1
|
Guerrero-Bosagna C, Pértille F, Moradinour Z, Katajama R, Martin Cerezo ML, Henriksen R, Jensen P, Wright D. Selection for Tameness in Red Junglefowl Recapitulates Genetic Loci Associated With Domestication-Related Brain Composition. Mol Ecol 2025:e17788. [PMID: 40386851 DOI: 10.1111/mec.17788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/26/2025] [Accepted: 04/25/2025] [Indexed: 05/20/2025]
Abstract
Domestication involves huge phenotypic shifts via strong directional selection. The resulting changes, often termed the Domestication Syndrome, typically encompass numerous traits; however, the most universal of these are changes in reduced fear of humans (tameness) and brain composition. To assess how early domestication selection may have focused on tameness and its interaction with brain composition, a Red Junglefowl (Gallus gallus) population (the wild progenitor of the domestic chicken) was used to create two lines bidirectionally selected for fear of humans over eight generations of selection. These selection lines were then used to make an intercross population. Using a combination of genome-wide mapping in the intercross and between-line analysis of the selection lines, we show that the genetic loci for tameness co-localise with genetic loci for brain composition and anxiety behaviour. Furthermore, the detected loci for brain composition also co-localise with brain composition loci identified in a separate wild × domestic intercross. These results indicate that tameness and brain composition are either pleiotropic or genetically linked, and that tameness selection appears to recapitulate the same loci that have been selected by domestication itself. Therefore, selection for increased tameness could be the initial selection pressure driving the core of the domestication syndrome.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Fábio Pértille
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | | | | | | | - Rie Henriksen
- IFM Biology, Linköping University, Linköping, Sweden
| | - Per Jensen
- IFM Biology, Linköping University, Linköping, Sweden
| | | |
Collapse
|
2
|
Wright D, Westander J, Jensen P. Domestication effects on crowing in chickens: variation between wild and captive red junglefowl and domestic white Leghorn and the genetic architecture of crowing vocalizations. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240199. [PMID: 40370017 PMCID: PMC12079126 DOI: 10.1098/rstb.2024.0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 05/16/2025] Open
Abstract
The crowing of the male chicken is a charismatic example of vocal display in a bird. It is regarded as the main territorial announcement of the ancestral red junglefowl. The call has been preserved throughout domestication, although several of its elements have been altered. To assess these alterations, we assayed crowing spectrograms from wild and captive-held red junglefowl populations from India, along with two red junglefowl populations held in long-term captivity in Sweden, and a domestic white Leghorn breed. We find consistent differences between the different Indian red junglefowl and the domestic white Leghorn for a range of characteristics, including the duration of the last syllable and the number of formants and their frequency in the last and second-to-last syllable. To analyse the genetic architecture of crowing vocalization, we performed a quantitative trait loci (QTL) experiment using a wild × domestic advanced intercross to identify QTL that explained a large percentage of the variation present for the duration of the last syllable and the number of formants in the second to last syllable. With this study we thus demonstrate consistent differences in red junglefowl and white Leghorn chickens and identify a relatively simple genetic architecture for some of these traits.This article is part of the theme issue 'Unravelling domestication: multi-disciplinary perspectives on human and non-human relationships in the past, present and future'.
Collapse
Affiliation(s)
| | - Jennie Westander
- Skansen Foundation, Department of Zoology, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - P. Jensen
- IFM Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Gao H, Xiao J, Zhang Q, Man H, Tang X, Wang Z, Fang R, Jiang S. Effect of supplementation continuously in pullet and early lay period with Bacillus subtilis and yeast cell wall on the intestinal morphology, bone parameters, and egg quality of hens. Front Vet Sci 2025; 12:1584627. [PMID: 40343371 PMCID: PMC12058862 DOI: 10.3389/fvets.2025.1584627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025] Open
Abstract
The aim of this study was to investigate effect of Bacillus subtilis (BS), yeast cell wall (YCW), and their combination on intestinal and bone development and egg production of young hens. A total of 160, one-day-old Hy-Line Sonia chicks were randomly allocated into 4 treatments of 8 replicate cages of 5 birds each. Treatments were arranged in a 2 (0 and 0.5 g/kg of BS) × 2 (0 and 2 g/kg of YCW) factorial arrangement for a duration of 170-d as follows: (1) regular diet (Control group); (2) the regular diet plus 0.5 g BS/kg (BS group); (3) the regular diet plus 2 g YCW/kg (YCW group); and (4) the regular diet plus 0.5 g BS/kg and 2 g YCW/kg (BS + YCW group). One bird from each of the 8 replicate cages per treatment were randomly taken for sampling at d 110 and 170, respectively. Results indicated that there were different effects of BS and YCW on bird organ development and innate immune. YCW supplementation increased thymus index and serum concentrations of IgM of hens (p < 0.05). In addition, an interaction was observed between YCW diet and age on serum IL-6 concentrations (p < 0.05), mainly because YCW birds had the highest serum IL-6 concentration at d 110. Dietary supplementation with BS reduced the crypt depth in the duodenum and jejunum with an increased ratio of villus height to crypt depth (p < 0.05) in the duodenum, jejunum, and ileum. However, a YCW × age interaction on the jejunal villus height existed, mainly because non-YCW diet had the lowest jejunal villus height at d 170 (p < 0.05). Both BS and YCW enhanced egg weight, eggshell thickness and yolk color (p < 0.05), while YCW improved albumen height and Haugh unit (p < 0.05). There was no treatment effect on measured bone parameters except that YCW birds had lager tibial diameter (p < 0.05) at d 170. The results indicate that dietary BS and/or YCW improve the intestinal and bone development and immune status of young hens, which may contribute to the increased egg quality during the early sexual maturity stage.
Collapse
Affiliation(s)
- Hang Gao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jinzhi Xiao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qi Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hutianlin Man
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xingyi Tang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhouyuan Wang
- Kunming Hemeihua Feed Limited Company, Kunming, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Condori B, Recuerda M, Illera JC, Milá B. The Relative Roles of Selection and Drift in the Chaffinch Radiation (Aves: Fringilla) Across the Atlantic Archipelagos of Macaronesia. Ecol Evol 2025; 15:e71307. [PMID: 40242797 PMCID: PMC12000227 DOI: 10.1002/ece3.71307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Island populations diverge from the mainland and from each other by both natural selection and neutral forces such as founder effects and genetic drift. In this work, we aim to determine the relative roles of selection and drift in the diversification of chaffinches (Fringilla spp.) in Macaronesia. We tested the hypothesis that taxa inhabiting Macaronesian archipelagos, which exhibit significant differences in habitat and climate compared with the mainland, should experience distinct ecological pressures, leading to divergence at loci under selection related to environmental variables. To determine the role of local adaptation in the differentiation of these taxa, we performed genotype-environment association (GEA) analyses using ten environmental variables and 52,306 single nucleotide polymorphism markers obtained from genotyping-by-sequencing (GBS) in 79 chaffinches. Redundancy analysis (RDA) revealed that genomic variation is associated with environmental variables and identified candidate genes related to phenotypic traits and environmental variables. Variables associated with habitat type and precipitation, together with drift, played an important role in the genomic differentiation between chaffinches from Macaronesia and the mainland, as well as within the Canarian archipelago. Genetic drift was identified as the main factor in the differentiation of North African chaffinches from Macaronesia and mainland Europe, as well as Madeira chaffinches from those in the Canary Islands. Finally, chaffinches from the Canary Islands show an incipient diversification process at the genetic and phenotypic level driven by both selection and neutral processes. Our results suggest that both habitat-driven local adaptation and drift have played a role in the radiation of chaffinch taxa in Macaronesia.
