1
|
Zhang C, Wu BZ, Thu KL. Targeting Kinesins for Therapeutic Exploitation of Chromosomal Instability in Lung Cancer. Cancers (Basel) 2025; 17:685. [PMID: 40002279 PMCID: PMC11853690 DOI: 10.3390/cancers17040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
New therapeutic approaches that antagonize tumour-promoting phenotypes in lung cancer are needed to improve patient outcomes. Chromosomal instability (CIN) is a hallmark of lung cancer characterized by the ongoing acquisition of genetic alterations that include the gain and loss of whole chromosomes or segments of chromosomes as well as chromosomal rearrangements during cell division. Although it provides genetic diversity that fuels tumour evolution and enables the acquisition of aggressive phenotypes like immune evasion, metastasis, and drug resistance, too much CIN can be lethal because it creates genetic imbalances that disrupt essential genes and induce severe proteotoxic and metabolic stress. As such, sustaining advantageous levels of CIN that are compatible with survival is a fine balance in cancer cells, and potentiating CIN to levels that exceed a tolerable threshold is a promising treatment strategy for inherently unstable tumours like lung cancer. Kinesins are a superfamily of motor proteins with many members having functions in mitosis that are critical for the correct segregation of chromosomes and, consequently, maintaining genomic integrity. Accordingly, inhibition of such kinesins has been shown to exacerbate CIN. Therefore, inhibiting mitotic kinesins represents a promising strategy for amplifying CIN to lethal levels in vulnerable cancer cells. In this review, we describe the concept of CIN as a therapeutic vulnerability and comprehensively summarize studies reporting the clinical and functional relevance of kinesins in lung cancer, with the goal of outlining how kinesin inhibition, or "targeting kinesins", holds great potential as an effective strategy for treating lung cancer.
Collapse
Affiliation(s)
- Christopher Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Benson Z. Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
2
|
Friedmacher F, Rolle U, Puri P. Genetically Modified Mouse Models of Congenital Diaphragmatic Hernia: Opportunities and Limitations for Studying Altered Lung Development. Front Pediatr 2022; 10:867307. [PMID: 35633948 PMCID: PMC9136148 DOI: 10.3389/fped.2022.867307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and life-threatening birth defect, characterized by an abnormal opening in the primordial diaphragm that interferes with normal lung development. As a result, CDH is accompanied by immature and hypoplastic lungs, being the leading cause of morbidity and mortality in patients with this condition. In recent decades, various animal models have contributed novel insights into the pathogenic mechanisms underlying CDH and associated pulmonary hypoplasia. In particular, the generation of genetically modified mouse models, which show both diaphragm and lung abnormalities, has resulted in the discovery of multiple genes and signaling pathways involved in the pathogenesis of CDH. This article aims to offer an up-to-date overview on CDH-implicated transcription factors, molecules regulating cell migration and signal transduction as well as components contributing to the formation of extracellular matrix, whilst also discussing the significance of these genetic models for studying altered lung development with regard to the human situation.
Collapse
Affiliation(s)
- Florian Friedmacher
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Rolle
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Prem Puri
- Beacon Hospital, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Blasius TL, Yue Y, Prasad R, Liu X, Gennerich A, Verhey KJ. Sequences in the stalk domain regulate auto-inhibition and ciliary tip localization of the immotile kinesin-4 KIF7. J Cell Sci 2021; 134:jcs258464. [PMID: 34114033 PMCID: PMC8277141 DOI: 10.1242/jcs.258464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
The kinesin-4 member KIF7 plays critical roles in Hedgehog signaling in vertebrate cells. KIF7 is an atypical kinesin as it binds to microtubules but is immotile. We demonstrate that, like conventional kinesins, KIF7 is regulated by auto-inhibition, as the full-length protein is inactive for microtubule binding in cells. We identify a segment, the inhibitory coiled coil (inhCC), that is required for auto-inhibition of KIF7, whereas the adjacent regulatory coiled coil (rCC) that contributes to auto-inhibition of the motile kinesin-4s KIF21A and KIF21B is not sufficient for KIF7 auto-inhibition. Disease-associated mutations in the inhCC relieve auto-inhibition and result in strong microtubule binding. Surprisingly, uninhibited KIF7 proteins did not bind preferentially to or track the plus ends of growing microtubules in cells, as suggested by previous in vitro work, but rather bound along cytosolic and axonemal microtubules. Localization to the tip of the primary cilium also required the inhCC, and could be increased by disease-associated mutations regardless of the auto-inhibition state of the protein. These findings suggest that loss of KIF7 auto-inhibition and/or altered cilium tip localization can contribute to the pathogenesis of human disease.
