1
|
de la Cruz-Ruiz P, Rodríguez-Palero MJ, Askjaer P, Artal-Sanz M. Tissue-specific chromatin-binding patterns of Caenorhabditis elegans heterochromatin proteins HPL-1 and HPL-2 reveal differential roles in the regulation of gene expression. Genetics 2023; 224:iyad081. [PMID: 37119802 PMCID: PMC10324947 DOI: 10.1093/genetics/iyad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
Heterochromatin is characterized by an enrichment of repetitive elements and low gene density and is often maintained in a repressed state across cell division and differentiation. The silencing is mainly regulated by repressive histone marks such as H3K9 and H3K27 methylated forms and the heterochromatin protein 1 (HP1) family. Here, we analyzed in a tissue-specific manner the binding profile of the two HP1 homologs in Caenorhabditis elegans, HPL-1 and HPL-2, at the L4 developmental stage. We identified the genome-wide binding profile of intestinal and hypodermal HPL-2 and intestinal HPL-1 and compared them with heterochromatin marks and other features. HPL-2 associated preferentially to the distal arms of autosomes and correlated positively with the methylated forms of H3K9 and H3K27. HPL-1 was also enriched in regions containing H3K9me3 and H3K27me3 but exhibited a more even distribution between autosome arms and centers. HPL-2 showed a differential tissue-specific enrichment for repetitive elements conversely with HPL-1, which exhibited a poor association. Finally, we found a significant intersection of genomic regions bound by the BLMP-1/PRDM1 transcription factor and intestinal HPL-1, suggesting a corepressive role during cell differentiation. Our study uncovers both shared and singular properties of conserved HP1 proteins, providing information about genomic binding preferences in relation to their role as heterochromatic markers.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ruiz
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville 41013, Spain
| | - María Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville 41013, Spain
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville 41013, Spain
| |
Collapse
|
2
|
Crook M, Carvajal T, Davis P, Ferdush J, Page RB, Tennyson E. Modelling the Caenorhabditis elegans gonad over developmental time using the Distal Tip Cell marker lag-2p::gfp. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000629. [PMID: 36060032 PMCID: PMC9434325 DOI: 10.17912/micropub.biology.000629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/11/2022]
Abstract
Development is a process that occurs over time, but defects are often scored at the end point of the process being studied. We are interested in understanding the molecular basis of gonad development in Caenorhabditis elegans and have used the Distal Tip Cell marker lag-2p::gfp to develop a larval size model of gonad growth. We found that gonad length demonstrates two distinct phases relative to larval length, with a breakpoint in mid-L3 stage. We hope that this model will help determine at what point in gonad development our genes of interest act.
Collapse
Affiliation(s)
- Matt Crook
- Texas A&M University-San Antonio
,
Correspondence to: Matt Crook (
)
| | | | | | | | | | | |
Collapse
|
3
|
Wu YZ, Jiang HS, Han HF, Li PH, Lu MR, Tsai IJ, Wu YC. C. elegans BLMP-1 controls apical epidermal cell morphology by repressing expression of mannosyltransferase bus-8 and molting signal mlt-8. Dev Biol 2022; 486:96-108. [DOI: 10.1016/j.ydbio.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
|
4
|
Nadeau S, Martins GA. Conserved and Unique Functions of Blimp1 in Immune Cells. Front Immunol 2022; 12:805260. [PMID: 35154079 PMCID: PMC8829541 DOI: 10.3389/fimmu.2021.805260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
B-lymphocyte-induced maturation protein-1 (Blimp1), is an evolutionarily conserved transcriptional regulator originally described as a repressor of gene transcription. Blimp1 crucially regulates embryonic development and terminal differentiation in numerous cell lineages, including immune cells. Initial investigations of Blimp1’s role in immunity established its non-redundant role in lymphocytic terminal effector differentiation and function. In B cells, Blimp1 drives plasmablast formation and antibody secretion, whereas in T cells, Blimp1 regulates functional differentiation, including cytokine gene expression. These studies established Blimp1 as an essential transcriptional regulator that promotes efficient and controlled adaptive immunity. Recent studies have also demonstrated important roles for Blimp1 in innate immune cells, specifically myeloid cells, and Blimp1 has been established as an intrinsic regulator of dendritic cell maturation and T cell priming. Emerging studies have determined both conserved and unique functions of Blimp1 in different immune cell subsets, including the unique direct activation of the igh gene transcription in B cells and a conserved antagonism with BCL6 in B cells, T cells, and myeloid cells. Moreover, polymorphisms associated with the gene encoding Blimp1 (PRDM1) have been linked to numerous chronic inflammatory conditions in humans. Blimp1 has been shown to regulate target gene expression by either competing with other transcription factors for binding to the target loci, and/or by recruiting various chromatin-modifying co-factors that promote suppressive chromatin structure, such as histone de-acetylases and methyl-transferases. Further, Blimp1 function has been shown to be essentially dose and context-dependent, which adds to Blimp1’s versatility as a regulator of gene expression. Here, we review Blimp1’s complex roles in immunity and highlight specific gaps in the understanding of the biology of this transcriptional regulator, with a major focus on aspects that could foster the description and understanding of novel pathways regulated by Blimp1 in the immune system.