Collapse
Affiliation(s)
- Brian Condori
- Department of Biodiversity and Evolutionary BiologyNational Museum of Natural Sciences, Spanish National Research Council (CSIC)MadridSpain
| | - María Recuerda
- Department of Biodiversity and Evolutionary BiologyNational Museum of Natural Sciences, Spanish National Research Council (CSIC)MadridSpain
- Cornell Laboratory of OrnithologyCornell UniversityIthacaNew YorkUSA
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC‐Oviedo University‐Principality of Asturias)University of OviedoMieresSpain
| | - Borja Milá
- Department of Biodiversity and Evolutionary BiologyNational Museum of Natural Sciences, Spanish National Research Council (CSIC)MadridSpain
| |
Collapse
|
5
|
Li M, Deng F, Qiao L, Wen X, Han J. The Critical Role of Trace Elements in Bone Health. Nutrients 2024; 16:3867. [PMID: 39599653 PMCID: PMC11597352 DOI: 10.3390/nu16223867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Trace elements are essential for human physiology and crucial in maintaining bone health and regulating bone metabolism [...].
Collapse
Affiliation(s)
- Miaoqian Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.L.); (F.D.); (L.Q.); (X.W.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Feidan Deng
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.L.); (F.D.); (L.Q.); (X.W.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Lichun Qiao
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.L.); (F.D.); (L.Q.); (X.W.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Xinyue Wen
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.L.); (F.D.); (L.Q.); (X.W.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Jing Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.L.); (F.D.); (L.Q.); (X.W.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| |
Collapse
|
6
|
Yu G, Fu X, Gong A, Gu J, Zou H, Yuan Y, Song R, Ma Y, Bian J, Liu Z, Tong X. Oligomeric proanthocyanidins ameliorates osteoclastogenesis through reducing OPG/RANKL ratio in chicken's embryos. Poult Sci 2024; 103:103706. [PMID: 38631227 PMCID: PMC11040129 DOI: 10.1016/j.psj.2024.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Skeletal disorders can seriously threaten the health and the performance of poultry, such as tibial dyschondroplasia (TD) and osteoporosis (OP). Oligomeric proanthocyanidins (OPC) are naturally occurring polyphenolic flavonoid compounds that can be used as potential substances to improve the bone health and the growth performance of poultry. Eighty 7-day-old green-eggshell yellow feather layer chickens were randomly divided into 4 groups: basal diet and basal diet supplementation with 25, 50, and 100 mg/kg OPC. The results have indicated that the growth performance and bone parameters of chickens were significantly improved supplementation with OPC in vivo, including the bone volume (BV), the bone mineral density (BMD) and the activities of antioxidative enzymes, but ratio of osteoprotegerin (OPG)/receptor activator of NF-κB (RANK) ligand (RANKL) was decreased. Furthermore, primary bone marrow mesenchymal stem cells (BMSCs) and bone marrow monocytes/macrophages (BMMs) were successfully isolated from femur and tibia of chickens, and co-cultured to differentiate into osteoclasts in vitro. The osteogenic differentiation derived from BMSCs was promoted treatment with high concentrations of OPC (10, 20, and 40 µmol/L) groups in vitro, but emerging the inhibition of osteoclastogenesis by increasing the ratio of OPG/RANKL. In contrary, the osteogenic differentiation was also promoted treatment with low concentrations of OPC (2.5, 5, and 10 µmol/L) groups, but osteoclastogenesis was enhanced by decreasing the ratio of OPG/RANKL in vitro. In addition, OPG inhibits the differentiation and activity of osteoclasts by increasing the autophagy in vitro. Dietary supplementation of OPC can improve the growth performance of bone and alter the balance of osteoblasts and osteoclasts, thereby improving the bone health of chickens.
Collapse
Affiliation(s)
- Gengsheng Yu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Xiaohui Fu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Anqing Gong
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Jianhong Gu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Hui Zou
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Yan Yuan
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Ruilong Song
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Yonggang Ma
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Jianchun Bian
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Zongping Liu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Xishuai Tong
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China.
| |
Collapse
|
7
|
Höglund A, Henriksen R, Churcher AM, Guerrero-Bosagna CM, Martinez-Barrio A, Johnsson M, Jensen P, Wright D. The regulation of methylation on the Z chromosome and the identification of multiple novel Male Hyper-Methylated regions in the chicken. PLoS Genet 2024; 20:e1010719. [PMID: 38457441 PMCID: PMC10954189 DOI: 10.1371/journal.pgen.1010719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/20/2024] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
DNA methylation is a key regulator of eukaryote genomes, and is of particular relevance in the regulation of gene expression on the sex chromosomes, with a key role in dosage compensation in mammalian XY systems. In the case of birds, dosage compensation is largely absent, with it being restricted to two small Male Hyper-Methylated (MHM) regions on the Z chromosome. To investigate how variation in DNA methylation is regulated on the Z chromosome we utilised a wild x domestic advanced intercross in the chicken, with both hypothalamic methylomes and transcriptomes assayed in 124 individuals. The relatively large numbers of individuals allowed us to identify additional genomic MHM regions on the Z chromosome that were significantly differentially methylated between the sexes. These regions appear to down-regulate local gene expression in males, but not remove it entirely (unlike the lncRNAs identified in the initial MHM regions). These MHM regions were further tested and the most balanced genes appear to show decreased expression in males, whilst methylation appeared to be far more correlated with gene expression in the less balanced, as compared to the most balanced genes. In addition, quantitative trait loci (QTL) that regulate variation in methylation on the Z chromosome, and those loci that regulate methylation on the autosomes that derive from the Z chromosome were mapped. Trans-effect hotspots were also identified that were based on the autosomes but affected the Z, and also one that was based on the Z chromosome but that affected both autosomal and sex chromosome DNA methylation regulation. We show that both cis and trans loci that originate from the Z chromosome never exhibit an interaction with sex, whereas trans loci originating from the autosomes but affecting the Z chromosome always display such an interaction. Our results highlight how additional MHM regions are actually present on the Z chromosome, and they appear to have smaller-scale effects on gene expression in males. Quantitative variation in methylation is also regulated both from the autosomes to the Z chromosome, and from the Z chromosome to the autosomes.
Collapse
Affiliation(s)
- Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | | | - Carlos M. Guerrero-Bosagna
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Rachman MP, Bamidele O, Dessie T, Smith J, Hanotte O, Gheyas AA. Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress. Sci Rep 2024; 14:2209. [PMID: 38278850 PMCID: PMC10817956 DOI: 10.1038/s41598-024-52569-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Indigenous poultry breeds from Africa can survive in harsh tropical environments (such as long arid seasons, excessive rain and humidity, and extreme heat) and are resilient to disease challenges, but they are not productive compared to their commercial counterparts. Their adaptive characteristics are in response to natural selection or to artificial selection for production traits that have left selection signatures in the genome. Identifying these signatures of positive selection can provide insight into the genetic bases of tropical adaptations observed in indigenous poultry and thereby help to develop robust and high-performing breeds for extreme tropical climates. Here, we present the first large-scale whole-genome sequencing analysis of Nigerian indigenous chickens from different agro-climatic conditions, investigating their genetic diversity and adaptation to tropical hot climates (extreme arid and extreme humid conditions). The study shows a large extant genetic diversity but low level of population differentiation. Using different selection signature analyses, several candidate genes for adaptation were detected, especially in relation to thermotolerance and immune response (e.g., cytochrome P450 2B4-like, TSHR, HSF1, CDC37, SFTPB, HIF3A, SLC44A2, and ILF3 genes). These results have important implications for conserving valuable genetic resources and breeding improvement of chickens for thermotolerance.