Collapse
Affiliation(s)
- T. Lynne Blasius
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - RaghuRam Prasad
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xinglei Liu
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Ithal D, Sukumaran SK, Bhattacharjee D, Vemula A, Nadella R, Mahadevan J, Sud R, Viswanath B, Purushottam M, Jain S. Exome hits demystified: The next frontier. Asian J Psychiatr 2021; 59:102640. [PMID: 33892377 DOI: 10.1016/j.ajp.2021.102640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Severe mental illnesses such as schizophrenia and bipolar disorder have complex inheritance patterns, involving both common and rare variants. Whole exome sequencing is a promising approach to find out the rare genetic variants. We had previously reported several rare variants in multiplex families with severe mental illnesses. The current article tries to summarise the biological processes and pattern of expression of genes harbouring the aforementioned variants, linking them to known clinical manifestations through a methodical narrative review. Of the 28 genes considered for this review from 7 families with multiple affected individuals, 6 genes are implicated in various neuropsychiatric manifestations including some variations in the brain morphology assessed by magnetic resonance imaging. Another 15 genes, though associated with neuropsychiatric manifestations, did not have established brain morphological changes whereas the remaining 7 genes did not have any previously recorded neuropsychiatric manifestations at all. Wnt/b-catenin signaling pathway was associated with 6 of these genes and PI3K/AKT, calcium signaling, ERK, RhoA and notch signaling pathways had at least 2 gene associations. We present a comprehensive review of biological and clinical knowledge about the genes previously reported in multiplex families with severe mental illness. A 'disease in dish approach' can be helpful to further explore the fundamental mechanisms.
Collapse
Affiliation(s)
- Dhruva Ithal
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Salil K Sukumaran
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Debanjan Bhattacharjee
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Alekhya Vemula
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ravi Nadella
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Jayant Mahadevan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Reeteka Sud
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
李 挺, 何 铭, 李 忠, 王 德, 徐 颖, 吴 炜, 燕 翼. [Metformin inhibits aortic atherosclerosis in mice by regulating actin skeleton in vascular smooth muscle cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1357-1363. [PMID: 31852643 PMCID: PMC6926088 DOI: 10.12122/j.issn.1673-4254.2019.11.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Indexed: 11/24/2022]
Abstract
ObjectiveInvestigate the effect and mechanism of metformin on the development of metabolic syndrome related atherosclerosis.MethodTransfecting EGFP-CLIP170 or EGFP-Pdlim5 plasmid to the mouse aortic smooth muscle cell line, to test the expression of p-AMPK, pCLIP-170 and pPdlim5, and observe the microtubule or the actin skeleton system by immunofluorescence staining. Scratch the cells to perform wound healing experiment, stimulating the cells with gradient metformin (0, 0.5, 1 mmol/L) for 8 h, and observe the change of the scratch size and the dynamic change of cell skeleton and migration in vitro. ApoE-/- mice were injected with streptozotocin and followed by 8 weeks of high fat diet to induce metabolic syndrome model. In the therapeutic group, mice were treated metformin (Met) instead of saline in control group (Control, CTL group). In the end, the whole aorta and its root were isolated and performed oil red O staining and immol/Lunostaining of α-SMA to evaluate the migration of smooth muscle cells and the accumulation of lipids in the aorta.ResultsMouse aortic smooth muscle cells showed an enhanced stress fiber and focal adhesion which representing the dynamic change of actin skeleton after Met stimulation, while the tubulin system rarely showed any change to Met. In animal model, The staining of α-SMA showed smooth muscle cells migrated to the intima or even to the lipid area from the media of aorta in CTL group compared to the Met group. Oil red O staining showed a reduced accumulation of lipids in the Met group than the controls (P < 0.05).ConclusionMetformin reduces the formation of atherosclerosis by inhibiting the migration of smooth muscle cells through modulating cellular actin skeleton system in mice.
