1
|
Nickens DG, Feng Z, Shen J, Gray SJ, Simmons R, Niu H, Bochman M. Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA. Nucleic Acids Res 2024; 52:6317-6332. [PMID: 38613387 PMCID: PMC11194072 DOI: 10.1093/nar/gkae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Zhitong Feng
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Jiangchuan Shen
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Spencer J Gray
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Robert H Simmons
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Hengyao Niu
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Kotenko O, Makovets S. The functional significance of the RPA- and PCNA-dependent recruitment of Pif1 to DNA. EMBO Rep 2024; 25:1734-1751. [PMID: 38480846 PMCID: PMC11014909 DOI: 10.1038/s44319-024-00114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pif1 family helicases are multifunctional proteins conserved in eukaryotes, from yeast to humans. They are important for the genome maintenance in both nuclei and mitochondria, where they have been implicated in Okazaki fragment processing, replication fork progression and termination, telomerase regulation and DNA repair. While the Pif1 helicase activity is readily detectable on naked nucleic acids in vitro, the in vivo functions rely on recruitment to DNA. We identify the single-stranded DNA binding protein complex RPA as the major recruiter of Pif1 in budding yeast, in addition to the previously reported Pif1-PCNA interaction. The two modes of the Pif1 recruitment act independently during telomerase inhibition, as the mutations in the Pif1 motifs disrupting either of the recruitment pathways act additively. In contrast, both recruitment mechanisms are essential for the replication-related roles of Pif1 at conventional forks and during the repair by break-induced replication. We propose a molecular model where RPA and PCNA provide a double anchoring of Pif1 at replication forks, which is essential for the Pif1 functions related to the fork movement.
Collapse
Affiliation(s)
- Oleksii Kotenko
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Svetlana Makovets
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
3
|
Nickens DG, Feng Z, Shen J, Gray SJ, Simmons RH, Niu H, Bochman ML. Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569902. [PMID: 38105973 PMCID: PMC10723391 DOI: 10.1101/2023.12.04.569902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.
Collapse
|
4
|
Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y, Xu ZX. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis 2024; 15:90. [PMID: 38278800 PMCID: PMC10817947 DOI: 10.1038/s41419-024-06454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
5
|
Cai T, Wang N, Meng P, Sun W, Cui Y. Up-regulated PIF1 predicts poor clinical outcomes and correlates with low immune infiltrates in clear cell renal cell carcinoma. Front Genet 2023; 13:1058040. [PMID: 36685888 PMCID: PMC9847676 DOI: 10.3389/fgene.2022.1058040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Petite Integration Factor 1 (PIF1) is a multifunctional helicase and DNA processing enzyme that plays an important role in the process of several cancer types. However, the relationship between clear cell renal cell carcinoma (ccRCC) and PIF1 remains unclear. This study aims to explore the role of PIF1 in ccRCC tumorigenesis and prognosis. Methods: Based on The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, we retrieved and verified the expression of PIF1 in ccRCC tissues as well as normal tissues. To assess the protein expression of PIF1 by using the Human Protein Atlas and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). We also performed receiver operating characteristic (ROC) curve analysis to differentiate the effectiveness of PIF1 in ccRCC and adjacent normal tissues. To evaluate the value of PIF1 on clinical outcomes in ccRCC patients by using multivariate methods and Kaplan‒Meier survival curves. Protein‒protein interaction (PPI) networks were made with STRING. We determined the relationship between the expression of PIF1 and immune cell infiltration with single-sample gene set enrichment analysis (ssGSEA). Results: Compared with normal tissues, the expression of PIF1 was significantly elevated in ccRCC. The mRNA expression of PIF1 is correlated with high TNM stage and high pathologic stage. The receiver operating characteristic (ROC) curve analysis showed that PIF1 was related to an area under the curve (AUC) value of 0.928 to distinguish between ccRCC tissues and normal tissues. Kaplan‒Meier survival analysis showed that the overall survival (OS) of ccRCC patients with a high level of PIF1 was significantly shorter than that of those with a low level of PIF1. PIF1 may play an important role in the occurrence of tumors. Correlation analysis showed that PIF1-mediated carcinogenesis may participate in the process of tumor immune escape in ccRCC. Conclusion: PIF1 could be a reference biomarker to identify ccRCC patients with poor prognosis. PIF1 may play a distinct role in the microenvironment of ccRCC by regulating tumor infiltration of immune cells, which is a new therapeutic target to affect the growth of the tumor.
