1
|
Leung PB, Matanza XM, Roche B, Ha KP, Cheung HC, Appleyard S, Collins T, Flanagan O, Marteyn BS, Clements A. Shigella sonnei utilises colicins during inter-bacterial competition. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001434. [PMID: 38376387 PMCID: PMC10924462 DOI: 10.1099/mic.0.001434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
The mammalian colon is one of the most densely populated habitats currently recognised, with 1011-1013 commensal bacteria per gram of colonic contents. Enteric pathogens must compete with the resident intestinal microbiota to cause infection. Among these enteric pathogens are Shigella species which cause approximately 125 million infections annually, of which over 90 % are caused by Shigella flexneri and Shigella sonnei. Shigella sonnei was previously reported to use a Type VI Secretion System (T6SS) to outcompete E. coli and S. flexneri in in vitro and in vivo experiments. S. sonnei strains have also been reported to harbour colicinogenic plasmids, which are an alternative anti-bacterial mechanism that could provide a competitive advantage against the intestinal microbiota. We sought to determine the contribution of both T6SS and colicins to the anti-bacterial killing activity of S. sonnei. We reveal that whilst the T6SS operon is present in S. sonnei, there is evidence of functional degradation of the system through SNPs, indels and IS within key components of the system. We created strains with synthetically inducible T6SS operons but were still unable to demonstrate anti-bacterial activity of the T6SS. We demonstrate that the anti-bacterial activity observed in our in vitro assays was due to colicin activity. We show that S. sonnei no longer displayed anti-bacterial activity against bacteria that were resistant to colicins, and removal of the colicin plasmid from S. sonnei abrogated anti-bacterial activity of S. sonnei. We propose that the anti-bacterial activity demonstrated by colicins may be sufficient for niche competition by S. sonnei within the gastrointestinal environment.
Collapse
Affiliation(s)
- P. B. Leung
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - X. M. Matanza
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - B. Roche
- Universite de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9002, F-67000 Strasbourg, France
| | - K. P. Ha
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - H. C. Cheung
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - S. Appleyard
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - T. Collins
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - O. Flanagan
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - B. S. Marteyn
- Universite de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9002, F-67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), F-67000 Strasbourg, France
- Institut Pasteur, Université de Paris, Inserm U1225, Unité de Pathogenèse des Infections Vasculaires, F-75015 Paris, France
| | - A. Clements
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| |
Collapse
|
2
|
Peng M, Lin W, Zhou A, Jiang Z, Zhou F, Wang Z. High genetic diversity and different type VI secretion systems in Enterobacter species revealed by comparative genomics analysis. BMC Microbiol 2024; 24:26. [PMID: 38238664 PMCID: PMC10797944 DOI: 10.1186/s12866-023-03164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024] Open
Abstract
The human-pathogenic Enterobacter species are widely distributed in diverse environmental conditions, however, the understanding of the virulence factors and genetic variations within the genus is very limited. In this study, we performed comparative genomics analysis of 49 strains originated from diverse niches and belonged to eight Enterobacter species, in order to further understand the mechanism of adaption to the environment in Enterobacter. The results showed that they had an open pan-genome and high genomic diversity which allowed adaptation to distinctive ecological niches. We found the number of secretion systems was the highest among various virulence factors in these Enterobacter strains. Three types of T6SS gene clusters including T6SS-A, T6SS-B and T6SS-C were detected in most Enterobacter strains. T6SS-A and T6SS-B shared 13 specific core genes, but they had different gene structures, suggesting they probably have different biological functions. Notably, T6SS-C was restricted to E. cancerogenus. We detected a T6SS gene cluster, highly similar to T6SS-C (91.2%), in the remote related Citrobacter rodenitum, suggesting that this unique gene cluster was probably acquired by horizontal gene transfer. The genomes of Enterobacter strains possess high genetic diversity, limited number of conserved core genes, and multiple copies of T6SS gene clusters with differentiated structures, suggesting that the origins of T6SS were not by duplication instead by independent acquisition. These findings provide valuable information for better understanding of the functional features of Enterobacter species and their evolutionary relationships.
Collapse
Affiliation(s)
- Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China.
