1
|
Curt JR, Martín P, Foronda D, Hudry B, Kannan R, Shetty S, Merabet S, Saurin AJ, Graba Y, Sánchez- Herrero E. Ambivalent partnership of the Drosophila posterior class Hox protein Abdominal-B with Extradenticle and Homothorax. PLoS Genet 2025; 21:e1011355. [PMID: 39804927 PMCID: PMC11759358 DOI: 10.1371/journal.pgen.1011355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/24/2025] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Hox proteins, a sub-group of the homeodomain (HD) transcription factor family, provide positional information for axial patterning in development and evolution. Hox protein functional specificity is reached, at least in part, through interactions with Pbc (Extradenticle (Exd) in Drosophila) and Meis/Prep (Homothorax (Hth) in Drosophila) proteins. Most of our current knowledge of Hox protein specificity stems from the study of anterior and central Hox proteins, identifying the molecular and structural bases for Hox/Pbc/Meis-Prep cooperative action. Posterior Hox class proteins, Abdominal-B (Abd-B) in Drosophila and Hox9-13 in vertebrates, have been comparatively less studied. They strongly diverge from anterior and central class Hox proteins, with a low degree of HD sequence conservation and the absence of a core canonical Pbc interaction motif. Here we explore how Abd-B function interface with that of Exd/Hth using several developmental contexts, studying mutual expression control, functional dependency and intrinsic protein requirements. Results identify cross-regulatory interactions setting relative expression and activity levels required for proper development. They also reveal organ-specific requirement and a binary functional interplay with Exd and Hth, either antagonistic, as previously reported, or synergistic. This highlights context specific use of Exd/Hth, and a similar context specific use of Abd-B intrinsic protein requirements.
Collapse
Affiliation(s)
- Jesús R. Curt
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Paloma Martín
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Bruno Hudry
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
- Institut de Biologie Valrose, Université Nice Sophia Antipolis, Faculté des Sciences Parc Valrose, Nice, France
| | - Ramakrishnan Kannan
- Molecular Genetics lab, Neurobiology Research Center (NRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Srividya Shetty
- Molecular Genetics lab, Neurobiology Research Center (NRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Samir Merabet
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
- Institut de Génétique Fonctionnelle, UMR 5242 CNRS/ENS Lyon, Lyon, France
| | - Andrew J. Saurin
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
| | - Yacine Graba
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
| | - Ernesto Sánchez- Herrero
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
2
|
Qiu X, Zhu DY, Lu Y, Yao J, Jing Z, Min KH, Cheng M, Pan H, Zuo L, King S, Fang Q, Zheng H, Wang M, Wang S, Zhang Q, Yu S, Liao S, Liu C, Wu X, Lai Y, Hao S, Zhang Z, Wu L, Zhang Y, Li M, Tu Z, Lin J, Yang Z, Li Y, Gu Y, Ellison D, Chen A, Liu L, Weissman JS, Ma J, Xu X, Liu S, Bai Y. Spatiotemporal modeling of molecular holograms. Cell 2024; 187:7351-7373.e61. [PMID: 39532097 DOI: 10.1016/j.cell.2024.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/29/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Quantifying spatiotemporal dynamics during embryogenesis is crucial for understanding congenital diseases. We developed Spateo (https://github.com/aristoteleo/spateo-release), a 3D spatiotemporal modeling framework, and applied it to a 3D mouse embryogenesis atlas at E9.5 and E11.5, capturing eight million cells. Spateo enables scalable, partial, non-rigid alignment, multi-slice refinement, and mesh correction to create molecular holograms of whole embryos. It introduces digitization methods to uncover multi-level biology from subcellular to whole organ, identifying expression gradients along orthogonal axes of emergent 3D structures, e.g., secondary organizers such as midbrain-hindbrain boundary (MHB). Spateo further jointly models intercellular and intracellular interaction to dissect signaling landscapes in 3D structures, including the zona limitans intrathalamica (ZLI). Lastly, Spateo introduces "morphometric vector fields" of cell migration and integrates spatial differential geometry to unveil molecular programs underlying asymmetrical murine heart organogenesis and others, bridging macroscopic changes with molecular dynamics. Thus, Spateo enables the study of organ ecology at a molecular level in 3D space over time.