Collapse
Affiliation(s)
- Tong Cai
- Department of Urology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ning Wang
- Department of Urology, The Affiliated YantaiYuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peng Meng
- Department of Oncology, Yantai Traditional Chinese Medicine Hospital, Yantai, Shandong, China
| | - Weigui Sun
- Department of Urology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China,*Correspondence: Weigui Sun, ; Yuanshan Cui,
| | - Yuanshan Cui
- Department of Urology, The Affiliated YantaiYuhuangding Hospital of Qingdao University, Yantai, Shandong, China,*Correspondence: Weigui Sun, ; Yuanshan Cui,
| |
Collapse
|
6
|
Nickens DG, Bochman ML. Genetic and biochemical interactions of yeast DNA helicases. Methods 2022; 204:234-240. [PMID: 35483549 DOI: 10.1016/j.ymeth.2022.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
DNA helicases function in many types of nucleic acid transactions, and as such, they are vital for genome integrity. Although they are often considered individually, work from many groups demonstrates that these enzymes often genetically and biochemically interact in vivo. Here, we highlight methods to interrogate such interactions among the PIF1 (Pif1 and Rrm3) and RecQ (Hrq1 and Sgs1) family helicases in Saccharomyces cerevisiae. The interactions among these enzymes were investigated in vivo using deletion and inactivation alleles with a gross-chromosomal rearrangement (GCR) assay. Further, wild-type and inactive recombinant proteins were used to determine the effects of the helicases on telomerase activity in vitro. We found that synergistic increases in GCR rates often occur in double vs. single mutants, suggesting that the helicases function in distinct genome integrity pathways. Further, the recombinant helicases can function together in vitro to modulate telomerase activity. Overall, the data suggest that the interactions among the members of these DNA helicase families are multipartite and argue for a comprehensive systems biology approach to fully elucidate the physiological interplay between these enzymes.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405 USA
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405 USA.
| |
Collapse
|
7
|
Malone EG, Thompson MD, Byrd AK. Role and Regulation of Pif1 Family Helicases at the Replication Fork. Int J Mol Sci 2022; 23:ijms23073736. [PMID: 35409096 PMCID: PMC8998199 DOI: 10.3390/ijms23073736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pif1 helicases are a multifunctional family of DNA helicases that are important for many aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier, tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination, Okazaki fragment maturation, and break-induced replication. This review highlights many of the roles and regulations of Pif1 at the replication fork that promote cellular health and viability.
Collapse
Affiliation(s)
- Emory G. Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Matthew D. Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-526-6488
| |
Collapse
|
8
|
Abstract
The gene encoding the Pif1 helicase was first discovered in a Saccharomyces cerevisiae genetic screen as a mutant that reduces recombination between mitochondrial respiratory mutants and was subsequently rediscovered in a screen for genes affecting the telomere length in the nucleus. It is now known that Pif1 is involved in numerous aspects of DNA metabolism. All known functions of Pif1 rely on binding to DNA substrates followed by ATP hydrolysis, coupling the energy released to translocation along DNA to unwind duplex DNA or alternative DNA secondary structures. The interaction of Pif1 with higher-order DNA structures, like G-quadruplex DNA, as well as the length of single-stranded (ss)DNA necessary for Pif1 loading have been widely studied. Here, to test the effects of ssDNA length, sequence, and structure on Pif1's biochemical activities in vitro, we used a suite of oligonucleotide-based substrates to perform a basic characterization of Pif1 ssDNA binding, ATPase activity, and helicase activity. Using recombinant, untagged S. cerevisiae Pif1, we found that Pif1 preferentially binds to structured G-rich ssDNA, but the preferred binding substrates failed to maximally stimulate ATPase activity. In helicase assays, significant DNA unwinding activity was detected at Pif1 concentrations as low as 250 pM. Helicase assays also demonstrated that Pif1 most efficiently unwinds DNA fork substrates with unstructured ssDNA tails. As the chemical step size of Pif1 has been determined to be 1 ATP per translocation or unwinding event, this implies that the highly structured DNA inhibits conformational changes in Pif1 that couple ATP hydrolysis to DNA translocation and unwinding.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Pandey S, Hajikazemi M, Zacheja T, Schalbetter S, Baxter J, Guryev V, Hofmann A, Heermann DW, Juranek SA, Paeschke K. Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage. BMC Biol 2021; 19:247. [PMID: 34801008 PMCID: PMC8605574 DOI: 10.1186/s12915-021-01167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background The main function of telomerase is at the telomeres but under adverse conditions telomerase can bind to internal regions causing deleterious effects as observed in cancer cells. Results By mapping the global occupancy of the catalytic subunit of telomerase (Est2) in the budding yeast Saccharomyces cerevisiae, we reveal that it binds to multiple guanine-rich genomic loci, which we termed “non-telomeric binding sites” (NTBS). We characterize Est2 binding to NTBS. Contrary to telomeres, Est2 binds to NTBS in G1 and G2 phase independently of Est1 and Est3. The absence of Est1 and Est3 renders telomerase inactive at NTBS. However, upon global DNA damage, Est1 and Est3 join Est2 at NTBS and telomere addition can be observed indicating that Est2 occupancy marks NTBS regions as particular risks for genome stability. Conclusions Our results provide a novel model of telomerase regulation in the cell cycle using internal regions as “parking spots” of Est2 but marking them as hotspots for telomere addition. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01167-1.