Collapse
Affiliation(s)
- Mifta P Rachman
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| | - Oladeji Bamidele
- African Chicken Genetic Gains (ACGG), Department of Animal Sciences, Obafemi Awolowo University, Ile Ife, 220282, Nigeria
| | - Tadelle Dessie
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Jacqueline Smith
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Olivier Hanotte
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Almas A Gheyas
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
9
|
Yue Q, Chen Y, Chen H, Zhou R. Transcriptome profile reveals novel candidate genes associated with bone strength in end-of-lay hens. Anim Biotechnol 2023; 34:3099-3107. [PMID: 36309812 DOI: 10.1080/10495398.2022.2134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bone weakness causes many problems such as osteoporosis, bone fractures, and economic loss, especially at the late stage of lay, in laying hen production. However, the genetic factors and molecular mechanism affecting the bone strength is still largely unknown. To elucidate the molecular mechanism and genetic factors affecting bone strength, a total of six cDNA libraries were constructed and used to compare genetic differences between tibia with higher(Group HBS)and lower(Group LBS)breaking strength in Hyline grey layers. A comparison between Groups HBS and LBS revealed nine differentially expressed genes, of which five were upregulated and four were downregulated in the LBS relative to the HBS in tibia. Our results showed novel candidate genes concerned with bone strength in the late laying period. These include transcription factor paired box protein Pax-5 (Pax5), tissue inhibitor of Metallopoteinase-4 (TIMP4), Kelch-like protein 14 (KLHL14), predicted MAGUK p55 subfamily member 7 isoform X4 (MPP7) and Osteoclast-associated Ig-like receptor (OSCAR). Our data provide a vital resource for discovering important candidate genes associated with bone strength and will help further study the molecular mechanisms for bone remodeling.
Collapse
Affiliation(s)
- Qiaoxian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Ye Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Johnsson M, Wall H, Lopes Pinto FA, Fleming RH, McCormack HA, Benavides-Reyes C, Dominguez-Gasca N, Sanchez-Rodriguez E, Dunn IC, Rodriguez-Navarro AB, Kindmark A, de Koning DJ. Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems. G3 (BETHESDA, MD.) 2022; 13:6855652. [PMID: 36453438 PMCID: PMC9911068 DOI: 10.1093/g3journal/jkac302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/02/2021] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
Osteoporosis and bone fractures are a severe problem for the welfare of laying hens, with genetics and environment, such as housing system, each making substantial contributions to bone strength. In this work, we performed genetic analyses of bone strength, bone mineral density, and bone composition, as well as body weight, in 860 commercial crossbred laying hens from 2 different companies, kept in either furnished cages or floor pens. We compared bone traits between housing systems and crossbreds and performed a genome-wide association study of bone properties and body weight. As expected, the 2 housing systems produced a large difference in bone strength, with layers housed in floor pens having stronger bones. These differences were accompanied by differences in bone geometry, mineralization, and chemical composition. Genome scans either combining or independently analyzing the 2 housing systems revealed no genome-wide significant loci for bone breaking strength. We detected 3 loci for body weight that were shared between the housing systems on chromosomes 4, 6, and 27 (either genome-wide significant or suggestive) and these coincide with associations for bone length. In summary, we found substantial differences in bone strength, content, and composition between hens kept in floor pens and furnished cages that could be attributed to greater physical activity in pen housing. We found little evidence for large-effect loci for bone strength in commercial crossbred hens, consistent with a highly polygenic architecture for bone strength in the production environment. The lack of consistent genetic associations between housing systems in combination with the differences in bone phenotypes could be due to gene-by-environment interactions with housing system or a lack of power to detect shared associations for bone strength.
Collapse
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden
| | - Helena Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Fernando A Lopes Pinto
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden
| | - Robert H Fleming
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | | | | | | | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | - Andreas Kindmark
- Department of Medical Sciences, Uppsala University, Akademiska sjukhuset, 751 85 Uppsala, Sweden
| | - Dirk-Jan de Koning
- Corresponding author. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden.
| |
Collapse
|
11
|
Lv H, Wang T, Zhai S, Hou Z, Chen S. Dynamic transcriptome changes during osteogenic differentiation of bone marrow-derived mesenchymal stem cells isolated from chicken. Front Cell Dev Biol 2022; 10:940248. [PMID: 36120570 PMCID: PMC9478182 DOI: 10.3389/fcell.2022.940248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoblasts are indispensable for skeletal growth and maintenance. Bone marrow-derived mesenchymal stem cells (BMSCs) are useful in studying osteogenesis. In this study, BMSCs isolated from White Leghorns were differentiated into osteoblasts in vitro. Cells induced for -1, 0, 1, 11, and 22 d were used for transcriptomic analyses using the HISAT2-Stringtie-DESeq2 pipeline. Weighted correlation network analysis was processed to investigate significant modules, including differentially expressed genes (DEGs), correlated with osteogenic differentiation. Gene ontology and pathway enrichment analyses of DEGs were performed to elucidate the mechanisms of osteoblast differentiation. A total of 534, 1,144, 1,077, and 337 DEGs were identified between cells induced for -1 and 0, 0 and 1, 1 and 11, and 11 and 22 d, respectively (|log2FC| > 1.0, FDR <0.05). DEGs were mainly enriched in pathways related to cell proliferation in the early stage of osteogenic differentiation and pathways, such as the TGF-β signaling pathway, in the middle and late stages of osteogenic differentiation. A protein–protein interaction network of the 87 DEGs in the MEturquoise module within top 5-%-degree value was built utilizing the STRING database. This study is the first to elucidate the transcriptomic changes in the osteogenic differentiation of BMSCs isolated from White Leghorns at different times. Our results provide insight into the dynamic transcriptome changes during BMSC differentiation into osteoblasts in chicken.
Collapse
|
12
|
Bakovic V, Höglund A, Martin Cerezo ML, Henriksen R, Wright D. Genomic and gene expression associations to morphology of a sexual ornament in the chicken. G3 GENES|GENOMES|GENETICS 2022; 12:6633936. [PMID: 35801935 PMCID: PMC9434260 DOI: 10.1093/g3journal/jkac174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022]
Abstract
How sexual selection affects the genome ultimately relies on the strength and type of selection, and the genetic architecture of the involved traits. While associating genotype with phenotype often utilizes standard trait morphology, trait representations in morphospace using geometric morphometric approaches receive less focus in this regard. Here, we identify genetic associations to a sexual ornament, the comb, in the chicken system (Gallus gallus). Our approach combined genome-wide genotype and gene expression data (>30k genes) with different aspects of comb morphology in an advanced intercross line (F8) generated by crossing a wild-type Red Junglefowl with a domestic breed of chicken (White Leghorn). In total, 10 quantitative trait loci were found associated to various aspects of comb shape and size, while 1,184 expression QTL were found associated to gene expression patterns, among which 98 had overlapping confidence intervals with those of quantitative trait loci. Our results highlight both known genomic regions confirming previous records of a large effect quantitative trait loci associated to comb size, and novel quantitative trait loci associated to comb shape. Genes were considered candidates affecting comb morphology if they were found within both confidence intervals of the underlying quantitative trait loci and eQTL. Overlaps between quantitative trait loci and genome-wide selective sweeps identified in a previous study revealed that only loci associated to comb size may be experiencing on-going selection under domestication.
