1
|
Li X, Gordon KL. MIG-21 is a novel regulator of Wnt and Netrin signaling in gonad migration identified from published scRNA-seq data and functionally validated in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639896. [PMID: 40060509 PMCID: PMC11888322 DOI: 10.1101/2025.02.24.639896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Using a recently published scRNA-seq dataset of adult C. elegans hermaphrodites, we identified a previously unknown regulator of the germ line stem cell niche (the distal tip cell, or DTC). The gene mig-21 has the highest "marker score"-yet no known role-in the DTC. Using classical genetics techniques, RNAi knockdown, and live cell imaging, we discovered that mig-21 integrates information from the Wnt and Netrin pathways to guide anteroposterior and dorsoventral DTC migration. Our study demonstrates the utility of scRNA-seq datasets in revealing testable hypotheses about genetic networks that were masked by redundancy in traditional screening methods.
Collapse
Affiliation(s)
- Xin Li
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kacy Lynn Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- UNC Lineberger Comprehensive Cancer Center
| |
Collapse
|
2
|
Nadour M, Valette Reveno Leatis RI, Biard M, Frébault N, Rivollet L, St-Louis P, Blanchette CR, Thackeray A, Perrat P, Bevilacqua C, Prevedel R, Cappadocia L, Rapti G, Doitsidou M, Bénard CY. Remodeling of extracellular matrix collagen IV by MIG-6/papilin regulates neuronal architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637428. [PMID: 39990436 PMCID: PMC11844411 DOI: 10.1101/2025.02.10.637428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Neuronal architecture established embryonically must persist lifelong to ensure normal brain function. However, little is understood about the mechanisms behind the long-term maintenance of neuronal organization. To uncover maintenance mechanisms, we performed a suppressor screen in sax-7 / L1CAM mutants, which exhibit progressive disorganization with age. We identified the conserved extracellular matrix protein MIG-6/papilin as a key regulator of neuronal maintenance. Combining incisive molecular genetics, structural predictions, in vivo quantitative imaging, and cutting-edge Brillouin microscopy, we show that MIG-6/papilin remodels extracellular matrix collagen IV, working in concert with the secreted enzymes MIG-17/ADAMTS and PXN-2/peroxidasin. This remodeling impacts tissue biomechanics and ensures neuronal stability, even under increased mechanical stress. Our findings highlight an extracellular mechanism by which MIG-6/papilin supports the integrity of neuronal architecture throughout life. This work provides critical insights into the molecular basis of sustaining neuronal architecture and offers a foundation for understanding age-related and neurodegenerative disorders.
Collapse
|
3
|
So S, Asakawa M, Sawa H. Distinct functions of three Wnt proteins control mirror-symmetric organogenesis in the C. elegans gonad. eLife 2024; 13:e103035. [PMID: 39485276 PMCID: PMC11620738 DOI: 10.7554/elife.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/30/2024] [Indexed: 11/03/2024] Open
Abstract
Organogenesis requires the proper production of diverse cell types and their positioning/migration. However, the coordination of these processes during development remains poorly understood. The gonad in C. elegans exhibits a mirror-symmetric structure guided by the migration of distal tip cells (DTCs), which result from asymmetric divisions of somatic gonadal precursors (SGPs; Z1 and Z4). We found that the polarity of Z1 and Z4, which possess mirror-symmetric orientation, is controlled by the redundant functions of the LIN-17/Frizzled receptor and three Wnt proteins (CWN-1, CWN-2, and EGL-20) with distinct functions. In lin-17 mutants, CWN-2 promotes normal polarity in both Z1 and Z4, while CWN-1 promotes reverse and normal polarity in Z1 and Z4, respectively. In contrast, EGL-20 inhibits the polarization of both Z1 and Z4. In lin-17 egl-20 cwn-2 triple mutants with a polarity reversal of Z1, DTCs from Z1 frequently miss-migrate to the posterior side. Our further analysis demonstrates that the mis-positioning of DTCs in the gonad due to the polarity reversal of Z1 leads to mis-migration. Similar mis-migration was also observed in cki-1(RNAi) animals producing ectopic DTCs. These results highlight the role of Wnt signaling in coordinating the production and migration of DTCs to establish a mirror-symmetric organ.
Collapse
Affiliation(s)
- Shuhei So
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS)MishimaJapan
| | - Masayo Asakawa
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS)MishimaJapan
| | - Hitoshi Sawa
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS)MishimaJapan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies)MishimaJapan
| |
Collapse
|
4
|
Pani AM. Organogenesis: How active forces maintain integrity of migrating cells under pressure. Curr Biol 2024; 34:R693-R696. [PMID: 39043144 DOI: 10.1016/j.cub.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Cells experience dynamic internal and external forces during animal development. Two new studies reveal critical and unexpected roles for cytoskeletal regulators and nuclear positioning in maintaining the physical integrity of migrating leader cells during Caenorhabditis elegans organogenesis.