- College of Biological and Food Engineering, College of Biological and Food Engineering, Hubei Minzu University, Hubei Minzu University, No. 39 Xueyuan Street, Enshi, 445000, China.
| | - Weiyuan Lin
- College of Biological and Food Engineering, College of Biological and Food Engineering, Hubei Minzu University, Hubei Minzu University, No. 39 Xueyuan Street, Enshi, 445000, China
| | - Aifen Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Zhihui Jiang
- College of Biological and Food Engineering, College of Biological and Food Engineering, Hubei Minzu University, Hubei Minzu University, No. 39 Xueyuan Street, Enshi, 445000, China
| | - Fangzhen Zhou
- College of Biological and Food Engineering, College of Biological and Food Engineering, Hubei Minzu University, Hubei Minzu University, No. 39 Xueyuan Street, Enshi, 445000, China
| | - Zhiyong Wang
- College of Biological and Food Engineering, College of Biological and Food Engineering, Hubei Minzu University, Hubei Minzu University, No. 39 Xueyuan Street, Enshi, 445000, China.
| |
Collapse
|
3
|
Serapio-Palacios A, Woodward SE, Vogt SL, Deng W, Creus-Cuadros A, Huus KE, Cirstea M, Gerrie M, Barcik W, Yu H, Finlay BB. Type VI secretion systems of pathogenic and commensal bacteria mediate niche occupancy in the gut. Cell Rep 2022; 39:110731. [PMID: 35476983 DOI: 10.1016/j.celrep.2022.110731] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/04/2022] [Accepted: 04/01/2022] [Indexed: 12/18/2022] Open
Abstract
The type VI secretion system (T6SS) is a contractile nanomachine widely distributed among pathogenic and commensal Gram-negative bacteria. The T6SS is used for inter-bacterial competition to directly kill competing species; however, its importance during bacterial infection in vivo remains poorly understood. We report that the murine pathogen Citrobacter rodentium, used as a model for human pathogenic Escherichia coli, harbors two functional T6SSs. C. rodentium employs its T6SS-1 to colonize the murine gastrointestinal tract by targeting commensal Enterobacteriaceae. We identify VgrG1 as a C. rodentium T6SS antibacterial effector, which exhibits toxicity in E. coli. Conversely, commensal prey species E. coli Mt1B1 employs two T6SSs of its own to counter C. rodentium colonization. Collectively, these data demonstrate that the T6SS is a potent weapon during bacterial competition and is used by both invading pathogens and resident microbiota to fight for a niche in the hostile gut environment.
Collapse
Affiliation(s)
- Antonio Serapio-Palacios
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, BC V6T 1Z3, Canada
| | - Sarah E Woodward
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, BC V6T 1Z3, Canada
| | - Stefanie L Vogt
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, BC V6T 1Z3, Canada
| | - Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anna Creus-Cuadros
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, BC V6T 1Z3, Canada
| | - Kelsey E Huus
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, BC V6T 1Z3, Canada
| | - Mihai Cirstea
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, BC V6T 1Z3, Canada
| | - Madeleine Gerrie
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Weronika Barcik
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, BC V6T 1Z3, Canada
| | - Hongbing Yu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, BC V6T 1Z3, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
4
|
Chen C, Yang X, Shen X. Confirmed and Potential Roles of Bacterial T6SSs in the Intestinal Ecosystem. Front Microbiol 2019; 10:1484. [PMID: 31316495 PMCID: PMC6611333 DOI: 10.3389/fmicb.2019.01484] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
The contact-dependent type VI secretion system (T6SS) in diverse microbes plays crucial roles in both inter-bacterial and bacteria-host interactions. As numerous microorganisms inhabit the intestinal ecosystem at a high density, it is necessary to consider the functions of T6SS in intestinal bacteria. In this mini-review, we discuss T6SS-dependent functions in intestinal microbes, including commensal microbes and enteric pathogens, and list experimentally verified species of intestinal bacteria containing T6SS clusters. Several seminal studies have shown that T6SS plays crucial antibacterial roles in colonization resistance, niche occupancy, activation of host innate immune responses, and modulation of host intestinal mechanics. Some potential roles of T6SS in the intestinal ecosystem, such as targeting of single cell eukaryotic competitors, competition for micronutrients, and stress resistance are also discussed. Considering the distinct activities of T6SS in diverse bacteria residing in the intestine, we suggest that T6SS research in intestinal microbes may be beneficial for the future development of new medicines and clinical treatments.