Collapse
Affiliation(s)
- Samantha Nadeau
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States
| | - Gislâine A Martins
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Medicine, Gastroenterology Division, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States
| |
Collapse
|
5
|
Huang N, Seow WQ, Appert A, Dong Y, Stempor P, Ahringer J. Accessible Region Conformation Capture (ARC-C) gives high-resolution insights into genome architecture and regulation. Genome Res 2022; 32:357-366. [PMID: 34933938 PMCID: PMC8805715 DOI: 10.1101/gr.275669.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022]
Abstract
Nuclear organization and chromatin interactions are important for genome function, yet determining chromatin connections at high resolution remains a major challenge. To address this, we developed Accessible Region Conformation Capture (ARC-C), which profiles interactions between regulatory elements genome-wide without a capture step. Applied to Caenorhabditis elegans, ARC-C identifies approximately 15,000 significant interactions between regulatory elements at 500-bp resolution. Of 105 TFs or chromatin regulators tested, we find that the binding sites of 60 are enriched for interacting with each other, making them candidates for mediating interactions. These include cohesin and condensin II. Applying ARC-C to a mutant of transcription factor BLMP-1 detected changes in interactions between its targets. ARC-C simultaneously profiles domain-level architecture, and we observe that C. elegans chromatin domains defined by either active or repressive modifications form topologically associating domains (TADs) that interact with A/B (active/inactive) compartment-like structure. Furthermore, we discover that inactive compartment interactions are dependent on H3K9 methylation. ARC-C is a powerful new tool to interrogate genome architecture and regulatory interactions at high resolution.
Collapse
Affiliation(s)
- Ni Huang
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Wei Qiang Seow
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Alex Appert
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Yan Dong
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Przemyslaw Stempor
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
6
|
Jiang HS, Ghose P, Han HF, Wu YZ, Tsai YY, Lin HC, Tseng WC, Wu JC, Shaham S, Wu YC. BLMP-1 promotes developmental cell death in C. elegans by timely repression of ced-9 transcription. Development 2021; 148:dev193995. [PMID: 34541605 PMCID: PMC8572009 DOI: 10.1242/dev.193995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
Programmed cell death (PCD) is a common cell fate in metazoan development. PCD effectors are extensively studied, but how they are temporally regulated is less understood. Here, we report a mechanism controlling tail-spike cell death onset during Caenorhabditis elegans development. We show that the zinc-finger transcription factor BLMP-1, which controls larval development timing, also regulates embryonic tail-spike cell death initiation. BLMP-1 functions upstream of CED-9 and in parallel to DRE-1, another CED-9 and tail-spike cell death regulator. BLMP-1 expression is detected in the tail-spike cell shortly after the cell is born, and blmp-1 mutations promote ced-9-dependent tail-spike cell survival. BLMP-1 binds ced-9 gene regulatory sequences, and inhibits ced-9 transcription just before cell-death onset. BLMP-1 and DRE-1 function together to regulate developmental timing, and their mammalian homologs regulate B-lymphocyte fate. Our results, therefore, identify roles for developmental timing genes in cell-death initiation, and suggest conservation of these functions.