Collapse
Affiliation(s)
- Ariel M Pani
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Singh N, Zhang P, Li KJ, Gordon KL. The Rac pathway prevents cell fragmentation in a nonprotrusively migrating leader cell during C. elegans gonad organogenesis. Curr Biol 2024; 34:2387-2402.e5. [PMID: 38776905 PMCID: PMC12013728 DOI: 10.1016/j.cub.2024.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The C. elegans hermaphrodite distal tip cell (DTC) leads gonadogenesis. Loss-of-function mutations in a C. elegans ortholog of the Rac1 GTPase (ced-10) and its GEF complex (ced-5/DOCK180, ced-2/CrkII, ced-12/ELMO) cause gonad migration defects related to directional sensing; we discovered an additional defect class of gonad bifurcation in these mutants. Using genetic approaches, tissue-specific and whole-body RNAi, and in vivo imaging of endogenously tagged proteins and marked cells, we find that loss of Rac1 or its regulators causes the DTC to fragment as it migrates. Both products of fragmentation-the now-smaller DTC and the membranous patch of cellular material-localize important stem cell niche signaling (LAG-2 ligand) and migration (INA-1/integrin subunit alpha) factors to their membranes, but only one retains the DTC nucleus and therefore the ability to maintain gene expression over time. The enucleate patch can lead a bifurcating branch off the gonad arm that grows through germ cell proliferation. Germ cells in this branch differentiate as the patch loses LAG-2 expression. While the nucleus is surprisingly dispensable for aspects of leader cell function, it is required for stem cell niche activity long term. Prior work found that Rac1-/-;Rac2-/- mouse erythrocytes fragment; in this context, our new findings support the conclusion that maintaining a cohesive but deformable cell is a conserved function of this important cytoskeletal regulator.
Collapse
Affiliation(s)
- Noor Singh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pu Zhang
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen Jian Li
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kacy Lynn Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Singh N, Jian Li K, Lynn Gordon K. Getting there in one piece: The Rac pathway prevents cell fragmentation in a nonprotrusively migrating leader cell during organogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569642. [PMID: 38106045 PMCID: PMC10723291 DOI: 10.1101/2023.12.01.569642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The C. elegans hermaphrodite distal tip cell (DTC) leads gonadogenesis. Loss-of-function mutations in a C. elegans ortholog of the Rac1 GTPase (ced-10) and its GEF complex (ced-5/DOCK180, ced-2/CrkII, ced-12/ELMO) cause gonad migration defects related to directional sensing; we discovered an additional defect class of gonad bifurcation in these mutants. Using genetic approaches, tissue-specific and whole-body RNAi, and in vivo imaging of endogenously tagged proteins and marked cells, we find that loss of Rac1 or its regulators causes the DTC to fragment as it migrates. Both products of fragmentation-the now-smaller DTC and the membranous patch of cellular material-localize important stem cell niche signaling (LAG-2/DSL ligand) and migration (INA-1/integrin subunit alpha) factors to their membranes, but only one retains the DTC nucleus and therefore the ability to maintain gene expression over time. The enucleate patch can lead a bifurcating branch off the gonad arm that grows through germ cell proliferation. Germ cells in this branch differentiate as the patch loses LAG-2 expression. While the nucleus is surprisingly dispensable for aspects of leader cell function, it is required for stem cell niche activity long-term. Prior work found that Rac1-/-;Rac2-/- mouse erythrocytes fragment; in this context, our new findings support the conclusion that maintaining a cohesive but deformable cell is a conserved function of this important cytoskeletal regulator.
Collapse
Affiliation(s)
- Noor Singh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Karen Jian Li
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kacy Lynn Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
7
|
Godini R, Fallahi H, Pocock R. The regulatory landscape of neurite development in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:974208. [PMID: 36090252 PMCID: PMC9453034 DOI: 10.3389/fnmol.2022.974208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronal communication requires precise connectivity of neurite projections (axons and dendrites). Developing neurites express cell-surface receptors that interpret extracellular cues to enable correct guidance toward, and connection with, target cells. Spatiotemporal regulation of neurite guidance molecule expression by transcription factors (TFs) is critical for nervous system development and function. Here, we review how neurite development is regulated by TFs in the Caenorhabditis elegans nervous system. By collecting publicly available transcriptome and ChIP-sequencing data, we reveal gene expression dynamics during neurite development, providing insight into transcriptional mechanisms governing construction of the nervous system architecture.