Collapse
Affiliation(s)
- Satyaprakash Pandey
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Theresa Zacheja
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | | | - Jonathan Baxter
- Department of Life Science, University of Sussex, Brighton, UK
| | - Victor Guryev
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands
| | - Andreas Hofmann
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg, Germany
| | - Dieter W Heermann
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg, Germany
| | - Stefan A Juranek
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany.
| | - Katrin Paeschke
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands. .,Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Hoerr RE, Ngo K, Friedman KL. When the Ends Justify the Means: Regulation of Telomere Addition at Double-Strand Breaks in Yeast. Front Cell Dev Biol 2021; 9:655377. [PMID: 33816507 PMCID: PMC8012806 DOI: 10.3389/fcell.2021.655377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/15/2021] [Indexed: 11/23/2022] Open
Abstract
Telomeres, repetitive sequences located at the ends of most eukaryotic chromosomes, provide a mechanism to replenish terminal sequences lost during DNA replication, limit nucleolytic resection, and protect chromosome ends from engaging in double-strand break (DSB) repair. The ribonucleoprotein telomerase contains an RNA subunit that serves as the template for the synthesis of telomeric DNA. While telomere elongation is typically primed by a 3′ overhang at existing chromosome ends, telomerase can act upon internal non-telomeric sequences. Such de novo telomere addition can be programmed (for example, during chromosome fragmentation in ciliated protozoa) or can occur spontaneously in response to a chromosome break. Telomerase action at a DSB can interfere with conservative mechanisms of DNA repair and results in loss of distal sequences but may prevent additional nucleolytic resection and/or chromosome rearrangement through formation of a functional telomere (termed “chromosome healing”). Here, we review studies of spontaneous and induced DSBs in the yeast Saccharomyces cerevisiae that shed light on mechanisms that negatively regulate de novo telomere addition, in particular how the cell prevents telomerase action at DSBs while facilitating elongation of critically short telomeres. Much of our understanding comes from the use of perfect artificial telomeric tracts to “seed” de novo telomere addition. However, endogenous sequences that are enriched in thymine and guanine nucleotides on one strand (TG-rich) but do not perfectly match the telomere consensus sequence can also stimulate unusually high frequencies of telomere formation following a DSB. These observations suggest that some internal sites may fully or partially escape mechanisms that normally negatively regulate de novo telomere addition.
Collapse
Affiliation(s)
- Remington E Hoerr
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Katrina Ngo
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Katherine L Friedman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
11
|
Shen M, Young A, Autexier C. PCNA, a focus on replication stress and the alternative lengthening of telomeres pathway. DNA Repair (Amst) 2021; 100:103055. [PMID: 33581499 DOI: 10.1016/j.dnarep.2021.103055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
The maintenance of telomeres, which are specialized stretches of DNA found at the ends of linear chromosomes, is a crucial step for the immortalization of cancer cells. Approximately 10-15 % of cancer cells use a homologous recombination-based mechanism known as the Alternative Lengthening of Telomeres (ALT) pathway to maintain their telomeres. Telomeres in general pose a challenge to DNA replication owing to their repetitive nature and potential for forming secondary structures. Telomeres in ALT+ cells especially are subject to elevated levels of replication stress compared to telomeres that are maintained by the enzyme telomerase, in part due to the incorporation of telomeric variant repeats at ALT+ telomeres, their on average longer lengths, and their modified chromatin states. Many DNA metabolic strategies exist to counter replication stress and to protect stalled replication forks. The role of proliferating cell nuclear antigen (PCNA) as a platform for recruiting protein partners that participate in several of these DNA replication and repair pathways has been well-documented. We propose that many of these pathways may be active at ALT+ telomeres, either to facilitate DNA replication, to manage replication stress, or during telomere extension. Here, we summarize recent evidence detailing the role of PCNA in pathways including DNA secondary structure resolution, DNA damage bypass, replication fork restart, and DNA damage synthesis. We propose that an examination of PCNA and its post-translational modifications (PTMs) may offer a unique lens by which we might gain insight into the DNA metabolic landscape that is distinctively present at ALT+ telomeres.
Collapse
Affiliation(s)
- Michelle Shen
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Adrian Young
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada.
| |
Collapse
|
12
|
Paeschke K, Burkovics P. Mgs1 function at G-quadruplex structures during DNA replication. Curr Genet 2020; 67:225-230. [PMID: 33237336 PMCID: PMC8032586 DOI: 10.1007/s00294-020-01128-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/03/2022]
Abstract
The coordinated action of DNA polymerases and DNA helicases is essential at genomic sites that are hard to replicate. Among these are sites that harbour G-quadruplex DNA structures (G4). G4s are stable alternative DNA structures, which have been implicated to be involved in important cellular processes like the regulation of gene expression or telomere maintenance. G4 structures were shown to hinder replication fork progression and cause genomic deletions, mutations and recombination events. Many helicases unwind G4 structures and preserve genome stability, but a detailed understanding of G4 replication and the re-start of stalled replication forks around formed G4 structures is not clear, yet. In our recent study, we identified that Mgs1 preferentially binds to G4 DNA structures in vitro and is associated with putative G4-forming chromosomal regions in vivo. Mgs1 binding to G4 motifs in vivo is partially dependent on the helicase Pif1. Pif1 is the major G4-unwinding helicase in S. cerevisiae. In the absence of Mgs1, we determined elevated gross chromosomal rearrangement (GCR) rates in yeast, similar to Pif1 deletion. Here, we highlight the recent findings and set these into context with a new mechanistic model. We propose that Mgs1's functions support DNA replication at G4-forming regions.
Collapse
Affiliation(s)
- Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.
| | - Peter Burkovics
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
13
|
Ononye OE, Sausen CW, Bochman ML, Balakrishnan L. Dynamic regulation of Pif1 acetylation is crucial to the maintenance of genome stability. Curr Genet 2020; 67:85-92. [PMID: 33079209 DOI: 10.1007/s00294-020-01116-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023]
Abstract
PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.
