wasps, Psyttalia lounsburyi (two strains from South Africa and Kenya) and P. concolor, olive fruit fly parasitoids that differ in host range. Among the shared abundant proteins, we found a GH1 β-glucosidase and a family of leucine-rich repeat (LRR) proteins. Olive is extremely rich in glycoside compounds that are hydrolyzed by β-glucosidases into defensive toxic products in response to phytophagous insect attacks. Assuming that Psyttalia host larvae sequester ingested glycosides, the injected venom GH1 β-glucosidase could induce the release of toxic compounds, thus participating in parasitism success by weakening the host. Venom LRR proteins are similar to truncated Toll-like receptors and may possibly scavenge the host immunity. The abundance of one of these LRR proteins in the venom of only one of the two P. lounsburyi strains evidences intraspecific variation in venom composition. Altogether, venom intra- and inter-specific variation in Psyttalia spp. were much lower than previously reported in the Leptopilina genus (Figitidae), suggesting it might depend upon the parasitoid taxa.
Collapse
Affiliation(s)
| | | | | | - Maya Belghazi
- CNRS, Aix-Marseille Université, UMR 7286, CRN2M, Centre d’Analyses Protéomiques de Marseille (CAPM), Faculté de Médecine, Marseille, France
| | - Marc Ravallec
- INRA, Univ. Montpellier, UMR 1333 « Microorganism & Insect Diversity, Genomes & Interactions » (DGIMI), CC101, Montpellier Cedex 34095, France
| | - Julie Poulain
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Génoscope, 91000, Evry, France
| | - Carole Dossat
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Génoscope, 91000, Evry, France
| | | | | |
Collapse
|
13
|
Timur ZK, Akyildiz Demir S, Seyrantepe V. Lysosomal Cathepsin A Plays a Significant Role in the Processing of Endogenous Bioactive Peptides. Front Mol Biosci 2016; 3:68. [PMID: 27826550 PMCID: PMC5078471 DOI: 10.3389/fmolb.2016.00068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
Lysosomal serine carboxypeptidase Cathepsin A (CTSA) is a multifunctional enzyme with distinct protective and catalytic function. CTSA present in the lysosomal multienzyme complex to facilitate the correct lysosomal routing, stability and activation of with beta-galactosidase and alpha-neuraminidase. Beside CTSA has role in inactivation of bioactive peptides including bradykinin, substances P, oxytocin, angiotensin I and endothelin-I by cleavage of 1 or 2 amino acid(s) from C-terminal ends. In this study, we aimed to elucidate the regulatory role of CTSA on bioactive peptides in knock-in mice model of CTSAS190A . We investigated the level of bradykinin, substances P, oxytocin, angiotensin I and endothelin-I in the kidney, liver, lung, brain and serum from CTSAS190A mouse model at 3- and 6-months of age. Our results suggest CTSA selectively contributes to processing of bioactive peptides in different tissues from CTSAS190A mice compared to age matched WT mice.
Collapse
Affiliation(s)
- Zehra Kevser Timur
- Izmir Institute of Technology, Molecular Biology and Genetics Izmir, Turkey
| | | | - Volkan Seyrantepe
- Izmir Institute of Technology, Molecular Biology and Genetics Izmir, Turkey
| |
Collapse
|
14
|
Prokkola JM, Katsiadaki I, Sebire M, Elphinstone-Davis J, Pausio S, Nikinmaa M, Leder EH. Microarray analysis of di-n-butyl phthalate and 17α ethinyl-oestradiol responses in three-spined stickleback testes reveals novel candidate genes for endocrine disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:96-104. [PMID: 26476330 DOI: 10.1016/j.ecoenv.2015.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
Phthalate esters are plasticizers frequently found in wastewater effluents. Previous studies on phthalates have reported anti-androgenic activity in mammals, causing concerns of their potential effects on the reproduction of aquatic organisms. Another group of environmental endocrine disrupters, steroidal estrogens, are known to inhibit steroid biosynthesis in the gonads, but the effects related to spermatogenesis are not well understood in fish. In this study, three-spined sticklebacks were exposed to di-n-butyl phthalate (DBP) and 17α ethinyl-oestradiol (EE2) at nominal concentrations 35μg/L and 40ng/L, respectively, for four days. The aim of the study was to obtain insight into the acute transcriptional responses putatively associated with endocrine disruption. RNA samples from eight individual male fish per treatment (including controls) were used in microarray analysis, covering the expression of approximately 21,000 genes. In the EE2 treatment the results show transcriptional downregulation of genes associated with steroid biosynthesis pathway and up-regulation of genes involved in pathways related to epidermal growth factor signaling and xenobiotic metabolism. The transcriptional response to DBP was in general weaker than to EE2, but based on enrichment analysis, we suggest adverse effects on retinoid metabolism, creatine kinase activity and cell adhesion. Among the genes showing highest fold changes after DBP treatment compared to control was the teleost fish -specific cytochrome P450 17A2. Overall, this study promotes our understanding on molecular responses to anti-androgens and estrogens in fish testes.