Collapse
Affiliation(s)
- Rasoul Godini
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Rasoul Godini,
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Roger Pocock
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Roger Pocock,
| |
Collapse
|
8
|
Stoupa A, Kariyawasam D, Polak M, Carré A. Genetics of congenital hypothyroidism: Modern concepts. Pediatr Investig 2022; 6:123-134. [PMID: 35774517 PMCID: PMC9218988 DOI: 10.1002/ped4.12324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder and one of the most common preventable causes of intellectual disability in the world. CH may be due to developmental or functional thyroid defects (primary or peripheral CH) or be hypothalamic-pituitary in origin (central CH). In most cases, primary CH is caused by a developmental malformation of the gland (thyroid dysgenesis, TD) or by a defect in thyroid hormones synthesis (dyshormonogenesis, DH). TD represents about 65% of CH and a genetic cause is currently identified in fewer than 5% of patients. The remaining 35% are cases of DH and are explained with certainty at the molecular level in more than 50% of cases. The etiology of CH is mostly unknown and may include contributions from individual and environmental factors. In recent years, the detailed phenotypic description of patients, high-throughput sequencing technologies, and the use of animal models have made it possible to discover new genes involved in the development or function of the thyroid gland. This paper reviews all the genetic causes of CH. The modes by which CH is transmitted will also be discussed, including a new oligogenic model. CH is no longer simply a dominant disease for cases of CH due to TD and recessive for cases of CH due to DH, but a far more complex disorder.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
| | - Dulanjalee Kariyawasam
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
| | - Michel Polak
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
- Université de Paris CitéParisFrance
| | - Aurore Carré
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
| |
Collapse
|
9
|
Stoupa A, Kariyawasam D, Polak M, Carré A. [Genetic of congenital hypothyroidism]. Med Sci (Paris) 2022; 38:263-273. [PMID: 35333163 DOI: 10.1051/medsci/2022028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Congenital hypothyroidism (CH) is the most frequent neonatal endocrine disorder. CH is due to thyroid development or thyroid function defects (primary) or may be of hypothalamic-pituitary origin (central). Primary CH is caused essentially by abnormal thyroid gland morphogenesis (thyroid dysgenesis, TD) or defective thyroid hormone synthesis (dyshormonogenesis, DH). DH accounts for about 35% of CH and a genetic cause is identified in 50% of patients. However, TD accounts for about 65% of CH, and a genetic cause is identified in less than 5% of patients. The pathogenesis of CH is largely unknown and may include the contribution of individual and environmental factors. During the last years, detailed phenotypic description of patients, next-generation sequence technologies and use of animal models allowed the discovery of novel candidate genes in thyroid development and function. We provide an overview of recent genetic causes of primary and central CH. In addition, mode of inheritance and the oligogenic model of CH are discussed.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France
| | - Dulanjalee Kariyawasam
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France
| | - Michel Polak
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France - Université de Paris, Paris, France
| | - Aurore Carré
- Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France
| |
Collapse
|
10
|
Li H, Li QQ, Hong Y. Global gene expression signatures in response to citrate-coated silver nanoparticles exposure. Toxicology 2021; 461:152898. [PMID: 34403730 DOI: 10.1016/j.tox.2021.152898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in medical and commercial products for their unique antibacterial functions. However, the impact of AgNPs on human neural development is not well understood. To investigate the effect of AgNPs on human neural development, various doses of 20 nm citrate-coated AgNP (AgSC) were administered to human embryonic stem cell derived neural progenitors during the neuronal differentiation. Immunofluorescence staining with neuronal progenitor markers SOX2 (sex determining region Y-box 2) and Nestin (VI intermediate filament protein) showed that AgSC inhibited rosette formation, neuronal progenitor proliferation, and neurite outgrowth. Furthermore, AgSC promoted astrocyte activation and neuronal apoptosis. These adverse effects can be partially recovered with ascorbic acid. A genome-wide transcriptome analysis of both AgSC treated and untreated samples indicated that the most up-graduated genes were a group of Metallothionein (1F, 1E, 2A) proteins, a metal-binding protein that plays an essential role in metal homeostasis, heavy metal detoxification, and cellular anti-oxidative defence. The most significantly down-regulated genes were neuronal differentiation 6 (NEUROD6) and fork head box G1 (FOXG1). GO analyse indicated that the regulation of cholesterol biosynthetic process, neuron differentiation, synapse organization and pattern specification, oliogenesis, and neuronal apoptosis were the most impacted biological processes. KEGG pathway analyse showed that the most significantly impacted pathways were C5 isoprenoid, axon guidance, Notch, WNT, RAS-MAPK signalling pathways, lysosome, and apoptosis. Our data suggests that AgSCs interfered with metal homeostasis and cholesterol biosynthesis which induced oxidative stress, inhibited neurogenesis, axon guidance, and promoted apoptosis. Supplementation with ascorbic acid could act as an antioxidant to prevent AgSC-mediated neurotoxicity.