Collapse
Affiliation(s)
- Can Chen
- Institute of Food and Drug Inspection, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Xiaobing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Koscielniak D, Wons E, Wilkowska K, Sektas M. Non-programmed transcriptional frameshifting is common and highly RNA polymerase type-dependent. Microb Cell Fact 2018; 17:184. [PMID: 30474557 PMCID: PMC6260861 DOI: 10.1186/s12934-018-1034-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Background The viral or host systems for a gene expression assume repeatability of the process and high quality of the protein product. Since level and fidelity of transcription primarily determines the overall efficiency, all factors contributing to their decrease should be identified and optimized. Among many observed processes, non-programmed insertion/deletion (indel) of nucleotide during transcription (slippage) occurring at homopolymeric A/T sequences within a gene can considerably impact its expression. To date, no comparative study of the most utilized Escherichia coli and T7 bacteriophage RNA polymerases (RNAP) propensity for this type of erroneous mRNA synthesis has been reported. To address this issue we evaluated the influence of shift-prone A/T sequences by assessing indel-dependent phenotypic changes. RNAP-specific expression profile was examined using two of the most potent promoters, ParaBAD of E. coli and φ10 of phage T7. Results Here we report on the first systematic study on requirements for efficient transcriptional slippage by T7 phage and cellular RNAPs considering three parameters: homopolymer length, template type, and frameshift directionality preferences. Using a series of out-of-frame gfp reporter genes fused to a variety of A/T homopolymeric sequences we show that T7 RNAP has an exceptional potential for generating frameshifts and is capable of slipping on as few as three adenine or four thymidine residues in a row, in a flanking sequence-dependent manner. In contrast, bacterial RNAP exhibits a relatively low ability to baypass indel mutations and requires a run of at least 7 tymidine and even more adenine residues. This difference comes from involvement of various intrinsic proofreading properties. Our studies demonstrate distinct preference towards a specific homopolymer in slippage induction. Whereas insertion slippage performed by T7 RNAP (but not deletion) occurs tendentiously on poly(A) rather than on poly(T) runs, strong bias towards poly(T) for the host RNAP is observed. Conclusions Intrinsic RNAP slippage properties involve trade-offs between accuracy, speed and processivity of transcription. Viral T7 RNAP manifests far greater inclinations to the transcriptional slippage than E. coli RNAP. This possibly plays an important role in driving bacteriophage adaptation and therefore could be considered as beneficial. However, from biotechnological and experimental viewpoint, this might create some problems, and strongly argues for employing bacterial expression systems, stocked with proofreading mechanisms. Electronic supplementary material The online version of this article (10.1186/s12934-018-1034-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dawid Koscielniak
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Wilkowska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Marian Sektas
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
6
|
Giannakopoulou N, Mendis N, Zhu L, Gruenheid S, Faucher SP, Le Moual H. The Virulence Effect of CpxRA in Citrobacter rodentium Is Independent of the Auxiliary Proteins NlpE and CpxP. Front Cell Infect Microbiol 2018; 8:320. [PMID: 30280092 PMCID: PMC6153362 DOI: 10.3389/fcimb.2018.00320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
Citrobacter rodentium is a murine pathogen used to model the intestinal infection caused by Enteropathogenic and Enterohemorrhagic Escherichia coli (EPEC and EHEC), two diarrheal pathogens responsible for morbidity and mortality in developing and developed countries, respectively. During infection, these bacteria must sense and adapt to the gut environment of the host. In order to adapt to changing environmental cues and modulate expression of specific genes, bacteria can use two-component signal transduction systems (TCS). We have shown that the deletion of the Cpx TCS in C. rodentium leads to a marked attenuation in virulence in C3H/HeJ mice. In E. coli, the Cpx TCS is reportedly activated in response to signals from the outer-membrane lipoprotein NlpE. We therefore investigated the role of NlpE in C. rodentium virulence. We also assessed the role of the reported negative regulator of CpxRA, CpxP. We found that as opposed to the ΔcpxRA strain, neither the ΔnlpE, ΔcpxP nor the ΔnlpEΔcpxP strains were significantly attenuated, and had similar in vivo localization to wild-type C. rodentium. The in vitro adherence of the Cpx auxiliary protein mutants, ΔnlpE, ΔcpxP, ΔnlpEΔcpxP, was comparable to wild-type C. rodentium, whereas the ΔcpxRA strain showed significantly decreased adherence. To further elucidate the mechanisms behind the contrasting virulence phenotypes, we performed microarrays in order to define the regulon of the Cpx TCS. We detected 393 genes differentially regulated in the ΔcpxRA strain. The gene expression profile of the ΔnlpE strain is strikingly different than the profile of ΔcpxRA with regards to the genes activated by CpxRA. Further, there is no clear inverse correlation in the expression pattern of the ΔcpxP strain in comparison to ΔcpxRA. Taken together, these data suggest that in these conditions, CpxRA activates gene expression in a largely NlpE- and CpxP-independent manner. Compared to wildtype, 161 genes were downregulated in the ΔcpxRA strain, while being upregulated or unchanged in the Cpx auxiliary protein deletion strains. This group of genes, which we hypothesize may contribute to the loss of virulence of ΔcpxRA, includes T6SS components, ompF, the regulator for colanic acid synthesis, and several genes involved in maltose metabolism.