Collapse
Affiliation(s)
- Xiaojie Qiu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Basic Sciences and Engineering Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| | - Daniel Y Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yifan Lu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Basic Sciences and Engineering Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Jiajun Yao
- BGI Research, Hangzhou 310030, China; BGI Research, Sanya 572025, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zehua Jing
- BGI Research, Hangzhou 310030, China; BGI Research, Sanya 572025, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kyung Hoi Min
- Ginkgo Bioworks, The Innovation and Design Building, Boston, MA 02210, USA
| | - Mengnan Cheng
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | | | - Lulu Zuo
- BGI Research, Shenzhen 518083, China
| | - Samuel King
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Qi Fang
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Huiwen Zheng
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyue Wang
- BGI Research, Hangzhou 310030, China; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Wang
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingquan Zhang
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA, USA
| | - Sichao Yu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Sha Liao
- BGI Research, Shenzhen 518083, China; STOmics Tech Co., Ltd, Shenzhen 518083, China; BGI Research, Chongqing 401329, China
| | - Chao Liu
- BGI Research, Wuhan 430074, China
| | - Xinchao Wu
- BGI Research, Hangzhou 310030, China; BGI Research, Sanya 572025, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwei Lai
- BGI Research, Shenzhen 518083, China
| | | | - Zhewei Zhang
- BGI Research, Hangzhou 310030, China; BGI Research, Sanya 572025, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Wu
- BGI Research, Chongqing 401329, China
| | | | - Mei Li
- STOmics Tech Co., Ltd, Shenzhen 518083, China
| | - Zhencheng Tu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpei Lin
- BGI Research, Hangzhou 310030, China; BGI Research, Sanya 572025, China
| | - Zhuoxuan Yang
- BGI Research, Hangzhou 310030, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | | | - Ying Gu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ao Chen
- BGI Research, Shenzhen 518083, China; STOmics Tech Co., Ltd, Shenzhen 518083, China; BGI Research, Chongqing 401329, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; Shenzhen Bay Laboratory, Shenzhen 518132, China; Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120, China
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Jiayi Ma
- Electronic Information School, Wuhan University, Wuhan 430072, China.
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China.
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China; Shenzhen Bay Laboratory, Shenzhen 518132, China; Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120, China; The Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, Guangdong, China.
| | - Yinqi Bai
- BGI Research, Sanya 572025, China; Hainan Technology Innovation Center for Marine Biological Resources Utilization (Preparatory Period), BGI Research, Sanya 572025, China.
| |
Collapse
|
3
|
Hemba-Waduge RUS, Liu M, Li X, Sun JL, Budslick EA, Bondos SE, Ji JY. Metabolic control by the Bithorax Complex-Wnt signaling crosstalk in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596851. [PMID: 38853890 PMCID: PMC11160800 DOI: 10.1101/2024.05.31.596851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Adipocytes distributed throughout the body play crucial roles in lipid metabolism and energy homeostasis. Regional differences among adipocytes influence normal function and disease susceptibility, but the mechanisms driving this regional heterogeneity remain poorly understood. Here, we report a genetic crosstalk between the Bithorax Complex ( BX-C ) genes and Wnt/Wingless signaling that orchestrates regional differences among adipocytes in Drosophila larvae. Abdominal adipocytes, characterized by the exclusive expression of abdominal A ( abd-A ) and Abdominal B ( Abd-B ), exhibit distinct features compared to thoracic adipocytes, with Wnt signaling further amplifying these disparities. Depletion of BX-C genes in adipocytes reduces fat accumulation, delays larval-pupal transition, and eventually leads to pupal lethality. Depleting Abd-A or Abd-B reduces Wnt target gene expression, thereby attenuating Wnt signaling-induced lipid mobilization. Conversely, Wnt signaling stimulated abd-A transcription, suggesting a feedforward loop that amplifies the interplay between Wnt signaling and BX-C in adipocytes. These findings elucidate how the crosstalk between cell-autonomous BX-C gene expression and Wnt signaling define unique metabolic behaviors in adipocytes in different anatomical regions of fat body, delineating larval adipose tissue domains.