Collapse
Affiliation(s)
- 挺 李
- 广州医科大学附属第三医院心血管内科,广东 广州 510150Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- 南方医科大学器官衰竭防治国家重点实验室,广东 广州 510515State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
- 南方医科大学病理生理学教研室//广东省医学休克微循环重点实验室,广东 广州 510515Department of Pathophysiology, Guangdong Provincial Key Laboratory for Shock and Microcirculation Research, Southern Medical University, Guangzhou 510515, China
| | - 铭垣 何
- 广州医科大学附属第三医院心血管内科,广东 广州 510150Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- 南方医科大学器官衰竭防治国家重点实验室,广东 广州 510515State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - 忠豪 李
- 南方医科大学病理生理学教研室//广东省医学休克微循环重点实验室,广东 广州 510515Department of Pathophysiology, Guangdong Provincial Key Laboratory for Shock and Microcirculation Research, Southern Medical University, Guangzhou 510515, China
| | - 德奖 王
- 广州医科大学附属第三医院心血管内科,广东 广州 510150Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - 颖怡 徐
- 广州医科大学附属第三医院心血管内科,广东 广州 510150Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- 南方医科大学病理生理学教研室//广东省医学休克微循环重点实验室,广东 广州 510515Department of Pathophysiology, Guangdong Provincial Key Laboratory for Shock and Microcirculation Research, Southern Medical University, Guangzhou 510515, China
| | - 炜 吴
- 南方医科大学病理生理学教研室//广东省医学休克微循环重点实验室,广东 广州 510515Department of Pathophysiology, Guangdong Provincial Key Laboratory for Shock and Microcirculation Research, Southern Medical University, Guangzhou 510515, China
| | - 翼 燕
- 广州医科大学附属第三医院心血管内科,广东 广州 510150Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- 南方医科大学器官衰竭防治国家重点实验室,广东 广州 510515State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
- 南方医科大学病理生理学教研室//广东省医学休克微循环重点实验室,广东 广州 510515Department of Pathophysiology, Guangdong Provincial Key Laboratory for Shock and Microcirculation Research, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Wan X, Zhang Y, Lan M, Pan MH, Tang F, Zhang HL, Ou XH, Sun SC. Meiotic arrest and spindle defects are associated with altered KIF11 expression in porcine oocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:805-812. [PMID: 30151839 DOI: 10.1002/em.22213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Kinesin superfamily proteins (KIFs) act as molecular motors and are involved in material transport along microtubules to maintain normal cellular functions. KIF11 (also named kinesin-5, Eg5, and KSP) is a plus-end-directed homotetrameric kinesin that regulates spindle formation for actuate chromosomal separation during mitosis. However, the roles of KIF11 in meiosis are still unclear. In this study, we investigated the regulatory functions of KIF11 during porcine oocyte maturation. The results indicated that KIF11 was expressed in different stages during porcine oocyte meiosis. Inhibition of KIF11 activity led to the failure of the first polar body extrusion, and we found that cell cycle progression was disturbed, which was confirmed by the decreased Cdc2 expression. Furthermore, inhibition of KIF11 resulted in decreased tubulin acetylation and caused sequential disruption of the spindle assembly and chromosome alignment. We also found that in postovulatory aging porcine oocytes, the KIF11 expression was altered, indicating that KIF11 was involved with aging-induced spindle disorganization. In summary, our results showed that KIF11 regulated the cell cycle and tubulin acetylation related spindle formation in porcine oocyte meiosis. Environ. Mol. Mutagen. 59:805-812, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mei Lan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Camlin NJ, McLaughlin EA, Holt JE. Motoring through: the role of kinesin superfamily proteins in female meiosis. Hum Reprod Update 2017; 23:409-420. [PMID: 28431155 DOI: 10.1093/humupd/dmx010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/01/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The kinesin motor protein family consists of 14 distinct subclasses and 45 kinesin proteins in humans. A large number of these proteins, or their orthologues, have been shown to possess essential function(s) in both the mitotic and the meiotic cell cycle. Kinesins have important roles in chromosome separation, microtubule dynamics, spindle formation, cytokinesis and cell cycle progression. This article contains a review of the literature with respect to the role of kinesin motor proteins in female meiosis in model species. Throughout, we discuss the function of each class of kinesin proteins during oocyte meiosis, and where such data are not available their role in mitosis is