Collapse
Affiliation(s)
| | - Nilmini Mendis
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Lei Zhu
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Hervé Le Moual
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Penno C, Kumari R, Baranov PV, van Sinderen D, Atkins JF. Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage. Nucleic Acids Res 2017; 45:10143-10155. [PMID: 28973469 PMCID: PMC5737552 DOI: 10.1093/nar/gkx689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/24/2017] [Indexed: 01/03/2023] Open
Abstract
RNA dependent DNA-polymerases, reverse transcriptases, are key enzymes for retroviruses and retroelements. Their fidelity, including indel generation, is significant for their use as reagents including for deep sequencing. Here, we report that certain RNA template structures and G-rich sequences, ahead of diverse reverse transcriptases can be strong stimulators for slippage at slippage-prone template motif sequence 3′ of such ‘slippage-stimulatory’ structures. Where slippage is stimulated, the resulting products have one or more additional base(s) compared to the corresponding template motif. Such structures also inhibit slippage-mediated base omission which can be more frequent in the absence of a relevant stem–loop. Slippage directionality, base insertion and omission, is sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5′ adjacent base. The retrotransposon-derived enzyme TGIRT exhibits more slippage in vitro than the retroviral enzymes tested including that from HIV. Structure-mediated slippage may be exhibited by other polymerases and enrich gene expression. A cassette from Drosophila retrotransposon Dme1_chrX_2630566, a candidate for utilizing slippage for its GagPol synthesis, exhibits strong slippage in vitro. Given the widespread occurrence and importance of retrotransposons, systematic studies to reveal the extent of their functional utilization of RT slippage are merited.
Collapse
Affiliation(s)
- Christophe Penno
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Romika Kumari
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
8
|
Penno C, Kumari R, Baranov PV, van Sinderen D, Atkins JF. Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis. Nucleic Acids Res 2017; 45:10156-10167. [PMID: 28973470 PMCID: PMC5737442 DOI: 10.1093/nar/gkx690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022] Open
Abstract
Synthesis of HIV GagPol involves a proportion of ribosomes translating a U6A shift site at the distal end of the gag gene performing a programmed -1 ribosomal frameshift event to enter the overlapping pol gene. In vitro studies here show that at the same shift motif HIV reverse transcriptase generates -1 and +1 indels with their ratio being sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5' adjacent base. The GGG sequence 3' adjacent to the U6A shift/slippage site, which is important for ribosomal frameshifting, is shown here to limit reverse transcriptase base substitution and indel 'errors' in the run of A's in the product. The indels characterized here have either 1 more or less A, than the corresponding number of template U's. cDNA with 5 A's may yield novel Gag product(s), while cDNA with an extra base, 7 A's, may only be a minor contributor to GagPol polyprotein. Synthesis of a proportion of non-ribosomal frameshift derived GagPol would be relevant in efforts to identify therapeutically useful compounds that perturb the ratio of GagPol to Gag, and pertinent to the extent in which specific polymerase slippage is utilized in gene expression.