Collapse
Affiliation(s)
- Onyekachi E Ononye
- Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, USA
| | - Christopher W Sausen
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA.
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, USA.
| |
Collapse
|
14
|
Chen B, Hua Z, Gong B, Tan X, Zhang S, Li Q, Chen Y, Zhang J, Li Z. Downregulation of PIF1, a potential new target of MYCN, induces apoptosis and inhibits cell migration in neuroblastoma cells. Life Sci 2020; 256:117820. [PMID: 32512012 DOI: 10.1016/j.lfs.2020.117820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Neuroblastoma (NB) is one of the most common malignant tumors in children. Chemotherapy resistance is one of the significant challenges in the treatment of high-risk NB patients, and it is necessary to search for new valid targets for NB treatment. This study aims to explore the possible role of PIF1 in NB by using bioinformatic analysis and downregulation of PIF1 with specific siRNA. Kyoto genome encyclopedia and R language based gene ontology was used to analyze the differentially expressed genes (DEGs) (including PIF1) when MYCN expression was silenced in NB cells. Analysis based on the R2 database showed a lower expression of PIF1 correlated with good prognosis in NB patients. Downregulation of MYCN expression by transfecting MYCN siRNA (#1, #2) into NB cells decreased the PIF1 expression at both mRNA and protein levels, while upregulation of MYCN expression by transfecting MYCN overexpressed plasmid increased the PIF1 expression. We further found that downregulation of PIF1 expression by transfecting PIF1 siRNA (#1, #2) into NB cells, increased the number of apoptotic cells, inhibited the cell survival, decreased the ability of cell migration and induced a cell cycle arrest at G1 phase. These data indicated that PIF1, as a potential new target of MYCN, maybe a novel target for NB treatment.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baocheng Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolin Tan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Simeng Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinhua Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Lorke M, Willen M, Lucas K, Schille JT, Lüder Ripoli F, Willenbrock S, Beyerbach M, Wefstaedt P, Murua Escobar H, Nolte I. Effect of antioxidants, mitochondrial cofactors and omega-3 fatty acids on telomere length and kinematic joint mobility in young and old shepherd dogs - A randomized, blinded and placebo-controlled study. Res Vet Sci 2020; 129:137-153. [PMID: 32000015 DOI: 10.1016/j.rvsc.2020.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/23/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Abstract
In dogs, decreasing telomere length is a biomarker for cellular aging. On a systemic level, aging affects the locomotor system in particular, leading to restricted joint mobility. As aging is thought to be related to oxidative stress, it may be counteracted by a diet enriched with antioxidants, mitochondrial cofactors and omega-3 fatty acids. This randomized, blinded and placebo-controlled study examined the influence of an accordingly enriched diet compared to a control diet on 36 young and 38 old shepherd dogs. At the outset, after 3 and after 6 months, mean and minimum telomere lengths were measured. Furthermore, minimum and maximum joint angles and range of motion of the shoulder, elbow, carpal, hip, stifle and tarsal joints were measured by computer-assisted gait analysis. A positive influence of the enriched diet on old dogs could be verified for minimum telomere length and all three parameters of the shoulder joint on the side with the higher vertical ground reaction force after 6 months. In the other joints there were less significant differences; in some cases they indicated a contrary influence of the enriched diet on young dogs, probably due to its reduced protein content. The greater effect of the enriched diet on minimum than on mean telomere length may be due to the higher preference of telomerase for short telomeres. The greater effect on shoulder joint mobility is explained by the greater influence of musculature and connective tissue in this joint. For elderly dogs it is advisable to feed these nutritional supplements.
Collapse
Affiliation(s)
- Malin Lorke
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, D-30559 Hannover, Germany
| | - Maray Willen
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, D-30559 Hannover, Germany
| | - Karin Lucas
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, D-30559 Hannover, Germany
| | - Jan Torben Schille
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, D-30559 Hannover, Germany
| | - Florenza Lüder Ripoli
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, D-30559 Hannover, Germany; Division of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, University of Rostock, D-18057 Rostock, Germany
| | - Saskia Willenbrock
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, D-30559 Hannover, Germany
| | - Martin Beyerbach
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, D-30559 Hannover, Germany
| | - Patrick Wefstaedt
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, D-30559 Hannover, Germany
| | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, D-30559 Hannover, Germany; Division of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, University of Rostock, D-18057 Rostock, Germany
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, D-30559 Hannover, Germany.
| |
Collapse
|
16
|
Branched unwinding mechanism of the Pif1 family of DNA helicases. Proc Natl Acad Sci U S A 2019; 116:24533-24541. [PMID: 31744872 DOI: 10.1073/pnas.1915654116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Members of the Pif1 family of helicases function in multiple pathways that involve DNA synthesis: DNA replication across G-quadruplexes; break-induced replication; and processing of long flaps during Okazaki fragment maturation. Furthermore, Pif1 increases strand-displacement DNA synthesis by DNA polymerase δ and allows DNA replication across arrays of proteins tightly bound to DNA. This is a surprising feat since DNA rewinding or annealing activities limit the amount of single-stranded DNA product that Pif1 can generate, leading to an apparently poorly processive helicase. In this work, using single-molecule Förster resonance energy transfer approaches, we show that 2 members of the Pif1 family of helicases, Pif1 from Saccharomyces cerevisiae and Pfh1 from Schizosaccharomyces pombe, unwind double-stranded DNA by a branched mechanism with 2 modes of activity. In the dominant mode, only short stretches of DNA can be processively and repetitively opened, with reclosure of the DNA occurring by mechanisms other than strand-switching. In the other less frequent mode, longer stretches of DNA are unwound via a path that is separate from the one leading to repetitive unwinding. Analysis of the kinetic partitioning between the 2 different modes suggests that the branching point in the mechanism is established by conformational selection, controlled by the interaction of the helicase with the 3' nontranslocating strand. The data suggest that the dominant and repetitive mode of DNA opening of the helicase can be used to allow efficient DNA replication, with DNA synthesis on the nontranslocating strand rectifying the DNA unwinding activity.