Collapse
Affiliation(s)
- Vid Bakovic
- IFM Biology, University of Linköping , Linköping 581 83, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University , Stockholm 106 91, Sweden
| | | | - Rie Henriksen
- IFM Biology, University of Linköping , Linköping 581 83, Sweden
| | - Dominic Wright
- IFM Biology, University of Linköping , Linköping 581 83, Sweden
| |
Collapse
|
13
|
Meyer MM, Lamont SJ, Bobeck EA. Mitochondrial and Glycolytic Capacity of Peripheral Blood Mononuclear Cells Isolated From Diverse Poultry Genetic Lines: Optimization and Assessment. Front Vet Sci 2022; 8:815878. [PMID: 35155649 PMCID: PMC8831803 DOI: 10.3389/fvets.2021.815878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 12/03/2022] Open
Abstract
Cellular metabolic preference is a culmination of environment, nutrition, genetics, and individual variation in poultry. The Seahorse XFe24 analyzer was used to generate foundational immune cellular metabolic data in layer, broiler, and legacy genetic strains using fresh chicken peripheral blood mononuclear cells (PBMCs). Baseline mitochondrial respiration [oxygen consumption rate (OCR)] and glycolytic activity [extracellular acidification rate (ECAR)] were determined in modern commercial laying hen (Bovans White) and broiler (Ross 308) lines, as well as the highly inbred lines of Iowa State University (L8, Fayoumi M-15.2, Spanish, Ghs-6), partially inbred broiler line, and advanced intercrosses of broiler by Fayoumi M-15.2 and broiler by Leghorn lines. Commercial broiler vs. Bovans layer and unvaccinated vs. vaccinated Bovans layer immune cell metabolic potential were compared following an in-assay pathway inhibitor challenge. Titrations consistently showed that optimal PBMC density in laying hens and broilers was 3 million cells per well monolayer. Assay media substrate titrations identified 25 mM glucose, 1 mM glutamine, and 1 mM sodium pyruvate as the optimal concentration for layer PBMCs. Pathway inhibitor injection titrations in Bovans layers and broilers showed that 0.5 μM carbonyl cyanide-4 phenylhydrazone (FCCP) and 1 μM oligomycin were optimal. Baseline OCR and ECAR were significantly affected by genetic line of bird (p < 0.05), with the dual-purpose, L8 inbred line showing the highest OCR (mean 680 pmol/min) and the partially inbred broiler line showing the greatest ECAR (mean 74 mpH/min). ECAR metabolic potential tended to be greater in modern layers than broilers (p < 0.10), indicating increased ability to utilize the glycolytic pathway to produce energy. OCR was significantly higher in vaccinated than unvaccinated hens (p < 0.05), while baseline ECAR values were significantly lower in vaccinated Bovans laying hens, showing increased oxidative capacity in activated immune cells. These baseline data indicate that different genetic strains of birds utilized the mitochondrial respiration pathway differently and that modern commercial lines may have reduced immune cell metabolic capacity compared with legacy lines due to intense selection for production traits. Furthermore, the Seahorse assay demonstrated the ability to detect differences in cellular metabolism between genetic lines and immune status of chickens.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Bobeck
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
14
|
Angeles ML, Gómez-Rosales S, López-Garcia YR, Montoya-Franco A. Growth Performance and Tibia Mineralization of Broiler Chickens Supplemented with a Liquid Extract of Humic Substances. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- ML Angeles
- National Institute of Research in Forestry, Agriculture and Livestock, Mexico
| | - S Gómez-Rosales
- National Institute of Research in Forestry, Agriculture and Livestock, Mexico
| | | | | |
Collapse
|
15
|
Hul LM, Ibelli AMG, Savoldi IR, Marcelino DEP, Fernandes LT, Peixoto JO, Cantão ME, Higa RH, Giachetto PF, Coutinho LL, Ledur MC. Differentially expressed genes in the femur cartilage transcriptome clarify the understanding of femoral head separation in chickens. Sci Rep 2021; 11:17965. [PMID: 34504189 PMCID: PMC8429632 DOI: 10.1038/s41598-021-97306-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Locomotor problems are among one of the main concerns in the current poultry industry, causing major economic losses and affecting animal welfare. The most common bone anomalies in the femur are dyschondroplasia, femoral head separation (FHS), and bacterial chondronecrosis with osteomyelitis (BCO), also known as femoral head necrosis (FHN). The present study aimed to identify differentially expressed (DE) genes in the articular cartilage (AC) of normal and FHS-affected broilers by RNA-Seq analysis. In the transcriptome analysis, 12,169 genes were expressed in the femur AC. Of those, 107 genes were DE (FDR < 0.05) between normal and affected chickens, of which 9 were downregulated and 98 were upregulated in the affected broilers. In the gene-set enrichment analysis using the DE genes, 79 biological processes (BP) were identified and were grouped into 12 superclusters. The main BP found were involved in the response to biotic stimulus, gas transport, cellular activation, carbohydrate-derived catabolism, multi-organism regulation, immune system, muscle contraction, multi-organism process, cytolysis, leukocytes and cell adhesion. In this study, the first transcriptome analysis of the broilers femur articular cartilage was performed, and a set of candidate genes (AvBD1, AvBD2, ANK1, EPX, ADA, RHAG) that could trigger changes in the broiler´s femoral growth plate was identified. Moreover, these results could be helpful to better understand FHN in chickens and possibly in humans.
Collapse
Affiliation(s)
- Ludmila Mudri Hul
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil
| | - Adriana Mércia Guaratini Ibelli
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil ,Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil
| | - Igor Ricardo Savoldi
- grid.412287.a0000 0001 2150 7271Programa de Pós-Graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC 89815-630 Brazil
| | | | | | - Jane Oliveira Peixoto
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil ,Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil
| | | | - Roberto Hiroshi Higa
- grid.460200.00000 0004 0541 873XEmbrapa Informática Agropecuária, Campinas, SP 70770-901 Brazil
| | | | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Departamento de Zootecnia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil ,grid.412287.a0000 0001 2150 7271Programa de Pós-Graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC 89815-630 Brazil
| |
Collapse
|
16
|
Li YD, Liu X, Li ZW, Wang WJ, Li YM, Cao ZP, Luan P, Xiao F, Gao HH, Guo HS, Wang N, Li H, Wang SZ. A combination of genome-wide association study and selection signature analysis dissects the genetic architecture underlying bone traits in chickens. Animal 2021; 15:100322. [PMID: 34311193 DOI: 10.1016/j.animal.2021.100322] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/01/2023] Open
Abstract
The bones of chicken play an important role in supporting and protecting the body. The growth and development of bones have a substantial influence on the health and production performance in chickens. However, genetic architecture underlying chicken bone traits is not well understood. The objectives of this study are to dissect the genetic basis of bone traits in chickens and to identify valuable genes and genetic markers for chicken breeding. We performed a combination of genome-wide association study (GWAS) and selection signature analysis (fixation index values and nucleotide diversity ratios) in an F2 crossbred experimental population with different genetic backgrounds (broiler × layer) to identify candidate genes and significant variants related to femur, shank, keel length, chest width, metatarsal claw weight, metatarsal length, and metatarsal circumference. A total of 545 individuals were genotyped based on the whole genome re-sequencing method (26 F0 individuals were re-sequenced at 10 × coverage; 519 F2 individuals were re-sequenced at 3 × coverage). A total of 2 028 112 single-nucleotide polymorphisms (SNPs) remained to carry out analysis after quality control and imputation. The integration of GWAS and selection signature analysis indicated that all significant SNPs responsible for bone traits were mainly localized on chicken chromosomes 1, 4, and 27. Finally, we identified 21 positional candidate genes that might regulate chicken bone growth and development, including LRCH1, RB1, FNDC3A, MLNR, CAB39L, FOXO1, LHFP, TRPC4, POSTN, SMAD9, RBPJ, PPARGC1A, SLIT2, NCAPG, NKX3-2, CPZ, SPOP, NGFR, SOST, ZNF652, and HOXB3. Additionally, an array of uncharacterized genes was identified. The findings provide an in-depth understanding of the genetic architecture of chicken bone traits and offer a molecular basis for applying genomics in practical chicken breeding.
Collapse
Affiliation(s)
- Y D Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - X Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Z W Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - W J Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Y M Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Z P Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - P Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd, Guangze, Fujian Province 354100, PR China
| | - H H Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd, Guangze, Fujian Province 354100, PR China
| | - H S Guo
- Fujian Sunnzer Biotechnology Development Co., Ltd, Guangze, Fujian Province 354100, PR China
| | - N Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - S Z Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
17
|
Jansen S, Baulain U, Habig C, Ramzan F, Schauer J, Schmitt AO, Scholz AM, Sharifi AR, Weigend A, Weigend S. Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests. Genes (Basel) 2021; 12:702. [PMID: 34066823 PMCID: PMC8151682 DOI: 10.3390/genes12050702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal disorders, including fractures and osteoporosis, in laying hens cause major welfare and economic problems. Although genetics have been shown to play a key role in bone integrity, little is yet known about the underlying genetic architecture of the traits. This study aimed to identify genes associated with bone breaking strength and bone mineral density of the tibiotarsus and the humerus in laying hens. Potentially informative single nucleotide polymorphisms (SNP) were identified using Random Forests classification. We then searched for genes known to be related to bone stability in close proximity to the SNPs and identified 16 potential candidates. Some of them had human orthologues. Based on our findings, we can support the assumption that multiple genes determine bone strength, with each of them having a rather small effect, as illustrated by our SNP effect estimates. Furthermore, the enrichment analysis showed that some of these candidates are involved in metabolic pathways critical for bone integrity. In conclusion, the identified candidates represent genes that may play a role in the bone integrity of chickens. Although further studies are needed to determine causality, the genes reported here are promising in terms of alleviating bone disorders in laying hens.