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766-1854, USA
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
| | - Yiling Hong
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
11
|
Axonal Growth of Midbrain Dopamine Neurons is Modulated by the Cell Adhesion Molecule ALCAM Through Trans-Heterophilic Interactions with L1cam, Chl1, and Semaphorins. J Neurosci 2019; 39:6656-6667. [PMID: 31300520 DOI: 10.1523/jneurosci.0278-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/21/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
The growth of axons corresponding to different neuronal subtypes is governed by unique expression profiles of molecules on the growth cone. These molecules respond to extracellular cues either locally though cell adhesion interactions or over long distances through diffusible gradients. Here, we report that that the cell adhesion molecule ALCAM (CD166) can act as an extracellular substrate to selectively promote the growth of murine midbrain dopamine (mDA) neuron axons through a trans-heterophilic interaction with mDA-bound adhesion molecules. In mixed-sex primary midbrain cultures, the growth-promoting effect of ALCAM was abolished by neutralizing antibodies for components of the Semaphorin receptor complex Nrp1, Chl1, or L1cam. The ALCAM substrate was also found to modulate the response of mDA neurites to soluble semaphorins in a context-specific manner by abolishing the growth-promoting effect of Sema3A but inducing a branching response in the presence of Sema3C. These findings identify a previously unrecognized guidance mechanism whereby cell adhesion molecules act in trans to modulate the response of axonal growth cones to soluble gradients to selectively orchestrate the growth and guidance of mDA neurons.SIGNIFICANCE STATEMENT The mechanisms governing the axonal connectivity of midbrain dopamine (mDA) neurons during neural development have remained rather poorly understood relative to other model systems for axonal growth and guidance. Here, we report a series of novel interactions between proteins previously not identified in the context of mDA neuronal growth. Significantly, the results suggest a previously unrecognized mechanism involving the convergence in signaling between local, adhesion and long-distance, soluble cues. A better understanding of the molecules and mechanisms involved in establishment of the mDA system is important as a part of ongoing efforts to understand the consequence of conditions that may result from aberrant connectivity and also for cell replacement strategies for Parkinson's disease.
Collapse
|
12
|
Regulation of Caenorhabditis elegans neuronal polarity by heterochronic genes. Proc Natl Acad Sci U S A 2019; 116:12327-12336. [PMID: 31164416 DOI: 10.1073/pnas.1820928116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many neurons display characteristic patterns of synaptic connections that are under genetic control. The Caenorhabditis elegans DA cholinergic motor neurons form synaptic connections only on their dorsal axons. We explored the genetic pathways that specify this polarity by screening for gene inactivations and mutations that disrupt this normal polarity of a DA motorneuron. A RAB-3::GFP fusion protein that is normally localized to presynaptic terminals along the dorsal axon of the DA9 motorneuron was used to screen for gene inactivations that disrupt the DA9 motorneuron polarity. This screen identified heterochronic genes as major regulators of DA neuron presynaptic polarity. In many heterochronic mutants, presynapses of this cholinergic motoneuron are mislocalized to the dendrite at the ventral side: inactivation of the blmp-1 transcription factor gene, the lin-29/Zn finger transcription factor, lin-28/RNA binding protein, and the let-7miRNA gene all disrupt the presynaptic polarity of this DA cholinergic neuron. We also show that the dre-1/F box heterochronic gene functions early in development to control maintenance of polarity at later stages, and that a mutation in the let-7 heterochronic miRNA gene causes dendritic misplacement of RAB-3 presynaptic markers that colocalize with muscle postsynaptic terminals ectopically. We propose that heterochronic genes are components in the UNC-6/Netrin pathway of synaptic polarity of these neurons. These findings highlight the role of heterochronic genes in postmitotic neuronal patterning events.