Collapse
Affiliation(s)
- Jenni M Prokkola
- Department of Biology, University of Turku, 20014 Turku, Finland.
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Marion Sebire
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | | | - Sanna Pausio
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Erica H Leder
- Department of Biology, University of Turku, 20014 Turku, Finland; Natural History Museum, University of Oslo, Oslo NO-0318, Norway
| |
Collapse
|
15
|
Fung SY, Lee ML, Tan NH. Molecular mechanism of cell death induced by king cobra (Ophiophagus hannah) venom l-amino acid oxidase. Toxicon 2015; 96:38-45. [PMID: 25615711 DOI: 10.1016/j.toxicon.2015.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/09/2015] [Accepted: 01/20/2015] [Indexed: 01/11/2023]
Abstract
Snake venom LAAOs have been reported to exhibit a wide range of pharmacological activities, including cytotoxic, edema-inducing, platelet aggregation-inducing/platelet aggregation-inhibiting, bactericidal and antiviral activities. A heat-stable form of l-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom (OH-LAAO) has been shown to exhibit very potent cytotoxicity against human tumorigenic cells but not in their non-tumorigenic counterparts, and the cytotoxicity was due to the apoptosis-inducing effect of the enzyme. In this work, the molecular mechanism of cell death induced by OH-LAAO was investigated. The enzyme exerts its apoptosis-inducing effect presumably via both intrinsic and extrinsic pathways as suggested by the increase in caspase-8 and -9 activities. Oligonucleotide microarray analysis showed that the expression of a total of 178 genes was significantly altered as a result of oxidative stress induced by the hydrogen peroxide generated by the enzyme. Of the 178 genes, at least 27 genes are involved in apoptosis and cell death. These alterations of gene expression was presumably caused by the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidative modifications of signaling molecules that eventually lead to apoptosis and cell death. The very substantial up-regulation of cytochrome P450 genes may also contribute to the potent cytotoxic action of OH-LAAO by producing excessive reactive oxygen species (ROS). In conclusion, the potent apoptosis inducing activity of OH-LAAO was likely due to the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidation of signalling molecules.
Collapse
Affiliation(s)
- Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mui Li Lee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Manivannan J, Silambarasan T, Kadarkarairaj R, Raja B. Systems pharmacology and molecular docking strategies prioritize natural molecules as cardioprotective agents. RSC Adv 2015. [DOI: 10.1039/c5ra10761j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multidimensional prioritization of cardioprotective natural compounds.
Collapse
Affiliation(s)
| | - Thangarasu Silambarasan
- Cardiovascular Biology Lab
- Department of Biochemistry and Biotechnology
- Annamalai University
- India
| | | | - Boobalan Raja
- Cardiovascular Biology Lab
- Department of Biochemistry and Biotechnology
- Annamalai University
- India
| |
Collapse
|
17
|
Petrera A, Lai ZW, Schilling O. Carboxyterminal protein processing in health and disease: key actors and emerging technologies. J Proteome Res 2014; 13:4497-504. [PMID: 25204196 DOI: 10.1021/pr5005746] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carboxypeptidases are important mediators of cellular behavior. Through C-terminal truncations, they alter protein functionality and participate in proteome turnover. Similarly, carboxypeptidases shape the human peptidome by targeting neuroendocrine and vasoactive peptides, thereby regulating signaling pathways in the nervous and cardiovascular systems as well as in embryonic development. Carboxypeptidases are widely connected to various pathological processes such as carcinogenesis and neurodegenerative and cardiovascular diseases. The repertoire of carboxypeptidase in vivo substrates still remains poorly defined, largely due to the lack of suitable experimental approaches. Understanding the precise role of carboxypeptidases is pivotal in the future development of diagnostic/prognostic markers in such diseases. To date, very little attention has been paid to the implication of carboxypeptidases in shaping the proteome as well as the peptidome. This review focuses on the patho-physiological function of carboxypeptidases and highlights the approaches by which proteomics-based technologies can be applied to characterize carboxypeptidases and to quantify the differential regulation of proteins by carboxypeptidases in a proteome-wide manner.
Collapse
Affiliation(s)
- Agnese Petrera
- Institute of Molecular Medicine and Cell Research, ‡BIOSS Centre for Biological Signaling Studies, University of Freiburg , D-79104 Freiburg, Germany
| | | | | |
Collapse
|