Collapse
|
4
|
Fu X, Zhu X. Key homeobox transcription factors regulate the development of the firefly's adult light organ and bioluminescence. Nat Commun 2024; 15:1736. [PMID: 38443352 PMCID: PMC10914744 DOI: 10.1038/s41467-024-45559-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
Adult fireflies exhibit unique flashing courtship signals, emitted by specialized light organs, which develop mostly independently from larval light organs during the pupal stage. The mechanisms of adult light organ development have not been thoroughly studied until now. Here we show that key homeobox transcription factors AlABD-B and AlUNC-4 regulate the development of adult light organs and bioluminescence in the firefly Aquatica leii. Interference with the expression of AlAbd-B and AlUnc-4 genes results in undeveloped or non-luminescent adult light organs. AlABD-B regulates AlUnc-4, and they interact with each other. AlABD-B and AlUNC-4 activate the expression of the luciferase gene AlLuc1 and some peroxins. Four peroxins are involved in the import of AlLUC1 into peroxisomes. Our study provides key insights into the development of adult light organs and flash signal control in fireflies.
Collapse
Affiliation(s)
- Xinhua Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xinlei Zhu
- Firefly Conservation Research Centre, Wuhan, 430070, China
| |
Collapse
|
5
|
Liu BP, Hua BZ. Distinct roles of the Hox genes Ultrabithorax and abdominal-A in scorpionfly embryonic proleg development. INSECT MOLECULAR BIOLOGY 2024; 33:69-80. [PMID: 37792400 DOI: 10.1111/imb.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
The abdominal appendages of larval insects have a complex evolutionary history of gain and loss, but the regulatory mechanisms underlying the abdominal appendage development remain largely unclear. Here, we investigated the embryogenesis of abdominal prolegs in the scorpionfly Panorpa liui Hua (Mecoptera: Panorpidae) using in situ hybridization and parental RNA interference. The results show that RNAi-mediated knockdown of Ultrabithorax (Ubx) led to a homeotic transformation of the first abdominal segment (A1) into the third thoracic segment (T3) and changed the distributions of the downstream target Distal-less (Dll) expression but did not affect the expression levels of Dll. Knockdown of abdominal-A (abd-A) resulted in malformed segments, abnormal prolegs and disrupted Dll expression. The results demonstrate that the gene Ubx maintains an ancestral role of modulating A1 appendage fate without preventing Dll initiation, and a secondary adaptation of abd-A evolves the ability to specify abdominal segments and proleg identity. We conclude that changes in abdominal Hox gene expression and their target genes regulate abdominal appendage morphology during the evolutionary course of holometabolous larvae.
Collapse
Affiliation(s)
- Bing-Peng Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Bao-Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Phanindhar K, Mishra RK. Auxin-inducible degron system: an efficient protein degradation tool to study protein function. Biotechniques 2023; 74:186-198. [PMID: 37191015 DOI: 10.2144/btn-2022-0108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Targeted protein degradation, with its rapid protein depletion kinetics, allows the measurement of acute changes in the cell. The auxin-inducible degron (AID) system, rapidly degrades AID-tagged proteins only in the presence of auxin. The AID system being inducible makes the study of essential genes and dynamic processes like cell differentiation, cell cycle and genome organization feasible. The AID degradation system has been adapted to yeast, protozoans, C. elegans, Drosophila, zebrafish, mouse and mammalian cell lines. Using the AID system, researchers have unveiled novel functions for essential proteins at developmental stages that were previously difficult to investigate due to early lethality. This comprehensive review discusses the development, advancements, applications and drawbacks of the AID system and compares it with other available protein degradation systems.