Collapse
Affiliation(s)
- Simon Jansen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Ulrich Baulain
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Christin Habig
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Faisal Ramzan
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany; (F.R.); (A.O.S.)
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany; (F.R.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
| | - Armin Manfred Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany;
| | - Ahmad Reza Sharifi
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Annett Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
| |
Collapse
|
18
|
Sepers B, Erven JAM, Gawehns F, Laine VN, van Oers K. Epigenetics and Early Life Stress: Experimental Brood Size Affects DNA Methylation in Great Tits (Parus major). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.609061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Early developmental conditions are known to have life-long effects on an individual’s behavior, physiology and fitness. In altricial birds, a majority of these conditions, such as the number of siblings and the amount of food provisioned, are controlled by the parents. This opens up the potential for parents to adjust the behavior and physiology of their offspring according to local post-natal circumstances. However, the mechanisms underlying such intergenerational regulation remain largely unknown. A mechanism often proposed to possibly explain how parental effects mediate consistent phenotypic change is DNA methylation. To investigate whether early life effects on offspring phenotypes are mediated by DNA methylation, we cross-fostered great tit (Parus major) nestlings and manipulated their brood size in a natural study population. We assessed genome-wide DNA methylation levels of CpG sites in erythrocyte DNA, using Reduced Representation Bisulfite Sequencing (RRBS). By comparing DNA methylation levels between biological siblings raised in enlarged and reduced broods and between biological siblings of control broods, we assessed which CpG sites were differentially methylated due to brood size. We found 32 differentially methylated sites (DMS) between siblings from enlarged and reduced broods, a larger number than in the comparison between siblings from control broods. A considerable number of these DMS were located in or near genes involved in development, growth, metabolism, behavior and cognition. Since the biological functions of these genes line up with previously found effects of brood size and food availability, it is likely that the nestlings in the enlarged broods suffered from nutritional stress. We therefore conclude that early life stress might directly affect epigenetic regulation of genes related to early life conditions. Future studies should link such experimentally induced DNA methylation changes to expression of phenotypic traits and assess whether these effects affect parental fitness to determine if such changes are also adaptive.
Collapse
|
19
|
Alpha-Ketoglutarate: An Effective Feed Supplement in Improving Bone Metabolism and Muscle Quality of Laying Hens: A Preliminary Study. Animals (Basel) 2020; 10:ani10122420. [PMID: 33348724 PMCID: PMC7767309 DOI: 10.3390/ani10122420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/28/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of the experiment was to assess the effect of dietary alpha-ketoglutarate (AKG) supplementation on performance, serum hormonal indices, duodenum and jejunum histomorphometry, meat quality characteristics, bone quality traits and cartilage degradation in laying hens with a mature skeletal system. Forty-eight 30 week-old Bovans Brown laying hens were randomly assigned to a control group or the group fed the basal diet plus 1.0% AKG. The experimental trial lasted 30 weeks. The supplementation of AKG increases blood serum content of leptin, ghrelin, bone alkaline phosphatate and receptor activator of nuclear factor kappa-Β ligand, while osteoprotegerin and osteocalcin decrease. While dietary AKG was given to laying hens negatively influenced villus length, crypt depth, villus/crypt ratio and absorptive surface area in duodenum and jejunum, these changes have no effect on feed intake, weight gain, nor laying performance. In breast muscles, no significant changes in skeletal muscle fatty acid composition were observed, however, a higher shear force and decreased cholesterol content following AKG supplementation were noted, showing the improvement of muscle quality. While dietary AKG supplementation did not affect the general geometric and mechanical properties of the tibia, it increased collagen synthesis and enhanced immature collagen content. In medullary bone, an increase of bone volume fraction, trabecular thickness, fractal dimension and decrease of trabecular space were observed in AKG supplemented group. The trabeculae in bone metaphysis were also significantly thicker after AKG supplementation. AKG promoted fibrillogenesis in articular cartilage, as indicated by increased cartilage oligomeric matrix protein immunoexpression. By improving the structure and maintaining the proper bone turnover rate of highly reactive and metabolically active medullar and trabecular bones AKG showed its anti-osteoporotic action in laying hens.
Collapse
|
20
|
Höglund A, Henriksen R, Fogelholm J, Churcher AM, Guerrero-Bosagna CM, Martinez-Barrio A, Johnsson M, Jensen P, Wright D. The methylation landscape and its role in domestication and gene regulation in the chicken. Nat Ecol Evol 2020; 4:1713-1724. [PMID: 32958860 PMCID: PMC7616959 DOI: 10.1038/s41559-020-01310-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
Domestication is one of the strongest examples of artificial selection and has produced some of the most extreme within-species phenotypic variation known. In the case of the chicken, it has been hypothesized that DNA methylation may play a mechanistic role in the domestication response. By inter-crossing wild-derived red junglefowl with domestic chickens, we mapped quantitative trait loci for hypothalamic methylation (methQTL), gene expression (eQTL) and behaviour. We find large, stable methylation differences, with 6,179 cis and 2,973 trans methQTL identified. Over 46% of the trans effects were genotypically controlled by five loci, mainly associated with increased methylation in the junglefowl genotype. In a third of eQTL, we find that there is a correlation between gene expression and methylation, while statistical causality analysis reveals multiple instances where methylation is driving gene expression, as well as the reverse. We also show that methylation is correlated with some aspects of behavioural variation in the inter-cross. In conclusion, our data suggest a role for methylation in the regulation of gene expression underlying the domesticated phenotype of the chicken.
Collapse
Affiliation(s)
- Andrey Höglund
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Jesper Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | | | - Carlos M Guerrero-Bosagna
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
- Evolutionary Biology Centrum, Dept of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden.
| |
Collapse
|
21
|
Henriksen R, Höglund A, Fogelholm J, Abbey-Lee R, Johnsson M, Dingemanse NJ, Wright D. Intra-Individual Behavioural Variability: A Trait under Genetic Control. Int J Mol Sci 2020; 21:ijms21218069. [PMID: 33138119 PMCID: PMC7663371 DOI: 10.3390/ijms21218069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
When individuals are measured more than once in the same context they do not behave in exactly the same way each time. The degree of predictability differs between individuals, with some individuals showing low levels of variation around their behavioural mean while others show high levels of variation. This intra-individual variability in behaviour has received much less attention than between-individual variability in behaviour, and very little is known about the underlying mechanisms that affect this potentially large but understudied component of behavioural variation. In this study, we combine standardized behavioural tests in a chicken intercross to estimate intra-individual behavioural variability with a large-scale genomics analysis to identify genes affecting intra-individual behavioural variability in an avian population. We used a variety of different anxiety-related behavioural phenotypes for this purpose. Our study shows that intra-individual variability in behaviour has a direct genetic basis that is largely unique compared to the genetic architecture for the standard behavioural measures they are based on (at least in the detected quantitative trait locus). We identify six suggestive candidate genes that may underpin differences in intra-individual behavioural variability, with several of these candidates having previously been linked to behaviour and mental health. These findings demonstrate that intra-individual variability in behaviour appears to be a heritable trait in and of itself on which evolution can act.
Collapse
Affiliation(s)
- Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden; (A.H.); (R.A.-L.); (M.J.)
- Correspondence: (R.H.); (D.W.)
| | - Andrey Höglund
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden; (A.H.); (R.A.-L.); (M.J.)
| | - Jesper Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden; (A.H.); (R.A.-L.); (M.J.)
| | - Robin Abbey-Lee
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden; (A.H.); (R.A.-L.); (M.J.)
| | - Martin Johnsson
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden; (A.H.); (R.A.-L.); (M.J.)
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Niels J. Dingemanse
- Ludwig Maximilians University of Munich (LMU), 82152 Munich, Planegg-Martinsried, Germany;
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden; (A.H.); (R.A.-L.); (M.J.)
