1
|
Zheng X, Yang J, Wang Q, Yao P, Xiao J, Mao S, Zhang Z, Zeng Y, Zhu J, Hou J. Characterisation and evolution of the PRC2 complex and its functional analysis under various stress conditions in rice. Int J Biol Macromol 2024; 280:136124. [PMID: 39349087 DOI: 10.1016/j.ijbiomac.2024.136124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The polycomb repressive complex 2 (PRC2) is a chromatin-associated methyltransferase responsible for catalysing the trimethylation of H3K27, an inhibitory chromatin marker associated with gene silencing. This enzymatic activity is crucial for normal organismal development and the maintenance of gene expression patterns that preserve cellular identity, subsequently influencing plant growth and abiotic stress responses. Therefore, in this study, we investigated the evolutionary characteristics and functional roles of PRC2 in plants. We identified 209 PRC2 genes, including E(z), Su(z), Esc, and Nurf55 families, using 18 representative plant species and revealed that recent gene replication events have led to an expansion in the Nurf55 family, resulting in a greater number of members compared to the E(z), Su(z), and Esc families. Furthermore, protein structure and motif composition analyses highlighted the potential functional site regions within PRC2 members. In addition, we selected rice, a representative monocotyledonous plant, as the model species for food crops. Our findings revealed that SDG711, SDG718, and MSI1-5 genes were induced by abscisic acid (ABA) and/or methyl jasmonate (MeJA) hormones, suggesting that these genes play an important role in abiotic stress and disease resistance. Further experiments involving rice blast fungus treatments confirmed that the expression of SDG711 and MSI1-5 was induced by Magnaporthe oryzae strain GUY11. Multiple protein interaction assays revealed that the M. oryzae effector AvrPiz-t interacts with PRC2 core member SDG711 to increase H3K27me3 levels. Notably, inhibition of PRC2 or mutation of SDG711 enhanced rice resistance to M. oryzae. Collectively, these results provide new insights into PRC2 evolution in plants and its significant functions in rice.
Collapse
Affiliation(s)
- Xueke Zheng
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jieru Yang
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Qing Wang
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Peng Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shengxin Mao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zihan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Zhu
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China.
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Muthusamy M, Pandian S, Shin EK, An HK, Sohn SI. Unveiling the imprinted dance: how parental genomes orchestrate seed development and hybrid success. FRONTIERS IN PLANT SCIENCE 2024; 15:1455685. [PMID: 39399543 PMCID: PMC11466797 DOI: 10.3389/fpls.2024.1455685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Parental epigenetic asymmetries, which contribute to the monoallelic expression of genes known as imprints, play a critical role in seed development in flowering plants. Primarily, differential DNA methylation patterns and histone modifications on parental alleles form the molecular basis of gene imprinting. Plants predominantly exhibit this non-Mendelian inheritance phenomenon in the endosperm and the early embryo of developing seeds. Imprinting is crucial for regulating nutrient allocation, maintaining seed development, resolving parental conflict, and facilitating evolutionary adaptation. Disruptions in imprinted gene expression, mediated by epigenetic regulators and parental ploidy levels, can lead to endosperm-based hybridization barriers and hybrid dysfunction, ultimately reducing genetic diversity in plant populations. Conversely, imprinting helps maintain genetic stability within plant populations. Imprinted genes likely influence seed development in various ways, including ensuring proper endosperm development, influencing seed dormancy, and regulating seed size. However, the functions of most imprinted genes, the evolutionary significance of imprinting, and the long-term consequences of imprinting disruptions on plant development and adaptation need further exploration. Thus, it is clear that research on imprinting has immense potential for improving our understanding of plant development and ultimately enhancing key agronomic traits. This review decodes the possible genetic and epigenetic regulatory factors underpinning genomic imprinting and their positive and negative consequences on seed development. This study also forecasts the potential implications of exploiting gene imprinting for crop improvement programs.