Collapse
Affiliation(s)
- Hang-Shiang Jiang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Piya Ghose
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
- Department of Biology, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Hsiao-Fen Han
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Yun-Zhe Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Ya-Yin Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Huang-Chin Lin
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Wei-Chin Tseng
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Jui-Ching Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100229, Taiwan
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
- Department of Life Science, Center for Systems Biology, and Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106216, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106216, Taiwan
| |
Collapse
|
7
|
A 4D single-cell protein atlas of transcription factors delineates spatiotemporal patterning during embryogenesis. Nat Methods 2021; 18:893-902. [PMID: 34312566 DOI: 10.1038/s41592-021-01216-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Complex biological processes such as embryogenesis require precise coordination of cell differentiation programs across both space and time. Using protein-fusion fluorescent reporters and four-dimensional live imaging, we present a protein expression atlas of transcription factors (TFs) mapped onto developmental cell lineages during Caenorhabditis elegans embryogenesis, at single-cell resolution. This atlas reveals a spatiotemporal combinatorial code of TF expression, and a cascade of lineage-specific, tissue-specific and time-specific TFs that specify developmental states. The atlas uncovers regulators of embryogenesis, including an unexpected role of a skin specifier in neurogenesis and the critical function of an uncharacterized TF in convergent muscle differentiation. At the systems level, the atlas provides an opportunity to model cell state-fate relationships, revealing a lineage-dependent state diversity within functionally related cells and a winding trajectory of developmental state progression. Collectively, this single-cell protein atlas represents a valuable resource for elucidating metazoan embryogenesis at the molecular and systems levels.
Collapse
|
8
|
Haeussler S, Yeroslaviz A, Rolland SG, Luehr S, Lambie EJ, Conradt B. Genome-wide RNAi screen for regulators of UPRmt in Caenorhabditis elegans mutants with defects in mitochondrial fusion. G3-GENES GENOMES GENETICS 2021; 11:6204483. [PMID: 33784383 PMCID: PMC8495942 DOI: 10.1093/g3journal/jkab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Mitochondrial dynamics plays an important role in mitochondrial quality control and the adaptation of metabolic activity in response to environmental changes. The disruption of mitochondrial dynamics has detrimental consequences for mitochondrial and cellular homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To identify genes involved in the induction of UPRmt in response to a block in mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, and one third of the conserved genes have been implicated in human disease. Furthermore, many have roles in developmental processes, which suggests that mitochondrial function and the response to stress are defined during development and maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of UPRmt, indicating that the maintenance of mitochondrial homeostasis has evolved as a critical cellular function, which, when disrupted, can be compensated for by many different cellular processes. Analysis of the subsets 'non-mitochondrial enhancers' and 'mitochondrial suppressors' suggests that organellar contact sites, especially between the ER and mitochondria, are of importance for mitochondrial homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPRmt activation.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Planegg-Martinsried, Germany
| | - Stéphane G Rolland
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Sebastian Luehr
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Eric J Lambie
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, United Kingdom
| |
Collapse
|
9
|
Fong HT, Hagen T, Inoue T. LDB1 and the SWI/SNF complex participate in both transcriptional activation and repression by Caenorhabditis elegans BLIMP1/PRDM1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194577. [PMID: 32417234 DOI: 10.1016/j.bbagrm.2020.194577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/05/2023]
Abstract
Transcription factors of the BLIMP1/PRDM1 family are important regulators of development. BLIMP1/PRDM1 can both activate and repress gene expression, however, the mechanism of activation is not well understood. Therefore, we looked for factors involved in gene activation by C. elegans BLMP-1, the ortholog of BLIMP1/PRDM1. BLMP-1 activates the expression of bed-3, a gene involved in vulval development. By screening nuclear proteins that function in vulval development, we identified two proteins (LDB-1 and HAM-3) required for BLMP-1 dependent bed-3 expression. LDB-1 is the sole C. elegans member of the LIM Binding Protein (LDB) family, whereas HAM-3 is an accessory subunit of the SWI/SNF complex (ortholog of human SMARCD3/BAF60C). A core SWI/SNF subunit SWSN-1 (ortholog of human SMARCC1/BAF155) is also involved. We found that LDB-1 and HAM-3 bind to BLMP-1, suggesting that BLMP-1 recruits LDB-1 and the SWI/SNF complex to activate bed-3 expression. Interestingly, LDB-1 and HAM-3 are involved in both transcriptional activation and repression. In particular, BLMP-1, LDB-1 and HAM-3 co-regulate a set of hypodermal genes including bed-3 (activated), col-124 (activated) and lin-29 (repressed). On the other hand, LDB-1 and HAM-3 are not required for activation or repression of some genes regulated by BLMP-1 (e.g. T09D3.8, nas-10). We also found that human LDB1, SMARCD3/BAF60C and SMARCC1/BAF155 all physically interact with human BLIMP1/PRDM1 in vitro and are closely associated with BLIMP1/PRDM1 in vivo. Taken together, these results identify LDB1 and SWI/SNF as likely conserved cofactors of BLIMP1/PRDM1, which participate in activation and repression of a subset of BLIMP1/PRDM1-regulated genes.