- Correspondence: (R.H.); (D.W.)
| |
Collapse
|
22
|
Huang J, Tong XF, Yu ZW, Hu YP, Zhang L, Liu Y, Zhou ZX. Dietary supplementation of total flavonoids from Rhizoma Drynariae improves bone health in older caged laying hens. Poult Sci 2020; 99:5047-5054. [PMID: 32988541 PMCID: PMC7598317 DOI: 10.1016/j.psj.2020.06.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/13/2020] [Accepted: 06/11/2020] [Indexed: 01/23/2023] Open
Abstract
Caged layer osteoporosis (CLO) is a common bone metabolism diseases and poses a great threat to the production of laying hens. So far, there is no effective nutrition intervention to prevent CLO. The objective of this study was to evaluate the effects of dietary total flavonoids from Rhizoma Drynariae (TFRD), a Chinese herbal, on bone health, egg quality, and serum antioxidant capacity of caged laying hens. A total of two hundred sixteen, 54-wk-old Lohmann Pink-shell laying hens at were allocated to 3 groups with 6 replicates of 12 hens per replicate. The control group was fed a basal diet (BD) and 2 treatment groups additionally supplied with 0.5 or 2.0 g/kg TFRD, respectively. Results showed that supplying 2.0 g/kg TFRD enhanced the activities of serum total antioxidant capacity (P < 0.01) and glutathione peroxidase (P < 0.05) and had higher femur and tibia bone mineral density (both P < 0.05) compared with the control group. Dietary 2.0 g/kg TFRD also reduced the activities of serum alkaline phosphatase (P < 0.01), tartrate resistant acid phosphatase (P < 0.01), and the contents of osteocalcin (P < 0.01). Furthermore, tibia histomorphology observation showed that the microstructure of bone tissue was improved after TFRD treatment. Egg quality was not affected by TFRD while the egg weight significantly increased (P < 0.01). These findings suggested that TFRD has beneficial effects on bone health in older caged laying hens.
Collapse
Affiliation(s)
- J Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - X F Tong
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Z W Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Y P Hu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - L Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Y Liu
- Experimental Teaching Center, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Z X Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
De Koning DJ, Dominguez-Gasca N, Fleming RH, Gill A, Kurian D, Law A, McCormack HA, Morrice D, Sanchez-Rodriguez E, Rodriguez-Navarro AB, Preisinger R, Schmutz M, Šmídová V, Turner F, Wilson PW, Zhou R, Dunn IC. An eQTL in the cystathionine beta synthase gene is linked to osteoporosis in laying hens. Genet Sel Evol 2020; 52:13. [PMID: 32093603 PMCID: PMC7038551 DOI: 10.1186/s12711-020-00532-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skeletal damage is a challenge for laying hens because the physiological adaptations required for egg laying make them susceptible to osteoporosis. Previously, we showed that genetic factors explain 40% of the variation in end of lay bone quality and we detected a quantitative trait locus (QTL) of large effect on chicken chromosome 1. The aim of this study was to combine data from the commercial founder White Leghorn population and the F2 mapping population to fine-map this QTL and understand its function in terms of gene expression and physiology. RESULTS Several single nucleotide polymorphisms on chromosome 1 between 104 and 110 Mb (galGal6) had highly significant associations with tibial breaking strength. The alternative genotypes of markers of large effect that flanked the region had tibial breaking strengths of 200.4 vs. 218.1 Newton (P < 0.002) and, in a subsequent founder generation, the higher breaking strength genotype was again associated with higher breaking strength. In a subsequent generation, cortical bone density and volume were increased in individuals with the better bone genotype but with significantly reduced medullary bone quality. The effects on cortical bone density were confirmed in a further generation and was accompanied by increased mineral maturity of the cortical bone as measured by infrared spectrometry and there was evidence of better collagen cross-linking in the cortical bone. Comparing the transcriptome of the tibia from individuals with good or poor bone quality genotypes indicated four differentially-expressed genes at the locus, one gene, cystathionine beta synthase (CBS), having a nine-fold higher expression in the genotype for low bone quality. The mechanism was cis-acting and although there was an amino-acid difference in the CBS protein between the genotypes, there was no difference in the activity of the enzyme. Plasma homocysteine concentration, the substrate of CBS, was higher in the poor bone quality genotype. CONCLUSIONS Validated markers that predict bone strength have been defined for selective breeding and a gene was identified that may suggest alternative ways to improve bone health in addition to genetic selection. The identification of how genetic variants affect different aspects of bone turnover shows potential for translational medicine.
Collapse
Affiliation(s)
| | | | - Robert H Fleming
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Andrew Gill
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,School of Chemistry, The University of Lincoln, Lincoln, LN6 7TS, England, UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Andrew Law
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Heather A McCormack
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - David Morrice
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | | | | | | | | | - Veronica Šmídová
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Frances Turner
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Peter W Wilson
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Rongyan Zhou
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.
| |
Collapse
|
24
|
de Oliveira Peixoto J, Savoldi IR, Ibelli AMG, Cantão ME, Jaenisch FRF, Giachetto PF, Settles ML, Zanella R, Marchesi JAP, Pandolfi JR, Coutinho LL, Ledur MC. Proximal femoral head transcriptome reveals novel candidate genes related to epiphysiolysis in broiler chickens. BMC Genomics 2019; 20:1031. [PMID: 31888477 PMCID: PMC6937697 DOI: 10.1186/s12864-019-6411-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The proximal femoral head separation (FHS) or epiphysiolysis is a prevalent disorder affecting the chicken femur epiphysis, being considered a risk factor to infection which can cause bacterial chondronecrosis with osteomyelitis in broilers. To identify the genetic mechanisms involved in epiphysiolysis, differentially expressed (DE) genes in the femur of normal and FHS-affected broilers were identified using RNA-Seq technology. Femoral growth plate (GP) samples from 35-day-old commercial male broilers were collected from 4 healthy and 4 FHS-affected broilers. Sequencing was performed using an Illumina paired-end protocol. Differentially expressed genes were obtained using the edgeR package based on the False Discovery Rate (FDR < 0.05). RESULTS Approximately 16 million reads/sample were generated with 2 × 100 bp paired-end reads. After data quality control, approximately 12 million reads/sample were mapped to the reference chicken genome (Galgal5). A total of 12,645 genes were expressed in the femur GP. Out of those, 314 were DE between groups, being 154 upregulated and 160 downregulated in FHS-affected broilers. In the functional analyses, several biological processes (BP) were overrepresented. Among them, those related to cell adhesion, extracellular matrix (ECM), bone development, blood circulation and lipid metabolism, which are more related to chicken growth, are possibly involved with the onset of FHS. On the other hand, BP associated to apoptosis or cell death and immune response, which were also found in our study, could be related to the consequence of the FHS. CONCLUSIONS Genes with potential role in the epiphysiolysis were identified through the femur head transcriptome analysis, providing a better understanding of the mechanisms that regulate bone development in fast-growing chickens. In this study, we highlighted the importance of cell adhesion and extracellular matrix related genes in triggering FHS. Furthermore, we have shown new insights on the involvement of lipidemia and immune response/inflammation with FHS in broilers. Understanding the changes in the GP transcriptome might support breeding strategies to address poultry robustness and to obtain more resilient broilers.