Collapse
Affiliation(s)
| | | | | | | | - Soo-In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of
Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
3
|
Rajabhoj MP, Sankar S, Bondada R, Shanmukhan AP, Prasad K, Maruthachalam R. Gametophytic epigenetic regulators, MEDEA and DEMETER, synergistically suppress ectopic shoot formation in Arabidopsis. PLANT CELL REPORTS 2024; 43:68. [PMID: 38341844 DOI: 10.1007/s00299-024-03159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
KEY MESSAGE The gametophytic epigenetic regulators, MEA and DME, extend their synergistic role to the sporophytic development by regulating the meristematic activity via restricting the gene expression in the shoot apex. The gametophyte-to-sporophyte transition facilitates the alternation of generations in a plant life cycle. The epigenetic regulators DEMETER (DME) and MEDEA (MEA) synergistically control central cell proliferation and differentiation, ensuring proper gametophyte-to-sporophyte transition in Arabidopsis. Mutant alleles of DME and MEA are female gametophyte lethal, eluding the recovery of recessive homozygotes to examine their role in the sporophyte. Here, we exploited the paternal transmission of these mutant alleles coupled with CENH3-haploid inducer to generate mea-1;dme-2 sporophytes. Strikingly, the simultaneous loss of function of MEA and DME leads to the emergence of ectopic shoot meristems at the apical pole of the plant body axis. DME and MEA are expressed in the developing shoot apex and regulate the expression of various shoot-promoting factors. Chromatin immunoprecipitation (ChIP), DNA methylation, and gene expression analysis revealed several shoot regulators as potential targets of MEA and DME. RNA interference-mediated transcriptional downregulation of shoot-promoting factors STM, CUC2, and PLT5 rescued the twin-plant phenotype to WT in 9-23% of mea-1-/-;dme-2-/- plants. Our findings reveal a previously unrecognized synergistic role of MEA and DME in restricting the meristematic activity at the shoot apex during sporophytic development.
Collapse
Affiliation(s)
- Mohit P Rajabhoj
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| | - Sudev Sankar
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Ramesh Bondada
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| | | | - Kalika Prasad
- Department of Biology, IISER Pune, Pune, Maharashtra, 411008, India.
| | - Ravi Maruthachalam
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
4
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
5
|
Castillo-Bravo R, Fort A, Cashell R, Brychkova G, McKeown PC, Spillane C. Parent-of-Origin Effects on Seed Size Modify Heterosis Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:835219. [PMID: 35330872 PMCID: PMC8940307 DOI: 10.3389/fpls.2022.835219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
Parent-of-origin effects arise when a phenotype depends on whether it is inherited maternally or paternally. Parent-of-origin effects can exert a strong influence on F1 seed size in flowering plants, an important agronomic and life-history trait that can contribute to biomass heterosis. Here we investigate the natural variation in the relative contributions of the maternal and paternal genomes to F1 seed size across 71 reciprocal pairs of F1 hybrid diploids and the parental effect on F1 seed size heterosis. We demonstrate that the paternally derived genome influences F1 seed size more significantly than previously appreciated. We further demonstrate (by disruption of parental genome dosage balance in F1 triploid seeds) that hybridity acts as an enhancer of genome dosage effects on F1 seed size, beyond that observed from hybridity or genome dosage effects on their own. Our findings indicate that interactions between genetic hybridity and parental genome dosage can enhance heterosis effects in plants, opening new avenues for boosting heterosis breeding in crop plants.
Collapse
|
6
|
Fitzpatrick CL, Wade MJ. When is Offspring Viability Fitness a Measure of Paternal Fitness and When is it not? J Hered 2022; 113:48-53. [PMID: 34850026 PMCID: PMC8851674 DOI: 10.1093/jhered/esab055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/14/2021] [Indexed: 01/23/2023] Open
Abstract
We use population genetics to model the evolution of a gene with an indirect effect owing to paternal care and with a second pleiotropic, direct effect on offspring viability. We use the model to illustrate how the common empirical practice of considering offspring viability as a component of parent fitness can confound a gene's direct and indirect fitness effects. We investigate when this confounding results in a distorted picture of overall evolution and when it does not. We find that the practice has no effect on mean fitness, W, but it does have an effect on the dynamics of gene frequency change, ∆q. We also find that, for some regions of parameter space associated with fitness trade-offs, the distortion is not only quantitative but also qualitative, obscuring the direction of gene frequency change. Because it affects the evolutionary dynamics, it also affects the expected amount of genetic variation at mutation-selection balance, an important consideration in molecular evolution. We discuss empirical techniques for separating direct from indirect effects and how field studies measuring the value of male paternal care might be improved by using them.