Collapse
Affiliation(s)
- Hei Tung Fong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| | - Takao Inoue
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
10
|
Abete-Luzi P, Fukushige T, Yun S, Krause MW, Eisenmann DM. New Roles for the Heterochronic Transcription Factor LIN-29 in Cuticle Maintenance and Lipid Metabolism at the Larval-to-Adult Transition in Caenorhabditis elegans. Genetics 2020; 214:669-690. [PMID: 31974205 PMCID: PMC7054012 DOI: 10.1534/genetics.119.302860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/21/2020] [Indexed: 11/18/2022] Open
Abstract
Temporal regulation of gene expression is a crucial aspect of metazoan development. In the roundworm Caenorhabditis elegans, the heterochronic pathway controls multiple developmental events in a time-specific manner. The most downstream effector of this pathway, the zinc-finger transcription factor LIN-29, acts in the last larval stage (L4) to regulate elements of the larval-to-adult switch. Here, we explore new LIN-29 targets and their implications for this developmental transition. We used RNA-sequencing to identify genes differentially expressed between animals misexpressing LIN-29 at an early time point and control animals. Among 230 LIN-29-activated genes, we found that genes encoding cuticle collagens were overrepresented. Interestingly, expression of lin-29 and some of these collagens was increased in adults with cuticle damage, suggesting a previously unknown function for LIN-29 in adult cuticle maintenance. On the other hand, genes involved in fat metabolism were enriched among 350 LIN-29-downregulated targets. We used mass spectrometry to assay lipid content in animals overexpressing LIN-29 and observed reduced fatty acid levels. Many LIN-29-repressed genes are normally expressed in the intestine, suggesting cell-nonautonomous regulation. We identified several LIN-29 upregulated genes encoding signaling molecules that may act as mediators in the regulation of intestinally expressed genes encoding fat metabolic enzymes and vitellogenins. Overall, our results support the model of LIN-29 as a major regulator of adult cuticle synthesis and integrity, and as the trigger for metabolic changes that take place at the important transition from rapid growth during larval life to slower growth and offspring production during adulthood.
Collapse
Affiliation(s)
- Patricia Abete-Luzi
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Tetsunari Fukushige
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Sijung Yun
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael W Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| |
Collapse
|
11
|
Zhao Y, Chen H, Yang Y, Wu Q, Wang D. Graphene oxide disrupts the protein-protein interaction between Neuroligin/NLG-1 and DLG-1 or MAGI-1 in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134492. [PMID: 31627046 DOI: 10.1016/j.scitotenv.2019.134492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) is a carbon-based engineered nanomaterial (ENM). Using Caenorhabditis elegans as an animal model, we investigated the effect of GO exposure on protein-protein interactions. In nematodes, NLG-1/Neuroligin, a postsynaptic protein, acted only in the neurons to regulate the GO toxicity. In the neurons, DLG-1, a PSD-95 protein, and MAGI-1, a S-SCAM protein, were identified as the downstream targets of NLG-1 in the regulation of GO toxicity. PKC-1, a serine/threonine protein kinase C, further acted downstream of neuronal DLG-1 and MAGI-1 to regulate the GO toxicity. Co-immunoprecipitation analysis demonstrated the protein-protein interaction between NLG-1 and DLG-1 or MAGI-1. After GO expression, this protein-protein interaction between NLG-1 and DLG-1 or MAGI-1 was significantly inhibited. Therefore, our data raised the evidence to suggest the potential of GO exposure in disrupting protein-protein interactions in organisms.