considered. Finally, the review highlights the potential clinical importance of this family of proteins for human oocyte quality. OBJECTIVE AND RATIONALE To examine the role of kinesin motor proteins in oocyte meiosis. SEARCH METHODS A search was performed on the Pubmed database for journal articles published between January 1970 and February 2017. Search terms included 'oocyte kinesin' and 'meiosis kinesin' in addition to individual kinesin names with the terms oocyte or meiosis. OUTCOMES Within human cells 45 kinesin motor proteins have been discovered, with the role of only 13 of these proteins, or their orthologues, investigated in female meiosis. Furthermore, of these kinesins only half have been examined in mammalian oocytes, despite alterations occurring in gene transcripts or protein expression with maternal ageing, cryopreservation or behavioral conditions, such as binge drinking, for many of them. WIDER IMPLICATIONS Kinesin motor proteins have distinct and important roles throughout oocyte meiosis in many non-mammalian model species. However, the functions these proteins have in mammalian meiosis, particularly in humans, are less clear owing to lack of research. This review brings to light the need for more experimental investigation of kinesin motor proteins, particularly those associated with maternal ageing, cryopreservation or exposure to environmental toxicants.
Collapse
Affiliation(s)
- Nicole J Camlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Janet E Holt
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
8
|
KIF7 attenuates prostate tumor growth through LKB1-mediated AKT inhibition. Oncotarget 2017; 8:54558-54571. [PMID: 28903364 PMCID: PMC5589603 DOI: 10.18632/oncotarget.17421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
This study investigated kinesin family member 7 (KIF7) expression and function in prostate cancer (PCa). Our results showed that KIF7 was significantly downregulated in PCa, compared with normal, benign prostatic hyperplasia and prostate intraepithelial neoplasia tissues, partially through promoter hypermethylation. We further investigated the effects of KIF7 coiled coil (CC) domain and motor domain (MD) on PCa development in vitro and in vivo. Our results showed that KIF7-CC but not KIF7-MD significantly attenuated proliferation and colony formation, impeded migration and invasion, induced apoptosis and sensitized PCa cells to paclitaxel. Further analysis revealed that KIF7-CC enhanced LKB1 expression and phosphorylation at Ser428, which induced PTEN phosphorylation at Ser380/Thr382/383 and consequently blocked AKT phosphorylation at Ser473. Downregulation of LKB1 significantly attenuated the suppressive effects of KIF7-CC on cell proliferation, colony formation and AKT phosphorylation. Furthermore, our in vivo studies showed that KIF7-CC reduced prostate tumorigenesis in cell-derived xenografts. Downregulation of LKB1 abrogated the anti-tumor effects of KIF7-CC in these xenografts. Taken together, these findings provide the first evidence to support the role of KIF7 as a negative regulator that inhibits PCa development partially through LKB1-mediated AKT inhibition.
Collapse
|
9
|
He M, Agbu S, Anderson KV. Microtubule Motors Drive Hedgehog Signaling in Primary Cilia. Trends Cell Biol 2017; 27:110-125. [PMID: 27765513 PMCID: PMC5258846 DOI: 10.1016/j.tcb.2016.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/08/2016] [Accepted: 09/23/2016] [Indexed: 01/05/2023]
Abstract
The mammalian Hedgehog (Hh) signaling pathway is required for development and for maintenance of adult stem cells, and overactivation of the pathway can cause tumorigenesis. All responses to Hh family ligands in mammals require the primary cilium, an ancient microtubule-based organelle that extends from the cell surface. Genetic studies in mice and humans have defined specific functions for cilium-associated microtubule motor proteins: they act in the construction and disassembly of the primary cilium, they control ciliary length and stability, and some have direct roles in mammalian Hh signal transduction. These studies highlight how integrated genetic and cell biological studies can define the molecular mechanisms that underlie cilium-associated health and disease.
Collapse
Affiliation(s)
- Mu He
- Department of Physiology and Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephanie Agbu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Biochemistry, Cell, and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|