Collapse
Affiliation(s)
- Kundurthi Phanindhar
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Tata Institute for Genetics & Society (TIGS), Bangalore, 560065, India
| |
Collapse
|
7
|
Guo H, Liu XZ, Long GJ, Gong LL, Zhang MQ, Ma YF, Hull JJ, Dewer Y, He M, He P. Functional characterization of developmentally critical genes in the white-backed planthopper: Efficacy of nanoparticle-based dsRNA sprays for pest control. PEST MANAGEMENT SCIENCE 2023; 79:1048-1061. [PMID: 36325939 DOI: 10.1002/ps.7271] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR), zinc finger homeodomain-2 (zfh-2), Abdominal-A (Abd-A), and Abdominal-B (Abd-B) regulate the growth and development of the insect abdomen. However, their potential roles in pest control have not been fully assessed. The development of insecticide resistance to multiple chemistries in the white-backed planthopper (WBPH), a major pest of rice, has prompted interest in novel pest control approaches that are ecologically friendly. Although pest management approaches based on double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) have potential, their susceptibility to degradation limits large-scale field applications. These limitations, however, can be overcome with nanoparticle-dsRNA complexes that have greater environmental stability and improved cellular uptake. RESULTS In this study, at 5 days post-injection, transcripts for the four gene targets were reduced relative to controls and all of the experimental groups exhibited significant phenotypic defects and increased mortality. To evaluate the potential of these gene targets for field applications, a nanocarrier-dsRNA spray delivery system was assessed for RNAi efficacy. At 11 days post-spray, significant phenotypic defects and increased mortality were observed in all experimental groups. CONCLUSION Taken together, the results confirm the suitability of the target genes (SfEGFR, Sfzfh-2, SfAbd-A, and SfAbd-B) for pest management and demonstrate the efficacy of the nanocarrier spray system for inducing RNAi-mediated knockdown. As such, the study lays the foundation for the further development and optimization of this technology for large-scale field applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Xuan-Zheng Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Gui-Jun Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Lang-Lang Gong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Meng-Qi Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Yun-Feng Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
8
|
Bi CL, Cheng Q, Yan LY, Wu HY, Wang Q, Wang P, Cheng L, Wang R, Yang L, Li J, Tie F, Xie H, Fang M. A prominent gene activation role for C-terminal binding protein in mediating PcG/trxG proteins through Hox gene regulation. Development 2022; 149:275613. [DOI: 10.1242/dev.200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The evolutionarily conserved C-terminal binding protein (CtBP) has been well characterized as a transcriptional co-repressor. Herein, we report a previously unreported function for CtBP, showing that lowering CtBP dosage genetically suppresses Polycomb group (PcG) loss-of-function phenotypes while enhancing that of trithorax group (trxG) in Drosophila, suggesting that the role of CtBP in gene activation is more pronounced in fly development than previously thought. In fly cells, we show that CtBP is required for the derepression of the most direct PcG target genes, which are highly enriched by homeobox transcription factors, including Hox genes. Using ChIP and co-IP assays, we demonstrate that CtBP is directly required for the molecular switch between H3K27me3 and H3K27ac in the derepressed Hox loci. In addition, CtBP physically interacts with many proteins, such as UTX, CBP, Fs(1)h and RNA Pol II, that have activation roles, potentially assisting in their recruitment to promoters and Polycomb response elements that control Hox gene expression. Therefore, we reveal a prominent activation function for CtBP that confers a major role for the epigenetic program of fly segmentation and development.