Collapse
Affiliation(s)
- Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Department of Preventive Medicine, Bengbu Medical College, Bengbu 233030, China
| | - He Chen
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yunhan Yang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
12
|
Regulation of Caenorhabditis elegans neuronal polarity by heterochronic genes. Proc Natl Acad Sci U S A 2019; 116:12327-12336. [PMID: 31164416 DOI: 10.1073/pnas.1820928116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many neurons display characteristic patterns of synaptic connections that are under genetic control. The Caenorhabditis elegans DA cholinergic motor neurons form synaptic connections only on their dorsal axons. We explored the genetic pathways that specify this polarity by screening for gene inactivations and mutations that disrupt this normal polarity of a DA motorneuron. A RAB-3::GFP fusion protein that is normally localized to presynaptic terminals along the dorsal axon of the DA9 motorneuron was used to screen for gene inactivations that disrupt the DA9 motorneuron polarity. This screen identified heterochronic genes as major regulators of DA neuron presynaptic polarity. In many heterochronic mutants, presynapses of this cholinergic motoneuron are mislocalized to the dendrite at the ventral side: inactivation of the blmp-1 transcription factor gene, the lin-29/Zn finger transcription factor, lin-28/RNA binding protein, and the let-7miRNA gene all disrupt the presynaptic polarity of this DA cholinergic neuron. We also show that the dre-1/F box heterochronic gene functions early in development to control maintenance of polarity at later stages, and that a mutation in the let-7 heterochronic miRNA gene causes dendritic misplacement of RAB-3 presynaptic markers that colocalize with muscle postsynaptic terminals ectopically. We propose that heterochronic genes are components in the UNC-6/Netrin pathway of synaptic polarity of these neurons. These findings highlight the role of heterochronic genes in postmitotic neuronal patterning events.
Collapse
|
13
|
Zha J, Ying M, Alexander-Floyd J, Gidalevitz T. HSP-4/BiP expression in secretory cells is regulated by a developmental program and not by the unfolded protein response. PLoS Biol 2019; 17:e3000196. [PMID: 30908491 PMCID: PMC6448932 DOI: 10.1371/journal.pbio.3000196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/04/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Differentiation of secretory cells leads to sharp increases in protein synthesis, challenging endoplasmic reticulum (ER) proteostasis. Anticipatory activation of the unfolded protein response (UPR) prepares cells for the onset of secretory function by expanding the ER size and folding capacity. How cells ensure that the repertoire of induced chaperones matches their postdifferentiation folding needs is not well understood. We find that during differentiation of stem-like seam cells, a typical UPR target, the Caenorhabditis elegans immunoglobulin heavy chain-binding protein (BiP) homologue Heat-Shock Protein 4 (HSP-4), is selectively induced in alae-secreting daughter cells but is repressed in hypodermal daughter cells. Surprisingly, this lineage-dependent induction bypasses the requirement for UPR signaling. Instead, its induction in alae-secreting cells is controlled by a specific developmental program, while its repression in the hypodermal-fated cells requires a transcriptional regulator B-Lymphocyte–Induced Maturation Protein 1 (BLMP-1/BLIMP1), involved in differentiation of mammalian secretory cells. The HSP-4 induction is anticipatory and is required for the integrity of secreted alae. Thus, differentiation programs can directly control a broad-specificity chaperone that is normally stress dependent to ensure the integrity of secreted proteins. A study in the nematode Caenorhabditis elegans shows that dedicated developmental programs can bypass the requirements for the unfolded protein response during the differentiation of secretory cells, anticipating their future high folding needs. During differentiation, cells that specialize in secretion of proteins, such as antibody-secreting B cells, prepare for the onset of secretory function by expanding the size of the major secretory organelle, the endoplasmic reticulum (ER), and by increasing the expression of molecular chaperones and folding enzymes. This pre-emptive expansion of the ER depends on activation of the ER stress response pathways and is required for the secretory phenotype. In addition, cells may also need to up-regulate a selected subset of chaperones because different secreted proteins may require different chaperones for their folding and secretion. Except in specialized cases, how this selective up-regulation is achieved, and whether it depends on the ER stress pathways, is not well understood. Using Caenorhabditis elegans, we find that a chaperone BiP/HSP-4, which is usually induced in most cells by stress, is selectively induced during differentiation of stem cells into the alae-secreting cells while being repressed in their sister lineage, the hypodermal cells. We find that induction of this chaperone is independent of the known ER stress pathways, while its repression requires a known regulator of development in mammals, BLIMP1/BLMP-1. The pre-emptive induction of BiP/HSP-4 is important for the integrity of secreted alae and cuticle, suggesting that a general molecular chaperone that is a canonical target of ER stress pathways can be selectively regulated by development to ensure the quality of secreted proteome and functionality of the cells postdifferentiation.