Collapse
Affiliation(s)
- Christophe Penno
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Romika Kumari
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
9
|
Bernal P, Allsopp LP, Filloux A, Llamas MA. The Pseudomonas putida T6SS is a plant warden against phytopathogens. THE ISME JOURNAL 2017; 11:972-987. [PMID: 28045455 PMCID: PMC5363822 DOI: 10.1038/ismej.2016.169] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/08/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022]
Abstract
Bacterial type VI secretion systems (T6SSs) are molecular weapons designed to deliver toxic effectors into prey cells. These nanomachines have an important role in inter-bacterial competition and provide advantages to T6SS active strains in polymicrobial environments. Here we analyze the genome of the biocontrol agent Pseudomonas putida KT2440 and identify three T6SS gene clusters (K1-, K2- and K3-T6SS). Besides, 10 T6SS effector-immunity pairs were found, including putative nucleases and pore-forming colicins. We show that the K1-T6SS is a potent antibacterial device, which secretes a toxic Rhs-type effector Tke2. Remarkably, P. putida eradicates a broad range of bacteria in a K1-T6SS-dependent manner, including resilient phytopathogens, which demonstrates that the T6SS is instrumental to empower P. putida to fight against competitors. Furthermore, we observed a drastically reduced necrosis on the leaves of Nicotiana benthamiana during co-infection with P. putida and Xanthomonas campestris. Such protection is dependent on the activity of the P. putida T6SS. Many routes have been explored to develop biocontrol agents capable of manipulating the microbial composition of the rhizosphere and phyllosphere. Here we unveil a novel mechanism for plant biocontrol, which needs to be considered for the selection of plant wardens whose mission is to prevent phytopathogen infections.
Collapse
Affiliation(s)
- Patricia Bernal
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Luke P Allsopp
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
10
|
Abstract
The type VI secretion system (T6SS) is a multiprotein complex widespread in Proteobacteria and dedicated to the delivery of toxins into both prokaryotic and eukaryotic cells. It thus participates in interbacterial competition as well as pathogenesis. The T6SS is a contractile weapon, related to the injection apparatus of contractile tailed bacteriophages. Basically, it assembles an inner tube wrapped by a sheath-like structure and anchored to the cell envelope via a membrane complex. The energy released by the contraction of the sheath propels the inner tube through the membrane channel and toward the target cell. Although the assembly and the mechanism of action are conserved across species, the repertoire of secreted toxins and the diversity of the regulatory mechanisms and of target cells make the T6SS a highly versatile secretion system. The T6SS is particularly represented in Escherichia coli pathotypes and Salmonella serotypes. In this review we summarize the current knowledge regarding the prevalence, the assembly, the regulation, and the roles of the T6SS in E. coli, Salmonella, and related species.
Collapse
Affiliation(s)
- Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS) - Aix-Marseille Université, UMR 7255, 13402 Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS) - Aix-Marseille Université, UMR 7255, 13402 Marseille Cedex 20, France
| |
Collapse
|
11
|
Productive mRNA stem loop-mediated transcriptional slippage: Crucial features in common with intrinsic terminators. Proc Natl Acad Sci U S A 2015; 112:E1984-93. [PMID: 25848054 DOI: 10.1073/pnas.1418384112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli and yeast DNA-dependent RNA polymerases are shown to mediate efficient nascent transcript stem loop formation-dependent RNA-DNA hybrid realignment. The realignment was discovered on the heteropolymeric sequence T5C5 and yields transcripts lacking a C residue within a corresponding U5C4. The sequence studied is derived from a Roseiflexus insertion sequence (IS) element where the resulting transcriptional slippage is required for transposase synthesis. The stability of the RNA structure, the proximity of the stem loop to the slippage site, the length and composition of the slippage site motif, and the identity of its 3' adjacent nucleotides (nt) are crucial for transcripts lacking a single C. In many respects, the RNA structure requirements for this slippage resemble those for hairpin-dependent transcription termination. In a purified in vitro system, the slippage efficiency ranges from 5% to 75% depending on the concentration ratios of the nucleotides specified by the slippage sequence and the 3' nt context. The only previous proposal of stem loop mediated slippage, which was in Ebola virus expression, was based on incorrect data interpretation. We propose a mechanical slippage model involving the RNAP translocation state as the main motor in slippage directionality and efficiency. It is distinct from previously described models, including the one proposed for paramyxovirus, where following random movement efficiency is mainly dependent on the stability of the new realigned hybrid. In broadening the scope for utilization of transcription slippage for gene expression, the stimulatory structure provides parallels with programmed ribosomal frameshifting at the translation level.
Collapse
|