Collapse
|
17
|
Bernal M, Yang X, Lisby M, Mazón G. The FANCM family Mph1 helicase localizes to the mitochondria and contributes to mtDNA stability. DNA Repair (Amst) 2019; 82:102684. [DOI: 10.1016/j.dnarep.2019.102684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/24/2022]
|
18
|
Pohl TJ, Zakian VA. Pif1 family DNA helicases: A helpmate to RNase H? DNA Repair (Amst) 2019; 84:102633. [PMID: 31231063 DOI: 10.1016/j.dnarep.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/21/2023]
Abstract
An R-loop is a structure that forms when an RNA transcript stays bound to the DNA strand that encodes it and leaves the complementary strand exposed as a loop of single stranded DNA. R-loops accumulate when the processing of RNA transcripts is impaired. The failure to remove these RNA-DNA hybrids can lead to replication fork stalling and genome instability. Resolution of R-loops is thought to be mediated mainly by RNase H enzymes through the removal and degradation of the RNA in the hybrid. However, DNA helicases can also dismantle R-loops by displacing the bound RNA. In particular, the Pif1 family DNA helicases have been shown to regulate R-loop formation at specific genomic loci, such as tRNA genes and centromeres. Here we review the roles of Pif1 family helicases in vivo and in vitro and discuss evidence that Pif1 family helicases act on RNA-DNA hybrids and highlight their potential roles in complementing RNase H for R-loop resolution.
Collapse
Affiliation(s)
- Thomas J Pohl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States.
| |
Collapse
|
19
|
Geronimo CL, Singh SP, Galletto R, Zakian VA. The signature motif of the Saccharomyces cerevisiae Pif1 DNA helicase is essential in vivo for mitochondrial and nuclear functions and in vitro for ATPase activity. Nucleic Acids Res 2018; 46:8357-8370. [PMID: 30239884 PMCID: PMC6144861 DOI: 10.1093/nar/gky655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022] Open
Abstract
Pif1 family DNA helicases are conserved from bacteria to humans and have critical and diverse functions in vivo that promote genome integrity. Pif1 family helicases share a 23 amino acid region, called the Pif1 signature motif (SM) that is unique to this family. To determine the importance of the SM, we did mutational and functional analysis of the SM from the Saccharomyces cerevisiae Pif1 (ScPif1). The mutations deleted portions of the SM, made one or multiple single amino acid changes in the SM, replaced the SM with its counterpart from a bacterial Pif1 family helicase and substituted an α-helical domain from another helicase for the part of the SM that forms an α helix. Mutants were tested for maintenance of mitochondrial DNA, inhibition of telomerase at telomeres and double strand breaks, and promotion of Okazaki fragment maturation. Although certain single amino acid changes in the SM can be tolerated, the presence and sequence of the ScPif1 SM were essential for all tested in vivo functions. Consistent with the in vivo analyses, in vitro studies showed that the presence and sequence of the ScPif1 SM were critical for ATPase activity but not substrate binding.
Collapse
Affiliation(s)
- Carly L Geronimo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| |
Collapse
|
20
|
Nickens DG, Rogers CM, Bochman ML. The Saccharomyces cerevisiae Hrq1 and Pif1 DNA helicases synergistically modulate telomerase activity in vitro. J Biol Chem 2018; 293:14481-14496. [PMID: 30068549 DOI: 10.1074/jbc.ra118.004092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/23/2018] [Indexed: 11/06/2022] Open
Abstract
Telomere length homeostasis is vital for maintaining genomic stability and is regulated by multiple factors, including telomerase activity and DNA helicases. The Saccharomyces cerevisiae Pif1 helicase was the first discovered catalytic inhibitor of telomerase, but recent experimental evidence suggests that Hrq1, the yeast homolog of the disease-linked human RecQ-like helicase 4 (RECQL4), plays a similar role via an undefined mechanism. Using yeast extracts enriched for telomerase activity and an in vitro primer extension assay, here we determined the effects of recombinant WT and inactive Hrq1 and Pif1 on total telomerase activity and telomerase processivity. We found that titrations of these helicases alone have equal-but-opposite biphasic effects on telomerase, with Hrq1 stimulating activity at high concentrations. When the helicases were combined in reactions, however, they synergistically inhibited or stimulated telomerase activity depending on which helicase was catalytically active. These results suggest that Hrq1 and Pif1 interact and that their concerted activities ensure proper telomere length homeostasis in vivo We propose a model in which Hrq1 and Pif1 cooperatively contribute to telomere length homeostasis in yeast.