Collapse
Affiliation(s)
- Cai-Li Bi
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
- Institute of Translational Medicine 2 , , , Yangzhou 225001 , China
- Medical College 2 , , , Yangzhou 225001 , China
- Yangzhou University 2 , , , Yangzhou 225001 , China
| | - Qian Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Ling-Yue Yan
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Hong-Yan Wu
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Qiang Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Ping Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Lin Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Rui Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Lin Yang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Jian Li
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Feng Tie
- Case Western Reserve University 3 Department of Genetics and Genome Sciences , , Cleveland, OH 44106, USA
| | - Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Ming Fang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| |
Collapse
|
9
|
Bi H, Merchant A, Gu J, Li X, Zhou X, Zhang Q. CRISPR/Cas9-Mediated Mutagenesis of Abdominal-A and Ultrabithorax in the Asian Corn Borer, Ostrinia furnacalis. INSECTS 2022; 13:insects13040384. [PMID: 35447826 PMCID: PMC9031573 DOI: 10.3390/insects13040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Homeotic genes encode transcription factors that coordinated the anatomical structure formation during the early embryonic development of organisms. In this study, we functionally characterized two homeotic genes, Abdominal-A (Abd-A) and Ultrabithorax (Ubx), in the Asian corn borer, Ostrinia furnacalis (a maize pest that has devastated the Asia-Pacific region) by using a CRISPR/Cas9 genome editing system. Our results show that the mutagenesis of OfAbd-A and OfUbx led to severe morphological defects in O. furnacalis, which included fused segments and segmental twist during the larval stage, and hollowed and incision-like segments during the pupal stage in OfAbd-A mutants, as well as defects in the wing-pad development in pupal and adult OfUbx mutants. Overall, knocking out Abd-A and Ubx in O. furnacalis resulted in the embryonic lethality to, and pleiotropic impact on, other homeotic genes. This study not only confirms the conserved body planning functions in OfAbd-A and OfUbx, but it also strengthens the control implications of these homeotic genes for lepidopteran pests. Abstract (1) Background: Abdominal-A (Abd-A) and Ultrabithorax (Ubx) are homeotic genes that determine the identity and morphology of the thorax and abdomen in insects. The Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Pyralidae), is a devastating maize pest throughout Asia, the Western Pacific, and Australia. Building on previous knowledge, we hypothesized that the knockout of Abd-A and Ubx would disrupt the abdominal body planning in O. furnacalis. (2) Methods: CRISPR/Cas9-targeted mutagenesis was employed to decipher the functions of these homeotic genes. (3) Results: Knockout insects demonstrated classical homeotic transformations. Specifically, the mutagenesis of OfAbd-A resulted in: (1) Fused segments and segmental twist during the larval stage; (2) Embryonic lethality; and (3) The pleiotropic upregulation of other homeotic genes, including Lab, Pd, Dfd, Antp, and Abd-B. The mutagenesis of OfUbx led to: (1) Severe defects in the wing pads, which limited the ability of the adults to fly and mate; (2) Female sterility; and (3) The pleiotropic upregulation of other homeotic genes, including Dfd, Abd-B, and Wnt1. (4) Conclusions: These combined results not only support our hypothesis, but they also strengthen the potential of using homeotic genes as molecular targets for the genetic control of this global insect pest.
Collapse
Affiliation(s)
- Honglun Bi
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (H.B.); (J.G.)
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (A.M.); (X.Z.)
| | - Junwen Gu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (H.B.); (J.G.)
| | - Xiaowei Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (A.M.); (X.Z.)
| | - Qi Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (H.B.); (J.G.)
- Correspondence: ; Tel.: +86-13609876667
| |
Collapse
|
10
|
Buffry AD, McGregor AP. Micromanagement of Drosophila Post-Embryonic Development by Hox Genes. J Dev Biol 2022; 10:13. [PMID: 35225966 PMCID: PMC8883937 DOI: 10.3390/jdb10010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Hox genes function early in development to determine regional identity in animals. Consequently, the loss or gain of Hox gene expression can change this identity and cause homeotic transformations. Over 20 years ago, it was observed that the role of Hox genes in patterning animal body plans involves the fine-scale regulation of cell fate and identity during development, playing the role of 'micromanagers' as proposed by Michael Akam in key perspective papers. Therefore, as well as specifying where structures develop on animal bodies, Hox genes can help to precisely sculpt their morphology. Here, we review work that has provided important insights about the roles of Hox genes in influencing cell fate during post-embryonic development in Drosophila to regulate fine-scale patterning and morphology. We also explore how this is achieved through the regulation of Hox genes, specific co-factors and their complex regulation of hundreds of target genes. We argue that further investigating the regulation and roles of Hox genes in Drosophila post-embryonic development has great potential for understanding gene regulation, cell fate and phenotypic differentiation more generally.