Collapse
Affiliation(s)
- Courtney L Fitzpatrick
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Michael J Wade
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Simonini S, Bemer M, Bencivenga S, Gagliardini V, Pires ND, Desvoyes B, van der Graaff E, Gutierrez C, Grossniklaus U. The Polycomb group protein MEDEA controls cell proliferation and embryonic patterning in Arabidopsis. Dev Cell 2021; 56:1945-1960.e7. [PMID: 34192526 PMCID: PMC8279741 DOI: 10.1016/j.devcel.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Establishing the embryonic body plan of multicellular organisms relies on precisely orchestrated cell divisions coupled with pattern formation, which, in animals, are regulated by Polycomb group (PcG) proteins. The conserved Polycomb Repressive Complex 2 (PRC2) mediates H3K27 trimethylation and comes in different flavors in Arabidopsis. The PRC2 catalytic subunit MEDEA is required for seed development; however, a role for PRC2 in embryonic patterning has been dismissed. Here, we demonstrate that embryos derived from medea eggs abort because MEDEA is required for patterning and cell lineage determination in the early embryo. Similar to PcG proteins in mammals, MEDEA regulates embryonic patterning and growth by controlling cell-cycle progression through repression of CYCD1;1, which encodes a core cell-cycle component. Thus, Arabidopsis embryogenesis is epigenetically regulated by PcG proteins, revealing that the PRC2-dependent modulation of cell-cycle progression was independently recruited to control embryonic cell proliferation and patterning in animals and plants.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Marian Bemer
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Stefano Bencivenga
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Nuno D Pires
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Eric van der Graaff
- BIOSS Centre for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
8
|
Pramanik D, Shelake RM, Kim MJ, Kim JY. CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. MOLECULAR PLANT 2021; 14:127-150. [PMID: 33152519 DOI: 10.1016/j.molp.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The central dogma (CD) of molecular biology is the transfer of genetic information from DNA to RNA to protein. Major CD processes governing genetic flow include the cell cycle, DNA replication, chromosome packaging, epigenetic changes, transcription, posttranscriptional alterations, translation, and posttranslational modifications. The CD processes are tightly regulated in plants to maintain genetic integrity throughout the life cycle and to pass genetic materials to next generation. Engineering of various CD processes involved in gene regulation will accelerate crop improvement to feed the growing world population. CRISPR technology enables programmable editing of CD processes to alter DNA, RNA, or protein, which would have been impossible in the past. Here, an overview of recent advancements in CRISPR tool development and CRISPR-based CD modulations that expedite basic and applied plant research is provided. Furthermore, CRISPR applications in major thriving areas of research, such as gene discovery (allele mining and cryptic gene activation), introgression (de novo domestication and haploid induction), and application of desired traits beneficial to farmers or consumers (biotic/abiotic stress-resilient crops, plant cell factories, and delayed senescence), are described. Finally, the global regulatory policies, challenges, and prospects for CRISPR-mediated crop improvement are discussed.
Collapse
Affiliation(s)
- Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Mi Jung Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
9
|
Soyk S, Lemmon ZH, Sedlazeck FJ, Jiménez-Gómez JM, Alonge M, Hutton SF, Van Eck J, Schatz MC, Lippman ZB. Duplication of a domestication locus neutralized a cryptic variant that caused a breeding barrier in tomato. NATURE PLANTS 2019; 5:471-479. [PMID: 31061537 DOI: 10.1038/s41477-019-0422-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Genome editing technologies are being widely adopted in plant breeding1. However, a looming challenge of engineering desirable genetic variation in diverse genotypes is poor predictability of phenotypic outcomes due to unforeseen interactions with pre-existing cryptic mutations2-4. In tomato, breeding with a classical MADS-box gene mutation that improves harvesting by eliminating fruit stem abscission frequently results in excessive inflorescence branching, flowering and reduced fertility due to interaction with a cryptic variant that causes partial mis-splicing in a homologous gene5-8. Here, we show that a recently evolved tandem duplication carrying the second-site variant achieves a threshold of functional transcripts to suppress branching, enabling breeders to neutralize negative epistasis on yield. By dissecting the dosage mechanisms by which this structural variant restored normal flowering and fertility, we devised strategies that use CRISPR-Cas9 genome editing to predictably improve harvesting. Our findings highlight the under-appreciated impact of epistasis in targeted trait breeding and underscore the need for a deeper characterization of cryptic variation to enable the full potential of genome editing in agriculture.