Collapse
Affiliation(s)
- Ji Zha
- Biology Department, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Mingjie Ying
- Biology Department, Drexel University, Philadelphia, Pennsylvania, United States of America
| | | | - Tali Gidalevitz
- Biology Department, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Functional Annotation of Caenorhabditis elegans Genes by Analysis of Gene Co-Expression Networks. Biomolecules 2018; 8:biom8030070. [PMID: 30081521 PMCID: PMC6163173 DOI: 10.3390/biom8030070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022] Open
Abstract
Caenorhabditis elegans (C. elegans) is a well-characterized metazoan, whose transcriptome has been profiled in different tissues, development stages, or other conditions. Large-scale transcriptomes can be reused for gene function annotation through systematic analysis of gene co-expression relationships. We collected 2101 microarray data from National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO), and identified 48 modules of co-expressed genes that correspond to tissues, development stages, and other experimental conditions. These modules provide an overview of the transcriptional organizations that may work under different conditions. By analyzing higher-order module networks, we found that nucleus and plasma membrane modules are more connected than other intracellular modules. Module-based gene function annotation may help to extend the candidate cuticle gene list. A comparison with other published data validates the credibility of our result. Our findings provide a new source for future gene discovery in C. elegans.
Collapse
|
15
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
16
|
Dysregulation of Blimp1 transcriptional repressor unleashes p130Cas/ErbB2 breast cancer invasion. Sci Rep 2017; 7:1145. [PMID: 28442738 PMCID: PMC5430666 DOI: 10.1038/s41598-017-01332-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/28/2017] [Indexed: 12/29/2022] Open
Abstract
ErbB2 overexpression is detected in approximately 20% of breast cancers and is correlated with poor survival. It was previously shown that the adaptor protein p130Cas/BCAR1 is a crucial mediator of ErbB2 transformation and that its overexpression confers invasive properties to ErbB2-positive human mammary epithelial cells. We herein prove, for the first time, that the transcriptional repressor Blimp1 is a novel mediator of p130Cas/ErbB2-mediated invasiveness. Indeed, high Blimp1 expression levels are detected in invasive p130Cas/ErbB2 cells and correlate with metastatic status in human breast cancer patients. The present study, by using 2D and 3D breast cancer models, shows that the increased Blimp1 expression depends on both MAPK activation and miR-23b downmodulation. Moreover, we demonstrate that Blimp1 triggers cell invasion and metastasis formation via its effects on focal adhesion and survival signaling. These findings unravel the previously unidentified role that transcriptional repressor Blimp1 plays in the control of breast cancer invasiveness.
Collapse
|
17
|
Cecchetelli AD, Cram EJ. Regulating distal tip cell migration in space and time. Mech Dev 2017; 148:11-17. [PMID: 28442366 DOI: 10.1016/j.mod.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/26/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
Abstract
Gonad morphogenesis in the nematode C. elegans is guided by two leader cells, the distal tip cells (DTC). The DTCs migrate along a stereotyped path, executing two 90° turns before stopping at the midpoint of the animal. This migratory path determines the double-U shape of the adult gonad, therefore, the path taken by the DTCs can be inferred from the final shape of the organ. In this review, we focus on the mechanism by which the DTC executes the first 90° turn from the ventral to dorsal side of the animal, and how it finds its correct stopping place at the midpoint of the animal. We discuss the role of heterochronic genes in coordinating DTC migration with larval development, the role of feedback loops and miRNA regulation in phenotypic robustness, and the role of RNA binding proteins in the cessation of DTC migration.
Collapse
Affiliation(s)
- Alyssa D Cecchetelli
- Department of Biology, Northeastern University, 360 Huntington Avenue, 134 Mugar Hall, Boston, MA 02115, United States
| | - Erin J Cram
- Department of Biology, Northeastern University, 360 Huntington Avenue, 134 Mugar Hall, Boston, MA 02115, United States.