Collapse
Affiliation(s)
- David G Nickens
- From the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| | - Cody M Rogers
- From the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| | - Matthew L Bochman
- From the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
21
|
Abstract
Dna2 is a nuclease and helicase that functions redundantly with other proteins in Okazaki fragment processing, double-strand break resection, and checkpoint kinase activation. Dna2 is an essential enzyme, required for yeast and mammalian cell viability. Here, we report that numerous mutations affecting the DNA damage checkpoint suppress dna2∆ lethality in Saccharomyces cerevisiaedna2∆ cells are also suppressed by deletion of helicases PIF1 and MPH1, and by deletion of POL32, a subunit of DNA polymerase δ. All dna2∆ cells are temperature sensitive, have telomere length defects, and low levels of telomeric 3' single-stranded DNA (ssDNA). Interestingly, Rfa1, a subunit of the major ssDNA binding protein RPA, and the telomere-specific ssDNA binding protein Cdc13, often colocalize in dna2∆ cells. This suggests that telomeric defects often occur in dna2∆ cells. There are several plausible explanations for why the most critical function of Dna2 is at telomeres. Telomeres modulate the DNA damage response at chromosome ends, inhibiting resection, ligation, and cell-cycle arrest. We suggest that Dna2 nuclease activity contributes to modulating the DNA damage response at telomeres by removing telomeric C-rich ssDNA and thus preventing checkpoint activation.
Collapse
|
22
|
Jia P, Chai W. The MLH1 ATPase domain is needed for suppressing aberrant formation of interstitial telomeric sequences. DNA Repair (Amst) 2018; 65:20-25. [PMID: 29544212 DOI: 10.1016/j.dnarep.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/05/2023]
Abstract
Genome instability gives rise to cancer. MLH1, commonly known for its important role in mismatch repair (MMR), DNA damage signaling and double-strand break (DSB) repair, safeguards genome stability. Recently we have reported a novel role of MLH1 in preventing aberrant formation of interstitial telomeric sequences (ITSs) at intra-chromosomal regions. Deficiency in MLH1, in particular its N-terminus, leads to an increase of ITSs. Here, we identify that the ATPase activity in the MLH1 N-terminal domain is important for suppressing the formation of ITSs. The ATPase activity is also needed for recruiting MLH1 to DSBs. Moreover, defective ATPase activity of MLH1 causes an increase in micronuclei formation. Our results highlight the crucial role of MLH1's ATPase domain in preventing the aberrant formation of telomeric sequences at the intra-chromosomal regions and preserving genome stability.
Collapse
Affiliation(s)
- Pingping Jia
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, United States
| | - Weihang Chai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, United States.
| |
Collapse
|
23
|
Telomerase regulation by the Pif1 helicase: a length-dependent effect? Curr Genet 2017; 64:509-513. [PMID: 29052759 PMCID: PMC5851688 DOI: 10.1007/s00294-017-0768-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 01/04/2023]
Abstract
Dysfunctional telomere length regulation is detrimental to human health, and both activation and inhibition of telomerase have been proposed in potential therapies to treat human diseases. The Saccharomyces cerevisiae Pif1 protein is an evolutionarily conserved helicase that inhibits telomerase activity at DNA ends. Recent studies have indicated that Pif1 is specifically important for inhibiting telomerase at DNA ends with very little or no telomeric sequence and at long telomeres. At the former, Pif1 prevents the inappropriate addition of a telomere at DNA double-strand breaks. For the latter, Pif1 has been shown to bind long telomeres to presumably promote the extension of the short ones. These observations leave the impression that Pif1 does not act at DNA ends with telomeric sequence of intermediate length. Here, we provide in vivo evidence that Pif1 inhibits telomerase activity at DNA ends regardless of telomere sequence length.
Collapse
|
24
|
Wanzek K, Schwindt E, Capra JA, Paeschke K. Mms1 binds to G-rich regions in Saccharomyces cerevisiae and influences replication and genome stability. Nucleic Acids Res 2017; 45:7796-7806. [PMID: 28535251 PMCID: PMC5570088 DOI: 10.1093/nar/gkx467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/11/2017] [Indexed: 12/23/2022] Open
Abstract
The regulation of replication is essential to preserve genome integrity. Mms1 is part of the E3 ubiquitin ligase complex that is linked to replication fork progression. By identifying Mms1 binding sites genome-wide in Saccharomyces cerevisiae we connected Mms1 function to genome integrity and replication fork progression at particular G-rich motifs. This motif can form G-quadruplex (G4) structures in vitro. G4 are stable DNA structures that are known to impede replication fork progression. In the absence of Mms1, genome stability is at risk at these G-rich/G4 regions as demonstrated by gross chromosomal rearrangement assays. Mms1 binds throughout the cell cycle to these G-rich/G4 regions and supports the binding of Pif1 DNA helicase. Based on these data we propose a mechanistic model in which Mms1 binds to specific G-rich/G4 motif located on the lagging strand template for DNA replication and supports Pif1 function, DNA replication and genome integrity.