Collapse
|
13
|
Gujar MR, Sundararajan L, Stricker A, Lundquist EA. Control of Growth Cone Polarity, Microtubule Accumulation, and Protrusion by UNC-6/Netrin and Its Receptors in Caenorhabditis elegans. Genetics 2018; 210:235-255. [PMID: 30045855 PMCID: PMC6116952 DOI: 10.1534/genetics.118.301234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/23/2018] [Indexed: 11/18/2022] Open
Abstract
UNC-6/Netrin has a conserved role in dorsal-ventral axon guidance, but the cellular events in the growth cone regulated by UNC-6/Netrin signaling during outgrowth are incompletely understood. Previous studies showed that, in growth cones migrating away from UNC-6/Netrin, the receptor UNC-5 regulates growth cone polarity, as observed by polarized F-actin, and limits the extent of growth cone protrusion. It is unclear how UNC-5 inhibits protrusion, and how UNC-40 acts in concert with UNC-5 to regulate polarity and protrusion. New results reported here indicate that UNC-5 normally restricts microtubule (MT) + end accumulation in the growth cone. Tubulin mutant analysis and colchicine treatment suggest that stable MTs are necessary for robust growth cone protrusion. Thus, UNC-5 might inhibit protrusion in part by restricting growth cone MT accumulation. Previous studies showed that the UNC-73/Trio Rac GEF and UNC-33/CRMP act downstream of UNC-5 in protrusion. Here, we show that UNC-33/CRMP regulates both growth cone dorsal asymmetric F-actin accumulation and MT accumulation, whereas UNC-73/Trio Rac GEF activity only affects F-actin accumulation. This suggests an MT-independent mechanism used by UNC-5 to inhibit protrusion, possibly by regulating lamellipodial and filopodial actin. Furthermore, we show that UNC-6/Netrin and the receptor UNC-40/DCC are required for excess protrusion in unc-5 mutants, but not for loss of F-actin asymmetry or MT + end accumulation, indicating that UNC-6/Netrin and UNC-40/DCC are required for protrusion downstream of, or in parallel to, F-actin asymmetry and MT + end entry. F-actin accumulation might represent a polarity mark in the growth cone where protrusion will occur, and not protrusive lamellipodial and filopodial actin per se Our data suggest a model in which UNC-6/Netrin first polarizes the growth cone via UNC-5, and then regulates protrusion based upon this polarity (the polarity/protrusion model). UNC-6/Netrin inhibits protrusion ventrally via UNC-5, and stimulates protrusion dorsally via UNC-40, resulting in dorsally-directed migration. The polarity/protrusion model represents a novel conceptual paradigm in which to understand axon guidance and growth cone migration away from UNC-6/Netrin.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| | - Lakshmi Sundararajan
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| | - Aubrie Stricker
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| | - Erik A Lundquist
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| |
Collapse
|
14
|
Limerick G, Tang X, Lee WS, Mohamed A, Al-Aamiri A, Wadsworth WG. A Statistically-Oriented Asymmetric Localization (SOAL) Model for Neuronal Outgrowth Patterning by Caenorhabditis elegans UNC-5 (UNC5) and UNC-40 (DCC) Netrin Receptors. Genetics 2018; 208:245-272. [PMID: 29092889 PMCID: PMC5753861 DOI: 10.1534/genetics.117.300460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/29/2017] [Indexed: 01/01/2023] Open
Abstract
Neurons extend processes that vary in number, length, and direction of "outgrowth". Extracellular cues help determine outgrowth patterns. In Caenorhabditis elegans, neurons respond to the extracellular UNC-6 (netrin) cue via UNC-40 (DCC) and UNC-5 (UNC5) receptors. Previously, we presented evidence that UNC-40 asymmetric localization at the plasma membrane is self-organizing, and that UNC-40 can localize and mediate outgrowth at randomly selected sites. Here, we provide further evidence for a statistically-oriented asymmetric localization (SOAL) model in which UNC-5 receptor activity affects patterns of axon outgrowth by regulating UNC-40 asymmetric localization. According to the SOAL model, the direction of outgrowth activity fluctuates across the membrane over time. Random walk modeling predicts that increasing the degree to which the direction of outgrowth fluctuates will decrease the outward displacement of the membrane. By differentially affecting the degree to which the direction of outgrowth activity fluctuates over time, extracellular cues can produce different rates of outgrowth along the surface and create patterns of "extension". Consistent with the SOAL model, we show that unc-5 mutations alter UNC-40 asymmetric localization, increase the degree to which the direction of outgrowth fluctuates, and reduce the extent of outgrowth in multiple directions relative to the source of UNC-6 These results are inconsistent with current models, which predict that UNC-5 mediates a "repulsive" response to UNC-6 Genetic interactions suggest that UNC-5 acts through the UNC-53 (NAV2) cytoplasmic protein to regulate UNC-40 asymmetric localization in response to both the UNC-6 and EGL-20 (Wnt) extracellular cues.
Collapse
Affiliation(s)
- Gerard Limerick
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Xia Tang
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Won Suk Lee
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ahmed Mohamed
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Aseel Al-Aamiri
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - William G Wadsworth
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
15
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
16
|
Regulation of Axon Guidance by the Wnt Receptor Ror/CAM-1 in the PVT Guidepost Cell in Caenorhabditis elegans. Genetics 2017; 207:1533-1545. [PMID: 28993416 DOI: 10.1534/genetics.117.300375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/27/2017] [Indexed: 01/24/2023] Open
Abstract
The Caenorhabditis elegans ventral nerve cord (VNC) consists of two asymmetric bundles of neurons and axons that are separated by the midline. How the axons are guided to stay on the correct sides of the midline remains poorly understood. Here we provide evidence that the conserved Wnt signaling pathway along with the Netrin and Robo pathways constitute a combinatorial code for midline guidance of PVP and PVQ axons that extend into the VNC. Combined loss of the Wnts CWN-1, CWN-2, and EGL-20 or loss of the Wnt receptor CAM-1 caused >70% of PVP and PVQ axons to inappropriately cross over from the left side to the right side. Loss of the Frizzled receptor LIN-17 or the planar cell polarity (PCP) protein VANG-1 also caused cross over defects that did not enhance those in the cam-1 mutant, indicating that the proteins function together in midline guidance. Strong cam-1 expression can be detected in the PVQs and the guidepost cell PVT that is located on the midline. However, only when cam-1 is expressed in PVT are the crossover defects of PVP and PVQ rescued, showing that CAM-1 functions nonautonomously in PVT to prevent axons from crossing the midline.