Collapse
Affiliation(s)
- Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
| | - Igor Ricardo Savoldi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Universidade do Contestado, Concórdia, Santa Catarina Brazil
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, SC Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
- Universidade do Contestado, Concórdia, Santa Catarina Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | - Fátima Regina Ferreira Jaenisch
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | | | | | - Ricardo Zanella
- Universidade de Passo Fundo, Passo Fundo, RS Brazil
- Programa de Mestrado em BioExperimentação, UPF, Passo Fundo, RS Brazil
| | - Jorge Augusto Petroli Marchesi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - José Rodrigo Pandolfi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | | | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, SC Brazil
| |
Collapse
|
25
|
Fogelholm J, Inkabi S, Höglund A, Abbey-Lee R, Johnsson M, Jensen P, Henriksen R, Wright D. Genetical Genomics of Tonic Immobility in the Chicken. Genes (Basel) 2019; 10:genes10050341. [PMID: 31067744 PMCID: PMC6562468 DOI: 10.3390/genes10050341] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 11/17/2022] Open
Abstract
Identifying the molecular mechanisms of animal behaviour is an enduring goal for researchers. Gaining insight into these mechanisms enables us to gain a greater understanding of behaviour and their genetic control. In this paper, we perform Quantitative Trait Loci (QTL) mapping of tonic immobility behaviour in an advanced intercross line between wild and domestic chickens. Genes located within the QTL interval were further investigated using global expression QTL (eQTL) mapping from hypothalamus tissue, as well as causality analysis. This identified five candidate genes, with the genes PRDX4 and ACOT9 emerging as the best supported candidates. In addition, we also investigated the connection between tonic immobility, meat pH and struggling behaviour, as the two candidate genes PRDX4 and ACOT9 have previously been implicated in controlling muscle pH at slaughter. We did not find any phenotypic correlations between tonic immobility, struggling behaviour and muscle pH in a smaller additional cohort, despite these behaviours being repeatable within-test.
Collapse
Affiliation(s)
- Jesper Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| | - Samuel Inkabi
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| | - Andrey Höglund
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| | - Robin Abbey-Lee
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| | - Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland EH25 9RG, UK.
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden.
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| |
Collapse
|
26
|
Parvaneh M, Karimi G, Jamaluddin R, Ng MH, Zuriati I, Muhammad SI. Lactobacillus helveticus (ATCC 27558) upregulates Runx2 and Bmp2 and modulates bone mineral density in ovariectomy-induced bone loss rats. Clin Interv Aging 2018; 13:1555-1564. [PMID: 30214175 PMCID: PMC6121767 DOI: 10.2147/cia.s169223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Osteoporosis is one of the major health concerns among the elderly population, especially in postmenopausal women. Many menopausal women over 50 years of age lose their bone density and suffer bone fractures. In addition, many mortality and morbidity cases among the elderly are related to hip fracture. This study aims to investigate the effect of Lactobacillus helveticus (L. helveticus) on bone health status among ovariectomized (OVX) bone loss-induced rats. Methods The rats were either OVX or sham OVX (sham), then were randomly assigned into three groups, G1: sham, G2: OVX and G3: OVX+L. helveticus (1 mL of 108–109 colony forming units). The supplementation was force-fed to the rats once a day for 16 weeks while control groups were force-fed with demineralized water. Results L. helveticus upregulated the expression of Runx2 and Bmp2, increased serum osteocalcin, bone volume/total volume and trabecular thickness, and decreased serum C-terminal telopeptide and total porosity percentage. It also altered bone microstructure, as a result increasing bone mineral density and bone strength. Conclusion Our results indicate that L. helveticus attenuates bone remodeling and consequently improves bone health in OVX rats by increasing bone formation along with bone resorption reduction. This study suggests a potential therapeutic effect of L. helveticus (ATCC 27558) on postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Maria Parvaneh
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia, .,Discipline of Life Science, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Charles Perkin Centre, Sydney, NSW, Australia
| | - Golgis Karimi
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia, .,Department of Social and Preventive Medicine, Faculty of Medicine, Julius Centre University of Malaya (JCUM), University of Malaya, Kuala Lumpur, Malaysia
| | - Rosita Jamaluddin
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia,
| | - Min Hwei Ng
- Faculty of Medicine, Tissue Engineering Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Zuriati
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia,
| | - Sani Ismaila Muhammad
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| |
Collapse
|
27
|
Price TR, Moncada K, Leyva-Jimenez H, Park KW, Tontonoz P, Walzem RL. Phenamil, an amiloride derivative, restricts long bone growth and alters keeled-sternum bone architecture in growing chickens. Poult Sci 2018; 96:2471-2479. [PMID: 28340021 DOI: 10.3382/ps/pex034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/23/2017] [Indexed: 11/20/2022] Open
Abstract
"Broiler-type" chickens are fast-grow-ing, heavy-bodied birds with high demands on bone quality. Phenamil increased mineralization in cultured murine mesenchymal stem cells. Phenamil effects were tested in 2 groups of weight and gender matched day-old broiler chickens (n = 13). Oral administration of 30 mg phenamil/kg body weight d 1 to 13 reduced growth of chicks d 5 to 14 (P = 0.002); with phenamil-treated (PT) chick body weight being 84% of vehicle-treated (VT) chicks' body weight on d 14. Tissues collected on d 15 showed that femur lengths and widths did not differ, but tibias from PT chicks were 6% shorter (P = 0.002) and 13% narrower (P = 0.012) with 18% thinner tibial cross-sections (P < 0.008) than in VT chicks. Angles of the caudal aspect of the anterior surface of keeled-sternums were 166° in PT chicks, flatter than the 148° found in VT chicks (P = 0.000). Total mineral content of both tibia and femur were lower in PT chicks (P = 0.005 for both). Bone Ca, P, and Mg (ppm) in ash were similar, but Ca:P was lower (1.70 vs 1.75) in PT versus VT chicks (P < 0.05). Osteocalcin was ∼20% lower (P = 0.020), PINP was ∼45% higher (P = 0.000) in PT chicks. Carboxy-terminal telopeptide type I collagen (ICTP) and cross-linked N-telopeptide of type I collagen (NTX1) were similar in the 2 groups. Phenamil had unexpected and detrimental effects on bone formation in growing broiler chicks, reducing linear skeletal growth and markedly changing bone architecture.
Collapse
Affiliation(s)
- Tara R Price
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843
| | - Kristin Moncada
- Department of Poultry Science, Texas A&M University, College Station, TX 77843
| | | | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea 16419
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California - Los Angeles, Los Angeles, CA 90095
| | - Rosemary L Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843.,Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843
| |
Collapse
|
28
|
Johnsson M, Henriksen R, Höglund A, Fogelholm J, Jensen P, Wright D. Genetical genomics of growth in a chicken model. BMC Genomics 2018; 19:72. [PMID: 29361907 PMCID: PMC5782384 DOI: 10.1186/s12864-018-4441-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The genetics underlying body mass and growth are key to understanding a wide range of topics in biology, both evolutionary and developmental. Body mass and growth traits are affected by many genetic variants of small effect. This complicates genetic mapping of growth and body mass. Experimental intercrosses between individuals from divergent populations allows us to map naturally occurring genetic variants for selected traits, such as body mass by linkage mapping. By simultaneously measuring traits and intermediary molecular phenotypes, such as gene expression, one can use integrative genomics to search for potential causative genes. RESULTS In this study, we use linkage mapping approach to map growth traits (N = 471) and liver gene expression (N = 130) in an advanced intercross of wild Red Junglefowl and domestic White Leghorn layer chickens. We find 16 loci for growth traits, and 1463 loci for liver gene expression, as measured by microarrays. Of these, the genes TRAK1, OSBPL8, YEATS4, CEP55, and PIP4K2B are identified as strong candidates for growth loci in the chicken. We also show a high degree of sex-specific gene-regulation, with almost every gene expression locus exhibiting sex-interactions. Finally, several trans-regulatory hotspots were found, one of which coincides with a major growth locus. CONCLUSIONS These findings not only serve to identify several strong candidates affecting growth, but also show how sex-specificity and local gene-regulation affect growth regulation in the chicken.
Collapse
Affiliation(s)
- Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK.,Department of Animal Breeding and Genetics, The Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden.,AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Andrey Höglund
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Jesper Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
29
|
Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus. G3-GENES GENOMES GENETICS 2017; 7:165-178. [PMID: 27836907 PMCID: PMC5217106 DOI: 10.1534/g3.116.033241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located expression quantitative trait loci (eQTL) underlying the variation in gene expression in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis- and trans-regulatory regions. Trans-eQTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. One observed hotspot colocated with a QTL recently found to underlie salinity tolerance in the threespine stickleback. However, most other observed hotspots did not colocate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats.