Collapse
|
11
|
Hajirnis N, Mishra RK. Homeotic Genes: Clustering, Modularity, and Diversity. Front Cell Dev Biol 2021; 9:718308. [PMID: 34458272 PMCID: PMC8386295 DOI: 10.3389/fcell.2021.718308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes code for transcription factors and are evolutionarily conserved. They regulate a plethora of downstream targets to define the anterior-posterior (AP) body axis of a developing bilaterian embryo. Early work suggested a possible role of clustering and ordering of Hox to regulate their expression in a spatially restricted manner along the AP axis. However, the recent availability of many genome assemblies for different organisms uncovered several examples that defy this constraint. With recent advancements in genomics, the current review discusses the arrangement of Hox in various organisms. Further, we revisit their discovery and regulation in Drosophila melanogaster. We also review their regulation in different arthropods and vertebrates, with a significant focus on Hox expression in the crustacean Parahyale hawaiensis. It is noteworthy that subtle changes in the levels of Hox gene expression can contribute to the development of novel features in an organism. We, therefore, delve into the distinct regulation of these genes during primary axis formation, segment identity, and extra-embryonic roles such as in the formation of hair follicles or misregulation leading to cancer. Toward the end of each section, we emphasize the possibilities of several experiments involving various organisms, owing to the advancements in the field of genomics and CRISPR-based genome engineering. Overall, we present a holistic view of the functioning of Hox in the animal world.
Collapse
Affiliation(s)
- Nikhil Hajirnis
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Rakesh K. Mishra
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
- AcSIR – Academy of Scientific and Innovative Research, Ghaziabad, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, India
| |
Collapse
|
12
|
Drosophila Hox genes induce melanized pseudo-tumors when misexpressed in hemocytes. Sci Rep 2021; 11:1838. [PMID: 33469139 PMCID: PMC7815749 DOI: 10.1038/s41598-021-81472-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Hox genes are early determinants of cell identity along the anterior–posterior body axis across bilaterians. Several late non-homeotic functions of Hox genes have emerged in a variety of processes involved in organogenesis in several organisms, including mammals. Several studies have reported the misexpression of Hox genes in a variety of malignancies including acute myeloid leukemia. The Hox genes Dfd, Ubx, abd-A and Abd-B were overexpressed via the UAS-Gal4 system using Cg-Gal4, Lsp2-Gal4, He-Gal4 and HmlD3-Gal4 as specific drivers. Genetic interaction was tested by bringing overexpression lines in heterozygous mutant backgrounds of Polycomb and trithorax group factors. Larvae were visually scored for melanized bodies. Circulating hemocytes were quantified and tested for differentiation. Pupal lethality was assessed. Expression of Dfd, Ubx and abd-A, but not Abd-B in the hematopoietic compartment of Drosophila led to the appearance of circulating melanized bodies, an increase in cell number, cell-autonomous proliferation, and differentiation of hemocytes. Pupal lethality and melanized pseudo-tumors were suppressed in Psc1 and esc2 backgrounds while polycomb group member mutations Pc1 and Su(z)123 and trithorax group member mutation TrlR85 enhanced the phenotype. Dfd, Ubx and abd-A are leukemogenic. Mutations in Polycomb and trithorax group members modulate the leukemogenic phenotype. Our RNAseq of Cg-Gal4 > UAS-abd-A hemocytes may contain genes important to Hox gene induced leukemias.
Collapse
|
13
|
Jin H, Seki T, Yamaguchi J, Fujiwara H. Prepatterning of Papilio xuthus caterpillar camouflage is controlled by three homeobox genes: clawless, abdominal-A, and Abdominal-B. SCIENCE ADVANCES 2019; 5:eaav7569. [PMID: 30989117 PMCID: PMC6457947 DOI: 10.1126/sciadv.aav7569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/14/2019] [Indexed: 06/02/2023]
Abstract
Color patterns often function as camouflage to protect insects from predators. In most swallowtail butterflies, younger larvae mimic bird droppings but change their pattern to mimic their host plants during their final molt. This pattern change is determined during the early fourth instar by juvenile hormone (JH-sensitive period), but it remains unclear how the prepatterning process is controlled. Using Papilio xuthus larvae, we performed transcriptome comparisons to identify three camouflage pattern-associated homeobox genes [clawless, abdominal-A, and Abdominal-B (Abd-B)] that are up-regulated during the JH-sensitive period in a region-specific manner. Electroporation-mediated knockdown of each gene at the third instar caused loss or change of original fifth instar patterns, but not the fourth instar mimetic pattern, and knockdown of Abd-B after the JH-sensitive period had no effect on fifth instar patterns. These results indicate the role of these genes during the JH-sensitive period and in the control of the prepatterning gene network.