Collapse
|
17
|
Florica RO, Hipolito V, Bautista S, Anvari H, Rapp C, El-Rass S, Asgharian A, Antonescu CN, Killeen MT. The ENU-3 protein family members function in the Wnt pathway parallel to UNC-6/Netrin to promote motor neuron axon outgrowth in C. elegans. Dev Biol 2017; 430:249-261. [PMID: 28694018 DOI: 10.1016/j.ydbio.2017.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
The axons of the DA and DB classes of motor neurons fail to reach the dorsal cord in the absence of the guidance cue UNC-6/Netrin or its receptor UNC-5 in C. elegans. However, the axonal processes usually exit their cell bodies in the ventral cord in the absence of both molecules. Strains lacking functional versions of UNC-6 or UNC-5 have a low level of DA and DB motor neuron axon outgrowth defects. We found that mutations in the genes for all six of the ENU-3 proteins function to enhance the outgrowth defects of the DA and DB axons in strains lacking either UNC-6 or UNC-5. A mutation in the gene for the MIG-14/Wntless protein also enhances defects in a strain lacking either UNC-5 or UNC-6, suggesting that the ENU-3 and Wnt pathways function parallel to the Netrin pathway in directing motor neuron axon outgrowth. Our evidence suggests that the ENU-3 proteins are novel members of the Wnt pathway in nematodes. Five of the six members of the ENU-3 family are predicted to be single-pass trans-membrane proteins. The expression pattern of ENU-3.1 was consistent with plasma membrane localization. One family member, ENU-3.6, lacks the predicted signal peptide and the membrane-spanning domain. In HeLa cells ENU-3.6 had a cytoplasmic localization and caused actin dependent processes to appear. We conclude that the ENU-3 family proteins function in a pathway parallel to the UNC-6/Netrin pathway for motor neuron axon outgrowth, most likely in the Wnt pathway.
Collapse
Affiliation(s)
- Roxana Oriana Florica
- Graduate Program in Molecular Science Program, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3; Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Victoria Hipolito
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Stephen Bautista
- Graduate Program in Molecular Science Program, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3; Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Homa Anvari
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Chloe Rapp
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Suzan El-Rass
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Alimohammad Asgharian
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Costin N Antonescu
- Graduate Program in Molecular Science Program, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3; Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Marie T Killeen
- Graduate Program in Molecular Science Program, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3; Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3.
| |
Collapse
|
18
|
The directed migration of gonadal distal tip cells in Caenorhabditis elegans requires NGAT-1, a ß1,4-N-acetylgalactosaminyltransferase enzyme. PLoS One 2017; 12:e0183049. [PMID: 28817611 PMCID: PMC5560668 DOI: 10.1371/journal.pone.0183049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/30/2017] [Indexed: 01/01/2023] Open
Abstract
Glycoproteins such as growth factor receptors and extracellular matrix have well-known functions in development and cancer progression, however, the glycans at sites of modification are often heterogeneous molecular populations which makes their functional characterization challenging. Here we provide evidence for a specific, discrete, well-defined glycan modification and regulation of a stage-specific cell migration in Caenorhabditis elegans. We show that a chain-terminating, putative null mutation in the gene encoding a predicted β1,4-N-acetylgalactosaminyltransferase, named ngat-1, causes a maternally rescued temperature sensitive (ts) defect in the second phase of the three phase migration pattern of the posterior, but not the anterior, hermaphrodite Distal Tip Cell (DTC). An amino-terminal partial deletion of ngat-1 causes a similar but lower penetrance ts phenotype. The existence of multiple ts alleles with distinctly different molecular DNA lesions, neither of which is likely to encode a ts protein, indicates that NGAT-1 normally prevents innate temperature sensitivity for phase 2 DTC pathfinding. Temperature shift analyses indicate that the ts period for the ngat-1 mutant defect ends by the beginning of post-embryonic development-nearly 3 full larval stages prior to the defective phase 2 migration affected by ngat-1 mutations. NGAT-1 homologs generate glycan-terminal GalNAc-β1-4GlcNAc, referred to as LacdiNAc modifications, on glycoproteins and glycolipids. We also found that the absence of the GnT1/Mgat1 activity [UDP-N-acetyl-D-glucosamine:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase 1 (encoded by C. elegans gly-12, gly-13, and gly-14 and homologous to vertebrate GnT1/Mgat1)], causes a similar spectrum of DTC phenotypes as ngat-1 mutations-primarily affecting posterior DTC phase 2 migration and preventing manifestation of the same innate ts period as ngat-1. GnT1/Mgat1 is a medial Golgi enzyme known to modify mannose residues and initiate N-glycan branching, an essential step in the biosynthesis of hybrid, paucimannose and complex-type N-glycans. Quadruple mutant animals bearing putative null mutations in ngat-1 and the three GnT genes (gly-12, gly-13, gly-14) were not enhanced for DTC migration defects, suggesting NGAT-1 and GnT1 act in the same pathway. These findings suggest that GnTI generates an N-glycan substrate for NGAT-1 modification, which is required at restrictive temperature (25°C) to prevent, stabilize, reverse or compensate a perinatal thermo-labile process (or structure) causing late larval stage DTC phase 2 migration errors.