Collapse
Affiliation(s)
- Katharina Wanzek
- Department of Biochemistry, Theodor Boveri-Institute, University of Wuerzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Eike Schwindt
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - John A Capra
- Departments of Biological Sciences, Biomedical Informatics, Computer Science, and Vanderbilt Genetics Institute, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Katrin Paeschke
- Department of Biochemistry, Theodor Boveri-Institute, University of Wuerzburg, Am Hubland, D-97074 Würzburg, Germany.,European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| |
Collapse
|
25
|
Strecker J, Stinus S, Caballero MP, Szilard RK, Chang M, Durocher D. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres. eLife 2017; 6:23783. [PMID: 28826474 PMCID: PMC5595431 DOI: 10.7554/elife.23783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) and short telomeres are structurally similar, yet they have diametrically opposed fates. Cells must repair DSBs while blocking the action of telomerase on these ends. Short telomeres must avoid recognition by the DNA damage response while promoting telomerase recruitment. In Saccharomyces cerevisiae, the Pif1 helicase, a telomerase inhibitor, lies at the interface of these end-fate decisions. Using Pif1 as a sensor, we uncover a transition point in which 34 bp of telomeric (TG1-3)n repeat sequence renders a DNA end insensitive to Pif1 action, thereby enabling extension by telomerase. A similar transition point exists at natural chromosome ends, where telomeres shorter than ~40 bp are inefficiently extended by telomerase. This phenomenon is not due to known Pif1 modifications and we instead propose that Cdc13 renders TG34+ ends insensitive to Pif1 action. We contend that the observed threshold of Pif1 activity defines a dividing line between DSBs and telomeres.
Collapse
Affiliation(s)
- Jonathan Strecker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariana Pliego Caballero
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Ouenzar F, Lalonde M, Laprade H, Morin G, Gallardo F, Tremblay-Belzile S, Chartrand P. Cell cycle-dependent spatial segregation of telomerase from sites of DNA damage. J Cell Biol 2017. [PMID: 28637749 PMCID: PMC5551704 DOI: 10.1083/jcb.201610071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Telomerase can generate a novel telomere at a DNA break, with potentially lethal consequences for the cell. Ouenzar et al. reveal novel roles for Pif1, Rad52, and Siz1-dependent sumoylation in the spatial exclusion of telomerase from sites of DNA repair during the cell cycle. Telomerase can generate a novel telomere at DNA double-strand breaks (DSBs), an event called de novo telomere addition. How this activity is suppressed remains unclear. Combining single-molecule imaging and deep sequencing, we show that the budding yeast telomerase RNA (TLC1 RNA) is spatially segregated to the nucleolus and excluded from sites of DNA repair in a cell cycle–dependent manner. Although TLC1 RNA accumulates in the nucleoplasm in G1/S, Pif1 activity promotes TLC1 RNA localization in the nucleolus in G2/M. In the presence of DSBs, TLC1 RNA remains nucleolar in most G2/M cells but accumulates in the nucleoplasm and colocalizes with DSBs in rad52Δ cells, leading to de novo telomere additions. Nucleoplasmic accumulation of TLC1 RNA depends on Cdc13 localization at DSBs and on the SUMO ligase Siz1, which is required for de novo telomere addition in rad52Δ cells. This study reveals novel roles for Pif1, Rad52, and Siz1-dependent sumoylation in the spatial exclusion of telomerase from sites of DNA repair.
Collapse
Affiliation(s)
- Faissal Ouenzar
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Maxime Lalonde
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Hadrien Laprade
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Geneviève Morin
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Franck Gallardo
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
27
|
The functions of the multi-tasking Pfh1 Pif1 helicase. Curr Genet 2017; 63:621-626. [PMID: 28054200 PMCID: PMC5504263 DOI: 10.1007/s00294-016-0675-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/03/2022]
Abstract
Approximately, 1% of the genes in eukaryotic genomes encode for helicases, which make the number of helicases expressed in the cell considerably high. Helicases are motor proteins that participate in many central aspects of the nuclear and mitochondrial genomes, and based on their helicase motif conservation, they are divided into different helicase families. The Pif1 family of helicases is an evolutionarily conserved helicase family that is associated with familial breast cancer in humans. The Schizosaccharomyces pombe Pfh1 helicase belongs to the Pif1 helicase family and is a multi-tasking helicase that is important for replication fork progression through natural fork barriers, for G-quadruplex unwinding, and for Okazaki fragment maturation, and these activities are potentially shared by the human Pif1 helicase. This review discusses the known functions of the Pfh1 helicase, the study of which has led to a better understanding of nucleic acid metabolism in eukaryotes.
Collapse
|
28
|
Zubko EI, Shackleton JL, Zubko MK. ATLAS: An advanced PCR-method for routine visualization of telomere length in Saccharomyces cerevisiae. Int J Biol Macromol 2016; 93:1285-1294. [PMID: 27645931 DOI: 10.1016/j.ijbiomac.2016.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/20/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Measuring telomere length is essential in telomere biology. Southern blot hybridization is the predominant method for measuring telomere length in the genetic model Saccharomyces cerevisiae. We have further developed and refined a telomere PCR approach, which was rarely used previously (mainly in specific telomeric projects), into a robust method allowing direct visualisation of telomere length differences in routine experiments with S. cerevisiae, and showing a strong correlation of results with data obtained by Southern blot hybridization. In this expanded method denoted as ATLAS (A-dvanced T-elomere L-ength A-nalysis in S. cerevisiae), we have introduced: 1) set of new primers annealing with high specificity to telomeric regions on five different chromosomes; 2) new approach for designing reverse telomere primers that is based on the ligation of an adaptor of a fixed size to telomeric ends. ATLAS can be used at the scale of individual assays and high-throughput approaches. This simple, time/cost-effective and reproducible methodology will complement Southern blot hybridization and facilitate further progress in telomere research.