Collapse
|
14
|
Takagi S, Cocanougher BT, Niki S, Miyamoto D, Kohsaka H, Kazama H, Fetter RD, Truman JW, Zlatic M, Cardona A, Nose A. Divergent Connectivity of Homologous Command-like Neurons Mediates Segment-Specific Touch Responses in Drosophila. Neuron 2017; 96:1373-1387.e6. [PMID: 29198754 DOI: 10.1016/j.neuron.2017.10.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/23/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
Abstract
Animals adaptively respond to a tactile stimulus by choosing an ethologically relevant behavior depending on the location of the stimuli. Here, we investigate how somatosensory inputs on different body segments are linked to distinct motor outputs in Drosophila larvae. Larvae escape by backward locomotion when touched on the head, while they crawl forward when touched on the tail. We identify a class of segmentally repeated second-order somatosensory interneurons, that we named Wave, whose activation in anterior and posterior segments elicit backward and forward locomotion, respectively. Anterior and posterior Wave neurons extend their dendrites in opposite directions to receive somatosensory inputs from the head and tail, respectively. Downstream of anterior Wave neurons, we identify premotor circuits including the neuron A03a5, which together with Wave, is necessary for the backward locomotion touch response. Thus, Wave neurons match their receptive field to appropriate motor programs by participating in different circuits in different segments.
Collapse
Affiliation(s)
- Suguru Takagi
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Sawako Niki
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Dohjin Miyamoto
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Hokto Kazama
- RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Richard Doty Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - James William Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Akinao Nose
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan.
| |
Collapse
|
15
|
Du J, Zhang J, He T, Li Y, Su Y, Tie F, Liu M, Harte PJ, Zhu AJ. Stuxnet Facilitates the Degradation of Polycomb Protein during Development. Dev Cell 2017; 37:507-19. [PMID: 27326929 DOI: 10.1016/j.devcel.2016.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Polycomb-group (PcG) proteins function to ensure correct deployment of developmental programs by epigenetically repressing target gene expression. Despite the importance, few studies have been focused on the regulation of PcG activity itself. Here, we report a Drosophila gene, stuxnet (stx), that controls Pc protein stability. We find that heightened stx activity leads to homeotic transformation, reduced Pc activity, and de-repression of PcG targets. Conversely, stx mutants, which can be rescued by decreased Pc expression, display developmental defects resembling hyperactivation of Pc. Our biochemical analyses provide a mechanistic basis for the interaction between stx and Pc; Stx facilitates Pc degradation in the proteasome, independent of ubiquitin modification. Furthermore, this mode of regulation is conserved in vertebrates. Mouse stx promotes degradation of Cbx4, an orthologous Pc protein, in vertebrate cells and induces homeotic transformation in Drosophila. Our results highlight an evolutionarily conserved mechanism of regulated protein degradation on PcG homeostasis and epigenetic activity.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junzheng Zhang
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tao He
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yajuan Li
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Su
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Feng Tie
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Min Liu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peter J Harte
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alan Jian Zhu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex. Genetics 2015; 202:601-17. [PMID: 26715665 DOI: 10.1534/genetics.115.179309] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer-promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and "bridging" proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior-posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains.
Collapse
|
17
|
Singh NP, Mishra RK. Specific combinations of boundary element and Polycomb response element are required for the regulation of the Hox genes in Drosophila melanogaster. Mech Dev 2015; 138 Pt 2:141-150. [DOI: 10.1016/j.mod.2015.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
18
|
The elimination of an adult segment by the Hox gene Abdominal-B. Mech Dev 2015; 138 Pt 2:210-217. [DOI: 10.1016/j.mod.2015.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
|