Collapse
|
19
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
20
|
Morales D, Kania A. Cooperation and crosstalk in axon guidance cue integration: Additivity, synergy, and fine-tuning in combinatorial signaling. Dev Neurobiol 2016; 77:891-904. [PMID: 27739221 DOI: 10.1002/dneu.22463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/17/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Abstract
Neural circuit development involves the coordinated growth and guidance of axons to their targets. Following the identification of many guidance cue molecules, recent experiments have focused on the interactions of their signaling cascades, which can be generally classified as additive or non-additive depending on the signal convergence point. While additive (parallel) signaling suggests limited molecular interaction between the pathways, non-additive signaling involves crosstalk between pathways and includes more complex synergistic, hierarchical, and permissive guidance cue relationships. Here the authors have attempted to classify recent studies that describe axon guidance signal integration according to these divisions. They also discuss the mechanistic implications of such interactions, as well as general ideas relating signal integration to the generation of diversity of axon guidance responses. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 891-904, 2017.
Collapse
Affiliation(s)
- Daniel Morales
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Quebec, H3A 2B4, Canada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Quebec, H3A 2B4, Canada.,Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montréal, Quebec, H3A 2B2, Canada.,Department of Biology, Division of Experimental Medicine, McGill University, Montréal, Quebec, H3A 2B2, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada
| |
Collapse
|
21
|
Pioneer Axon Navigation Is Controlled by AEX-3, a Guanine Nucleotide Exchange Factor for RAB-3 in Caenorhabditis elegans. Genetics 2016; 203:1235-47. [PMID: 27116976 DOI: 10.1534/genetics.115.186064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/15/2016] [Indexed: 01/27/2023] Open
Abstract
Precise and accurate axon tract formation is an essential aspect of brain development. This is achieved by the migration of early outgrowing axons (pioneers) allowing later outgrowing axons (followers) to extend toward their targets in the embryo. In Caenorhabditis elegans the AVG neuron pioneers the right axon tract of the ventral nerve cord, the major longitudinal axon tract. AVG is essential for the guidance of follower axons and hence organization of the ventral nerve cord. In an enhancer screen for AVG axon guidance defects in a nid-1/Nidogen mutant background, we isolated an allele of aex-3 aex-3 mutant animals show highly penetrant AVG axon navigation defects. These defects are dependent on a mutation in nid-1/Nidogen, a basement membrane component. Our data suggest that AEX-3 activates RAB-3 in the context of AVG axon navigation. aex-3 genetically acts together with known players of vesicular exocytosis: unc-64/Syntaxin, unc-31/CAPS, and ida-1/IA-2. Furthermore our genetic interaction data suggest that AEX-3 and the UNC-6/Netrin receptor UNC-5 act in the same pathway, suggesting AEX-3 might regulate the trafficking and/or insertion of UNC-5 at the growth cone to mediate the proper guidance of the AVG axon.
Collapse
|
22
|
Levy-Strumpf N. Orchestrating A/P and D/V guidance - A Wnt/Netrin tale. WORM 2016; 5:e1146857. [PMID: 27073738 PMCID: PMC4805361 DOI: 10.1080/21624054.2016.1146857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
While ample information was gathered in identifying guidance cues and their downstream mediators, very little is known about how the information from multiple extracellular cues is intracellularly to generate normal patterning. Netrin and Wnt signaling pathways play key roles in normal development as well as in malignancies. In C. elegans, as in vertebrates, dorso-ventral (D/V) graded distributions of UNC-6/Netrin and antero-posterior (A/P) graded distributions of Wnts provide instructive polarity information to guide cells and axons along their respective gradients. In this commentary, I will discuss recent findings demonstrating that these 2 signaling pathways also function redundantly to regulate polarity orthogonal to the axis of their gradation. Thus, Wnt signaling components contribute to D/V polarity, while Netrin signaling components contribute to A/P polarity and their joint action collaboratively governs migratory transitions from one axis to the other. These findings pave the way to unraveling broader roles of Wnt and Netrin signaling pathways, roles that are masked due to their redundant nature, and provide a conceptually novel view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated to establish polarity in multiple biological processes.