| |
Collapse
|
18
|
BLIMP-1/BLMP-1 and Metastasis-Associated Protein Regulate Stress Resistant Development in Caenorhabditis elegans. Genetics 2016; 203:1721-32. [PMID: 27334271 DOI: 10.1534/genetics.116.190793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/14/2016] [Indexed: 01/17/2023] Open
Abstract
Environmental stress triggers multilevel adaptations in animal development that depend in part on epigenetic mechanisms. In response to harsh environmental conditions and pheromone signals, Caenorhabditis elegans larvae become the highly stress-resistant and long-lived dauer. Despite extensive studies of dauer formation pathways that integrate specific environmental cues and appear to depend on transcriptional reprogramming, the role of epigenetic regulation in dauer development has remained unclear. Here we report that BLMP-1, the BLIMP-1 ortholog, regulates dauer formation via epigenetic pathways; in the absence of TGF-β signaling (in daf-7 mutants), lack of blmp-1 caused lethality. Using this phenotype, we screened 283 epigenetic factors, and identified lin-40, a homolog of metastasis-associate protein 1 (MTA1) as an interactor of BLMP-1 The interaction between LIN-40 and BLMP-1 is conserved because mammalian homologs for both MTA1 and BLIMP-1 could also interact. From microarray studies, we identified several downstream target genes of blmp-1: npr-3, nhr-23, ptr-4, and sams-1 Among them S-adenosyl methionine synthase (SAMS-1), is the key enzyme for production of SAM used in histone methylation. Indeed, blmp-1 is necessary for controlling histone methylation level in daf-7 mutants, suggesting BLMP-1 regulates the expression of SAMS-1, which in turn may regulate histone methylation and dauer formation. Our results reveal a new interaction between BLMP-1/BLIMP-1 and LIN-40/MTA1, as well as potential epigenetic downstream pathways, whereby these proteins cooperate to regulate stress-specific developmental adaptations.
Collapse
|
19
|
Noise propagation with interlinked feed-forward pathways. Sci Rep 2016; 6:23607. [PMID: 27029397 PMCID: PMC4814832 DOI: 10.1038/srep23607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/10/2016] [Indexed: 12/05/2022] Open
Abstract
Functionally similar pathways are often seen in biological systems, forming feed-forward controls. The robustness in network motifs such as feed-forward loops (FFLs) has been reported previously. In this work, we studied noise propagation in a development network that has multiple interlinked FFLs. A FFL has the potential of asymmetric noise-filtering (i.e., it works at either the “ON” or the “OFF” state in the target gene). With multiple, interlinked FFLs, we show that the propagated noises are largely filtered regardless of the states in the input genes. The noise-filtering property of an interlinked FFL can be largely derived from that of the individual FFLs, and with interlinked FFLs, it is possible to filter noises in both “ON” and “OFF” states in the output. We demonstrated the noise filtering effect in the developmental regulatory network of Caenorhabditis elegans that controls the timing of distal tip cell (DTC) migration. The roles of positive feedback loops involving blmp-1 and the degradation regulation of DRE-1 also studied. Our analyses allow for better inference from network structures to noise-filtering properties, and provide insights into the mechanisms behind the precise DTC migration controls in space and time.
Collapse
|
20
|
Direct and positive regulation of Caenorhabditis elegans bed-3 by PRDM1/BLIMP1 ortholog BLMP-1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1229-36. [DOI: 10.1016/j.bbagrm.2015.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022]
|
21
|
Rosa BA, Townsend R, Jasmer DP, Mitreva M. Functional and phylogenetic characterization of proteins detected in various nematode intestinal compartments. Mol Cell Proteomics 2015; 14:812-27. [PMID: 25609831 DOI: 10.1074/mcp.m114.046227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Indexed: 12/13/2022] Open
Abstract
The parasitic nematode intestine is responsible for nutrient digestion and absorption, and many other processes essential for reproduction and survival, making it a valuable target for anthelmintic drug treatment. However, nematodes display extreme biological diversity (including occupying distinct trophic habitats), resulting in limited knowledge of intestinal cell/protein functions of fundamental or adaptive significance. We developed a perfusion model for isolating intestinal proteins in Ascaris suum (a parasite of humans and swine), allowing for the identification of over 1000 intestinal A. suum proteins (using mass spectrometry), which were assigned to several different intestinal cell compartments (intestinal tissue, the integral and peripheral intestinal membranes, and the intestinal lumen). A multi-omics analysis approach identified a large diversity of biological functions across intestinal compartments, based on both functional enrichment analysis (identifying terms related to detoxification, proteolysis, and host-parasite interactions) and regulatory binding sequence analysis to identify putatively active compartment-specific transcription factors (identifying many related to intestinal sex differentiation or lifespan regulation). Orthologs of A. suum proteins in 15 other nematodes species, five host species, and two outgroups were identified and analyzed. Different cellular compartments demonstrated markedly different levels of protein conservation; e.g. integral intestinal membrane proteins were the most conserved among nematodes (up to 96% conservation), whereas intestinal lumen proteins were the most diverse (only 6% conservation across all nematodes, and 71% with no host orthologs). Finally, this integrated multi-omics analysis identified conserved nematode-specific intestinal proteins likely performing essential functions (including V-type ATPases and ABC transporters), which may serve as promising anthelmintic drug or vaccine targets in future research. Collectively, the findings provide valuable new insights on conserved and adaptive features of nematode intestinal cells, membranes and the intestinal lumen, and potential targets for parasite treatment and control.