Collapse
Affiliation(s)
- Sebastian Soyk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | | | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Samuel F Hutton
- Horticultural Sciences Department, University of Florida, Wimauma, FL, USA
| | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncologye, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
10
|
Armenta-Medina A, Gillmor CS. Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Curr Top Dev Biol 2019; 131:497-543. [DOI: 10.1016/bs.ctdb.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Tang W, Huang L, Bu S, Zhang X, Wu W. Estimation of QTL heritability based on pooled sequencing data. Bioinformatics 2019; 34:978-984. [PMID: 29106443 DOI: 10.1093/bioinformatics/btx703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022] Open
Abstract
Motivation Bulked segregant analysis combined with next generation sequencing has proven to be a simple and efficient approach for fast mapping of quantitative trait loci (QTLs). However, how to estimate the proportion of phenotypic variance explained by a QTL (or termed QTL heritability) in such pooled QTL mapping is an unsolved problem. Results In this paper, we propose a method called PQHE to estimate QTL heritability using pooled sequencing data obtained under different experimental designs. Simulation studies indicated that our method is correct and feasible. Four practical examples from rice and yeast are demonstrated, each representing a different situation. Availability and implementation The R scripts of our method are open source under GPLv3 license at http://genetics.fafu.edu.cn/PQHE or https://github.com/biotangweiqi/PQHE. The R scripts require the R package rootSolve. Contact wuwr@fafu.edu.cn. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Weiqi Tang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Likun Huang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Suhong Bu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuzhang Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
12
|
Intersexual conflict over seed size is stronger in more outcrossed populations of a mixed-mating plant. Proc Natl Acad Sci U S A 2018; 115:11561-11566. [PMID: 30282740 DOI: 10.1073/pnas.1810979115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In polyandrous species, fathers benefit from attracting greater maternal investment toward their offspring at the expense of the offspring of other males, while mothers should usually allocate resources equally among offspring. This conflict can lead to an evolutionary arms race between the sexes, manifested through antagonistic genes whose expression in offspring depends upon the parent of origin. The arms race may involve an increase in the strength of maternally versus paternally derived alleles engaged in a "tug of war" over maternal provisioning or repeated "recognition-avoidance" coevolution where growth-enhancing paternally derived alleles evolve to escape recognition by maternal genes targeted to suppress their effect. Here, we develop predictions to distinguish between these two mechanisms when considering crosses among populations that have reached different equilibria in this intersexual arms race. We test these predictions using crosses within and among populations of Dalechampia scandens (Euphorbiaceae) that presumably have experienced different intensities of intersexual conflict, as inferred from their historical differences in mating system. In crosses where the paternal population was more outcrossed than the maternal population, hybrid seeds were larger than those normally produced in the maternal population, whereas when the maternal population was more outcrossed, hybrid seeds were smaller than normal. These results confirm the importance of mating systems in determining the intensity of intersexual conflict over maternal investment and provide strong support for a tug-of-war mechanism operating in this conflict. They also yield clear predictions for the fitness consequences of gene flow among populations with different mating histories.
Collapse
|
13
|
Savadi S. Molecular regulation of seed development and strategies for engineering seed size in crop plants. PLANT GROWTH REGULATION 2018; 84:401-422. [PMID: 0 DOI: 10.1007/s10725-017-0355-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
14
|
Abstract
Our understanding of the epigenetic mechanisms that regulate gene expression has been largely increased in recent years by the development and refinement of different techniques. This has revealed that gene transcription is highly influenced by epigenetic mechanisms, i.e., those that do not involve changes in the genome sequence, but rather in nuclear architecture, chromosome conformation and histone and DNA modifications. Our understanding of how these different levels of epigenetic regulation interact with each other and with classical transcription-factor based gene regulation to influence gene transcription has just started to emerge. This review discusses the latest advances in unraveling the complex interactions between different types of epigenetic regulation and transcription factor activity, with special attention to the approaches that can be used to study these interactions.