Collapse
Affiliation(s)
- Naomi Levy-Strumpf
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, Ontario, Canada
| |
Collapse
|
23
|
Levy-Strumpf N, Krizus M, Zheng H, Brown L, Culotti JG. The Wnt Frizzled Receptor MOM-5 Regulates the UNC-5 Netrin Receptor through Small GTPase-Dependent Signaling to Determine the Polarity of Migrating Cells. PLoS Genet 2015; 11:e1005446. [PMID: 26292279 PMCID: PMC4546399 DOI: 10.1371/journal.pgen.1005446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 07/15/2015] [Indexed: 01/28/2023] Open
Abstract
Wnt and Netrin signaling regulate diverse essential functions. Using a genetic approach combined with temporal gene expression analysis, we found a regulatory link between the Wnt receptor MOM-5/Frizzled and the UNC-6/Netrin receptor UNC-5. These two receptors play key roles in guiding cell and axon migrations, including the migration of the C. elegans Distal Tip Cells (DTCs). DTCs migrate post-embryonically in three sequential phases: in the first phase along the Antero-Posterior (A/P) axis, in the second, along the Dorso-Ventral (D/V) axis, and in the third, along the A/P axis. Loss of MOM-5/Frizzled function causes third phase A/P polarity reversals of the migrating DTCs. We show that an over-expression of UNC-5 causes similar DTC A/P polarity reversals and that unc-5 deficits markedly suppress the A/P polarity reversals caused by mutations in mom-5/frizzled. This implicates MOM-5/Frizzled as a negative regulator of unc-5. We provide further evidence that small GTPases mediate MOM-5's regulation of unc-5 such that one outcome of impaired function of small GTPases like CED-10/Rac and MIG-2/RhoG is an increase in unc-5 function. The work presented here demonstrates the existence of cross talk between components of the Netrin and Wnt signaling pathways and provides further insights into the way guidance signaling mechanisms are integrated to orchestrate directed cell migration.
Collapse
Affiliation(s)
- Naomi Levy-Strumpf
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- * E-mail:
| | - Meghan Krizus
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Hong Zheng
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Louise Brown
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Joseph G. Culotti
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Funk RHW. Endogenous electric fields as guiding cue for cell migration. Front Physiol 2015; 6:143. [PMID: 26029113 PMCID: PMC4429568 DOI: 10.3389/fphys.2015.00143] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
This review covers two topics: (1) "membrane potential of low magnitude and related electric fields (bioelectricity)" and (2) "cell migration under the guiding cue of electric fields (EF)."Membrane potentials for this "bioelectricity" arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the "electric" interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions.
Collapse
|
25
|
Opitz R, Hitz MP, Vandernoot I, Trubiroha A, Abu-Khudir R, Samuels M, Désilets V, Costagliola S, Andelfinger G, Deladoëy J. Functional zebrafish studies based on human genotyping point to netrin-1 as a link between aberrant cardiovascular development and thyroid dysgenesis. Endocrinology 2015; 156:377-88. [PMID: 25353184 PMCID: PMC4272402 DOI: 10.1210/en.2014-1628] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Congenital hypothyroidism caused by thyroid dysgenesis (CHTD) is a common congenital disorder with a birth prevalence of 1 case in 4000 live births, and up to 8% of individuals with CHTD have co-occurring congenital heart disease. Initially we found nine patients with cardiac and thyroid congenital disorders in our cohort of 158 CHTD patients. To enrich for a rare phenotype likely to be genetically simpler, we selected three patients with a ventricular septal defect for molecular studies. Then, to assess whether rare de novo copy number variants and coding mutations in candidate genes are a source of genetic susceptibility, we used a genome-wide single-nucleotide polymorphism array and Sanger sequencing to analyze blood DNA samples from selected patients with co-occurring CHTD a congenital heart disease. We found rare variants in all three patients, and we selected Netrin-1 as the biologically most plausible contributory factor for functional studies. In zebrafish, ntn1a and ntn1b were not expressed in thyroid tissue, but ntn1a was expressed in pharyngeal arch mesenchyme, and ntn1a-deficient embryos displayed defective aortic arch artery formation and abnormal thyroid morphogenesis. The functional activity of the thyroid in ntn1a-deficient larvae was, however, preserved. Phenotypic analysis of affected zebrafish indicates that abnormal thyroid morphogenesis resulted from a lack of proper guidance exerted by the dysplastic vasculature of ntn1a-deficient embryos. Hence, careful phenotyping of patients combined with molecular and functional studies in zebrafish identify Netrin-1 as a potential shared genetic factor for cardiac and thyroid congenital defects.
Collapse
|