Collapse
Affiliation(s)
- Bruce A Rosa
- From the ‡The Genome Institute, Washington University in St Louis, Missouri 63108
| | - Reid Townsend
- §Department of Cell Biology & Physiology and Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63108
| | - Douglas P Jasmer
- ¶Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164
| | - Makedonka Mitreva
- From the ‡The Genome Institute, Washington University in St Louis, Missouri 63108; ‖Department of Medicine and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63108
| |
Collapse
|
22
|
A HIF-independent mediator of transcriptional responses to oxygen deprivation in Caenorhabditis elegans. Genetics 2014; 199:739-48. [PMID: 25552276 DOI: 10.1534/genetics.114.173989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The adaptive response to hypoxia is accompanied by widespread transcriptional changes that allow for prolonged survival in low oxygen. Many of these changes are directly regulated by the conserved hypoxia-inducible factor-1 (HIF-1) complex; however, even in its absence, many oxygen-sensitive transcripts in Caenorhabditis elegans are appropriately regulated in hypoxia. To identify mediators of these non-HIF-dependent responses, we established a hif-1 mutant reporter line that expresses GFP in hypoxia or when worms are treated with the hypoxia mimetic cobalt chloride (CoCl2). The reporter is selective and HIF independent, in that it remains insensitive to a number of cellular stresses, but is unaffected by mutation of the prolyl hydroxylase egl-9, suggesting that the regulators of this response pathway are different from those controlling the HIF pathway. We used the HIF-independent reporter to screen a transcription factor RNA interference (RNAi) library and identified genes that are required for hypoxia-sensitive and CoCl2-induced GFP expression. We identified the zinc finger protein BLMP-1 as a mediator of the HIF-independent response. We show that mutation of blmp-1 renders animals sensitive to hypoxic exposure and that blmp-1 is required for appropriate hypoxic-induced expression of HIF-independent transcripts. Further, we demonstrate that BLMP-1 is necessary for an increase of hypoxia-dependent histone acetylation within the promoter of a non-HIF-dependent hypoxia response gene.
Collapse
|
23
|
Sikkink KL, Ituarte CM, Reynolds RM, Cresko WA, Phillips PC. The transgenerational effects of heat stress in the nematode Caenorhabditis remanei are negative and rapidly eliminated under direct selection for increased stress resistance in larvae. Genomics 2014; 104:438-46. [PMID: 25283346 DOI: 10.1016/j.ygeno.2014.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/28/2022]
Abstract
Parents encountering stress environments can influence the phenotype of their offspring in a form of transgenerational phenotypic plasticity that has the potential to be adaptive if offspring are thereby better able to deal with future stressors. Here, we test for the existence of anticipatory parental effects in the heat stress response in the highly polymorphic nematode Caenorhabditis remanei. Rather providing an anticipatory response, parents subject to a prior heat stress actually produce offspring that are less able to survive a severe heat shock. Selection on heat shock resistance within the larvae via experimental evolution leads to a loss of sensitivity (robustness) to environmental variation during both the parental and larval periods. Whole genome transcriptional analysis of both ancestor and selected lines shows that there is weak correspondence between genetic pathways induced via temperature shifts during parental and larval periods. Parental effects can evolve very rapidly via selection acting directly on offspring.
Collapse
Affiliation(s)
- Kristin L Sikkink
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Catherine M Ituarte
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Rose M Reynolds
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA; Department of Biology, William Jewell College, Liberty, MO 64068, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA.
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA.
| |
Collapse
|