Collapse
Affiliation(s)
- Elena I Zubko
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, John Dalton Building, Chester St., Manchester, M1 5GD, United Kingdom
| | - Jennifer L Shackleton
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, John Dalton Building, Chester St., Manchester, M1 5GD, United Kingdom
| | - Mikhajlo K Zubko
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, John Dalton Building, Chester St., Manchester, M1 5GD, United Kingdom.
| |
Collapse
|
29
|
Chemo-mechanical pushing of proteins along single-stranded DNA. Proc Natl Acad Sci U S A 2016; 113:6194-9. [PMID: 27185951 DOI: 10.1073/pnas.1602878113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-stranded (ss)DNA binding (SSB) proteins bind with high affinity to ssDNA generated during DNA replication, recombination, and repair; however, these SSBs must eventually be displaced from or reorganized along the ssDNA. One potential mechanism for reorganization is for an ssDNA translocase (ATP-dependent motor) to push the SSB along ssDNA. Here we use single molecule total internal reflection fluorescence microscopy to detect such pushing events. When Cy5-labeled Escherichia coli (Ec) SSB is bound to surface-immobilized 3'-Cy3-labeled ssDNA, a fluctuating FRET signal is observed, consistent with random diffusion of SSB along the ssDNA. Addition of Saccharomyces cerevisiae Pif1, a 5' to 3' ssDNA translocase, results in the appearance of isolated, irregularly spaced saw-tooth FRET spikes only in the presence of ATP. These FRET spikes result from translocase-induced directional (5' to 3') pushing of the SSB toward the 3' ssDNA end, followed by displacement of the SSB from the DNA end. Similar ATP-dependent pushing events, but in the opposite (3' to 5') direction, are observed with EcRep and EcUvrD (both 3' to 5' ssDNA translocases). Simulations indicate that these events reflect active pushing by the translocase. The ability of translocases to chemo-mechanically push heterologous SSB proteins along ssDNA provides a potential mechanism for reorganization and clearance of tightly bound SSBs from ssDNA.
Collapse
|
30
|
Geronimo CL, Zakian VA. Getting it done at the ends: Pif1 family DNA helicases and telomeres. DNA Repair (Amst) 2016; 44:151-158. [PMID: 27233114 DOI: 10.1016/j.dnarep.2016.05.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is widely appreciated that the ends of linear DNA molecules cannot be fully replicated by the conventional replication apparatus. Less well known is that semi-conservative replication of telomeric DNA also presents problems for DNA replication. These problems likely arise from the atypical chromatin structure of telomeres, the GC-richness of telomeric DNA that makes it prone to forming DNA secondary structures, and from RNA-DNA hybrids, formed by transcripts of one or both DNA strands. Given the different aspects of telomeres that complicate their replication, it is not surprising that multiple DNA helicases promote replication of telomeric DNA. This review focuses on one such class of DNA helicases, the Pif1 family of 5'-3' DNA helicases. In budding and fission yeasts, Pif1 family helicases impact both telomerase-mediated and semi-conservative replication of telomeric DNA as well as recombination-mediated telomere lengthening.
Collapse
Affiliation(s)
- Carly L Geronimo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA.
| |
Collapse
|
31
|
Stundon JL, Zakian VA. Identification of Saccharomyces cerevisiae Genes Whose Deletion Causes Synthetic Effects in Cells with Reduced Levels of the Nuclear Pif1 DNA Helicase. G3 (BETHESDA, MD.) 2015; 5:2913-8. [PMID: 26483010 PMCID: PMC4683662 DOI: 10.1534/g3.115.021139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
The multifunctional Saccharomyces cerevisiae Pif1 DNA helicase affects the maintenance of telomeric, ribosomal, and mitochondrial DNAs, suppresses DNA damage at G-quadruplex motifs, influences the processing of Okazaki fragments, and promotes breakage induced replication. All of these functions require the ATPase/helicase activity of the protein. Owing to Pif1's critical role in the maintenance of mitochondrial DNA, pif1Δ strains quickly generate respiratory deficient cells and hence grow very slowly. This slow growth makes it difficult to carry out genome-wide synthetic genetic analysis in this background. Here, we used a partial loss of function allele of PIF1, pif1-m2, which is mitochondrial proficient but has reduced abundance of nuclear Pif1. Although pif1-m2 is not a null allele, pif1-m2 cells exhibit defects in telomere maintenance, reduced suppression of damage at G-quadruplex motifs and defects in breakage induced replication. We performed a synthetic screen to identify nonessential genes with a synthetic sick or lethal relationship in cells with low abundance of nuclear Pif1. This study identified eleven genes that were synthetic lethal (APM1, ARG80, CDH1, GCR1, GTO3, PRK1, RAD10, SKT5, SOP4, UMP1, and YCK1) and three genes that were synthetic sick (DEF1, YIP4, and HOM3) with pif1-m2.
Collapse
Affiliation(s)
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, New Jersey 08544
| |
Collapse
|