Collapse
Affiliation(s)
- Marian Bemer
- Department of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Pires ND, Grossniklaus U. Identification of Parent-of-Origin-Dependent QTLs Using Bulk-Segregant Sequencing (Bulk-Seq). Methods Mol Biol 2018; 1675:361-371. [PMID: 29052202 DOI: 10.1007/978-1-4939-7318-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Parent-of-origin effects play important roles in plant reproduction and are often mediated by epigenetic modifications at the histone or DNA level. However, the genetic basis underlying these modifications can be challenging to identify. Here, we describe an approach (Bulk-Seq) that can be used to map loci mediating parent-of-origin-dependent effects using whole-genome sequencing of pools of DNA.
Collapse
Affiliation(s)
- Nuno D Pires
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| |
Collapse
|
16
|
Yuan J, Chen S, Jiao W, Wang L, Wang L, Ye W, Lu J, Hong D, You S, Cheng Z, Yang DL, Chen ZJ. Both maternally and paternally imprinted genes regulate seed development in rice. THE NEW PHYTOLOGIST 2017; 216:373-387. [PMID: 28295376 DOI: 10.1111/nph.14510] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/01/2017] [Indexed: 05/20/2023]
Abstract
Genetic imprinting refers to the unequal expression of paternal and maternal alleles of a gene in sexually reproducing organisms, including mammals and flowering plants. Although many imprinted genes have been identified in plants, the functions of these imprinted genes have remained largely uninvestigated. We report genome-wide analysis of gene expression, DNA methylation and small RNAs in the rice endosperm and functional tests of five imprinted genes during seed development using Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated gene9 (CRISPR/Cas9) gene editing technology. In the rice endosperm, we identified 162 maternally expressed genes (MEGs) and 95 paternally expressed genes (PEGs), which were associated with miniature inverted-repeat transposable elements, imprinted differentially methylated loci and some 21-22 small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs). Remarkably, one-third of MEGs and nearly one-half of PEGs were associated with grain yield quantitative trait loci. Most MEGs and some PEGs were expressed specifically in the endosperm. Disruption of two MEGs increased the amount of small starch granules and reduced grain and embryo size, whereas mutation of three PEGs reduced starch content and seed fertility. Our data indicate that both MEGs and PEGs in rice regulate nutrient metabolism and endosperm development, which optimize seed development and offspring fitness to facilitate parental-offspring coadaptation. These imprinted genes and mechanisms could be used to improve the grain yield of rice and other cereal crops.
Collapse
Affiliation(s)
- Jingya Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Sushu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Wu Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Longfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Limei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Jie Lu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Delin Hong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Siliang You
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Zhukuan Cheng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Beijing, 100101, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
17
|
Xiao J, Jin R, Wagner D. Developmental transitions: integrating environmental cues with hormonal signaling in the chromatin landscape in plants. Genome Biol 2017; 18:88. [PMID: 28490341 PMCID: PMC5425979 DOI: 10.1186/s13059-017-1228-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plant development is predominantly postembryonic and tuned in to respond to environmental cues. All living plant cells can be triggered to de-differentiate, assume different cell identities, or form a new organism. This developmental plasticity is thought to be an adaptation to the sessile lifestyle of plants. Recent discoveries have advanced our understanding of the orchestration of plant developmental switches by transcriptional master regulators, chromatin state changes, and hormone response pathways. Here, we review these recent advances with emphasis on the earliest stages of plant development and on the switch from pluripotency to differentiation in different plant organ systems.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Run Jin
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Ingram GC. Dying to live: cell elimination as a developmental strategy in angiosperm seeds. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:785-796. [PMID: 27702990 DOI: 10.1093/jxb/erw364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The complete elimination of unwanted cells during development is a repeated theme in both multicellular animals and in plants. In plants, such events have been extensively studied and reviewed in terms of their molecular regulation, of marker genes and proteins expressed, and in terms of cellular changes associated with their progression. This review will take a slightly different view of developmental cell elimination and will concentrate specifically on the numerous elimination events that occur during ovule and seed development (here grouped together as seed development). It asks why this cell elimination occurs in specific seed tissues, in order to understand something about the commonalities underlying how seemingly disparate events are triggered and regulated. Finally, by placing the seed in its broader evolutionary context, the question of why cell elimination may have emerged as such a key component of the seed developmental toolbox will be considered.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, CNRS (UMR 5667), INRA (UMR 0879), UCB Lyon 1, Ecole Normale Supérieure de Lyon, F-69342 Lyon, France
| |
Collapse
|