Collapse
|
30
|
The involvement of RUNX2 and SPARC genes in the bacterial chondronecrosis with osteomyelitis in broilers. Animal 2016; 11:1063-1070. [PMID: 27881195 DOI: 10.1017/s1751731116002433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Economic losses due to an increase of leg disorders in broilers have become a major concern of the poultry industry. Despite the efforts to reduce skeletal abnormalities in chickens, insufficient progress has been made. Bacterial chondronecrosis with osteomyelitis (BCO) is one of the main disorders that affect bone integrity in broilers. However, the genetic pathways and genes involved in most bone problems, including BCO, remains unclear. In this study, femoral samples from male broilers with 45 days of age affected or not with BCO were used to compare the relative expression with a reverse transcription real time PCR approach of 13 candidate genes: SPP1 (osteopontin), TNFRSF11B (osteoprotegerin), SPARC (osteonectin), CALB1 (calbidin 1), CALM (Calmodulin 2), IBSP (sialoprotein), COL1A2 (collagen, type I, α 2), BMP2 (bone morphogenetic protein 2), BMP3 (bone morphogenetic protein 3), RANKL (κ-B nuclear factor ligand), SMAD1 (SMAD family member 1), LEPR (leptin receptor) and RUNX2 (related transcription factor Runt 2). Differential expression test between affected and non-affected groups was performed using the REST software. The RUNX2 and SPARC genes were downregulated (P<0.05) in the affected group, with reduced expression of fourfold when compared with the non-affected group. This result indicates that the downregulation of RUNX2 and SPARC can contribute to an increased incidence of BCO in broilers.
Collapse
|
31
|
Johnsson M, Gering E, Willis P, Lopez S, Van Dorp L, Hellenthal G, Henriksen R, Friberg U, Wright D. Feralisation targets different genomic loci to domestication in the chicken. Nat Commun 2016; 7:12950. [PMID: 27686863 PMCID: PMC5056458 DOI: 10.1038/ncomms12950] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/18/2016] [Indexed: 12/03/2022] Open
Abstract
Feralisation occurs when a domestic population recolonizes the wild, escaping its previous restricted environment, and has been considered as the reverse of domestication. We have previously shown that Kauai Island's feral chickens are a highly variable and admixed population. Here we map selective sweeps in feral Kauai chickens using whole-genome sequencing. The detected sweeps were mostly unique to feralisation and distinct to those selected for during domestication. To ascribe potential phenotypic functions to these genes we utilize a laboratory-controlled equivalent to the Kauai population-an advanced intercross between Red Junglefowl and domestic layer birds that has been used previously for both QTL and expression QTL studies. Certain sweep genes exhibit significant correlations with comb mass, maternal brooding behaviour and fecundity. Our analyses indicate that adaptations to feral and domestic environments involve different genomic regions and feral chickens show some evidence of adaptation at genes associated with sexual selection and reproduction.
Collapse
Affiliation(s)
- M. Johnsson
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Department of Zoology, Linköping University, 58183 Linköping, Sweden
| | - E. Gering
- Department of Zoology, Michigan University, Michigan 48824, USA
| | - P. Willis
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8P 5C2
| | - S. Lopez
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - L. Van Dorp
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Centre for Mathematics, Physics and Engineering in the Life Sciences and EXperimental Biology (CoMPLEX), University College London, London WC1E 6BT, UK
| | - G. Hellenthal
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - R. Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Department of Zoology, Linköping University, 58183 Linköping, Sweden
| | - U. Friberg
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Department of Zoology, Linköping University, 58183 Linköping, Sweden
| | - D. Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Department of Zoology, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
32
|
Abstract
The identification of genetic variants responsible for behavioral variation is an enduring goal in biology, with wide-scale ramifications, ranging from medical research to evolutionary theory on personality syndromes. Here, we use for the first time a large-scale genetical genomics analysis in the brains of chickens to identify genes affecting anxiety as measured by an open field test. We combine quantitative trait locus (QTL) analysis in 572 individuals and expression QTL (eQTL) analysis in 129 individuals from an advanced intercross between domestic chickens and Red Junglefowl. We identify 10 putative quantitative trait genes affecting anxiety behavior. These genes were tested for an association in the mouse Heterogeneous Stock anxiety (open field) data set and human GWAS data sets for bipolar disorder, major depressive disorder, and schizophrenia. Although comparisons between species are complex, associations were observed for four of the candidate genes in mice and three of the candidate genes in humans. Using a multimodel approach we have therefore identified a number of putative quantitative trait genes affecting anxiety behavior, principally in chickens but also with some potentially translational effects as well. This study demonstrates that chickens are an excellent model organism for the genetic dissection of behavior.
Collapse
|
33
|
Abstract
Osteoporosis is characterized by low bone mass and an increased risk of fracture. Genetic factors, environmental factors and gene-environment interactions all contribute to a person's lifetime risk of developing an osteoporotic fracture. This Review summarizes key advances in understanding of the genetics of bone traits and their role in osteoporosis. Candidate-gene approaches dominated this field 20 years ago, but clinical and preclinical genetic studies published in the past 5 years generally utilize more-sophisticated and better-powered genome-wide association studies (GWAS). High-throughput DNA sequencing, large genomic databases and improved methods of data analysis have greatly accelerated the gene-discovery process. Linkage analyses of single-gene traits that segregate in families with extreme phenotypes have led to the elucidation of critical pathways controlling bone mass. For example, components of the Wnt-β-catenin signalling pathway have been validated (in both GWAS and functional studies) as contributing to various bone phenotypes. These notable advances in gene discovery suggest that the next decade will witness cataloguing of the hundreds of genes that influence bone mass and osteoporosis, which in turn will provide a roadmap for the development of new drugs that target diseases of low bone mass, including osteoporosis.
Collapse
|
34
|
Mignon-Grasteau S, Chantry-Darmon C, Boscher MY, Sellier N, Chabault-Dhuit M, Le Bihan-Duval E, Narcy A. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study. Bone Rep 2016; 5:43-50. [PMID: 28326346 PMCID: PMC4926819 DOI: 10.1016/j.bonr.2016.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/09/2016] [Accepted: 02/24/2016] [Indexed: 01/01/2023] Open
Abstract
Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Agnès Narcy
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France
| |
Collapse
|
35
|
Quantitative Trait Locus and Genetical Genomics Analysis Identifies Putatively Causal Genes for Fecundity and Brooding in the Chicken. G3-GENES GENOMES GENETICS 2015; 6:311-9. [PMID: 26637433 PMCID: PMC4751551 DOI: 10.1534/g3.115.024299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life history traits such as fecundity are important to evolution because they make up components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits. We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between egg loci and expression loci, and trait–gene expression correlations identify 29 candidates from bone and five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes for egg traits in the chicken that may have been affected by regulatory variants under chicken domestication. These represent, to the best of our knowledge, some of the first candidate genes identified by genome-wide mapping for life history traits in an avian species.
Collapse
|
36
|
Wright D. The Genetic Architecture of Domestication in Animals. Bioinform Biol Insights 2015; 9:11-20. [PMID: 26512200 PMCID: PMC4603525 DOI: 10.4137/bbi.s28902] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022] Open
Abstract
Domestication has been essential to the progress of human civilization, and the process itself has fascinated biologists for hundreds of years. Domestication has led to a series of remarkable changes in a variety of plants and animals, in what is termed the “domestication phenotype.” In domesticated animals, this general phenotype typically consists of similar changes in tameness, behavior, size/morphology, color, brain composition, and adrenal gland size. This domestication phenotype is seen in a range of different animals. However, the genetic basis of these associated changes is still puzzling. The genes for these different traits tend to be grouped together in clusters in the genome, though it is still not clear whether these clusters represent pleiotropic effects, or are in fact linked clusters. This review focuses on what is currently known about the genetic architecture of domesticated animal species, if genes of large effect (often referred to as major genes) are prevalent in driving the domestication phenotype, and whether pleiotropy can explain the loci underpinning these diverse traits being colocated.
Collapse
Affiliation(s)
- Dominic Wright
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| |
Collapse
|