1
|
von Saucken VE, Windner SE, Armetta G, Baylies MK. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. J Cell Biol 2025; 224:e202404052. [PMID: 39475469 PMCID: PMC11530350 DOI: 10.1083/jcb.202404052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 11/04/2024] Open
Abstract
The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (size scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show that local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.
Collapse
Affiliation(s)
- Victoria E. von Saucken
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Biochemistry, Cell and Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Stefanie E. Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanna Armetta
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary K. Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Han TH, Vicidomini R, Ramos CI, Mayer ML, Serpe M. The gating properties of Drosophila NMJ glutamate receptors and their dependence on Neto. J Physiol 2024; 602:7043-7064. [PMID: 39602131 DOI: 10.1113/jp287331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
The Drosophila neuromuscular junction (NMJ) is a powerful genetic system that has revealed numerous conserved mechanisms for synapse development and homeostasis. The fly NMJ uses glutamate as the excitatory neurotransmitter and relies on kainate-type glutamate receptors and their auxiliary protein Neto for synapse assembly and function. However, despite decades of study, the reconstitution of NMJ glutamate receptors using heterologous systems has been achieved only recently, and there are no reports on the gating properties for the recombinant receptors. Here, using outside-out, patch clamp recordings and fast ligand application, we examine for the first time the biophysical properties of native type-A and type-B NMJ receptors in complexes with either Neto-α or Neto-β and compare them with recombinant receptors expressed in HEK293T cells. We found that type-A and type-B receptors have strikingly different gating properties that are further modulated by Neto-α and Neto-β. We captured single-channel events and revealed major differences between type-A and type-B receptors and also between Neto splice variants. Surprisingly, we found that deactivation is extremely fast and that the decay of synaptic currents resembles the rate of ionotropic glutamate receptor (iGluR) desensitization. The functional analyses of recombinant iGluRs that we report here should greatly facilitate the interpretation of compound in vivo phenotypes of mutant animals. KEY POINTS: We report the reconstitution of Drosophila neuromuscular junction ionotropic glutamate receptors (iGluRs) with Neto splice forms. Using outside-out patches and fast ligand application, we examine the deactivation and desensitization of the four iGluR/Neto complexes found in vivo. Expression of functional channels is absolutely dependent on Neto. Single-channel recordings revealed different lifetimes for different receptor complexes. The decay of synaptic currents is controlled by desensitization.
Collapse
Affiliation(s)
- Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Cathy Isaura Ramos
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
- Present address: The Institute of Functional Genomics of Lyon, Lyon, France
| | - Mark L Mayer
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
3
|
Han TH, Vicidomini R, Ramos CI, Mayer M, Serpe M. Neto proteins differentially modulate the gating properties of Drosophila NMJ glutamate receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590603. [PMID: 38903091 PMCID: PMC11188076 DOI: 10.1101/2024.04.22.590603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The formation of functional synapses requires co-assembly of ion channels with their accessory proteins which controls where, when, and how neurotransmitter receptors function. The auxiliary protein Neto modulates the function of kainate-type glutamate receptors in vertebrates as well as at the Drosophila neuromuscular junction (NMJ), a glutamatergic synapse widely used for genetic studies on synapse development. We previously reported that Neto is essential for the synaptic recruitment and function of glutamate receptors. Here, using outside-out patch-clamp recordings and fast ligand application, we examine for the first time the biophysical properties of recombinant Drosophila NMJ receptors expressed in HEK293T cells and compare them with native receptor complexes of genetically controlled composition. The two Neto isoforms, Neto-α and Neto-β, differentially modulate the gating properties of NMJ receptors. Surprisingly, we found that deactivation is extremely fast and that the decay of synaptic currents resembles the rate of iGluR desensitization. The functional analyses of recombinant iGluRs that we report here should greatly facilitate the interpretation of compound in vivo phenotypes of mutant animals.
Collapse
Affiliation(s)
- Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Cathy Isaura Ramos
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
- current address: The Institute of Functional Genomics of Lyon, 69007 Lyon, France
| | - Mark Mayer
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
von Saucken VE, Windner SE, Baylies MK. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588944. [PMID: 38645063 PMCID: PMC11030338 DOI: 10.1101/2024.04.10.588944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that then positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.
Collapse
Affiliation(s)
- Victoria E. von Saucken
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065 USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065 USA
| | - Stefanie E. Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Mary K. Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| |
Collapse
|
5
|
Gao Z, Huang E, Wang W, Xu L, Xu W, Zheng T, Rui M. Patronin regulates presynaptic microtubule organization and neuromuscular junction development in Drosophila. iScience 2024; 27:108944. [PMID: 38318379 PMCID: PMC10839449 DOI: 10.1016/j.isci.2024.108944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Synapses are fundamental components of the animal nervous system. Synaptic cytoskeleton is essential for maintaining proper neuronal development and wiring. Perturbations in neuronal microtubules (MTs) are correlated with numerous neuropsychiatric disorders. Despite discovering multiple synaptic MT regulators, the importance of MT stability, and particularly the polarity of MT in synaptic function, is still under investigation. Here, we identify Patronin, an MT minus-end-binding protein, for its essential role in presynaptic regulation of MT organization and neuromuscular junction (NMJ) development. Analyses indicate that Patronin regulates synaptic development independent of Klp10A. Subsequent research elucidates that it is short stop (Shot), a member of the Spectraplakin family of large cytoskeletal linker molecules, works synergistically with Patronin to govern NMJ development. We further raise the possibility that normal synaptic MT polarity contributes to proper NMJ morphology. Overall, this study demonstrates an unprecedented role of Patronin, and a potential involvement of MT polarity in synaptic development.
Collapse
Affiliation(s)
- Ziyang Gao
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Erqian Huang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wanting Wang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Lizhong Xu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wanyue Xu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Ting Zheng
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Menglong Rui
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
7
|
Bertin F, Jara-Wilde J, Auer B, Köhler-Solís A, González-Silva C, Thomas U, Sierralta J. Drosophila Atlastin regulates synaptic vesicle mobilization independent of bone morphogenetic protein signaling. Biol Res 2023; 56:49. [PMID: 37710314 PMCID: PMC10503011 DOI: 10.1186/s40659-023-00462-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) contacts endosomes in all parts of a motor neuron, including the axon and presynaptic terminal, to move structural proteins, proteins that send signals, and lipids over long distances. Atlastin (Atl), a large GTPase, is required for membrane fusion and the structural dynamics of the ER tubules. Atl mutations are the second most common cause of Hereditary Spastic Paraplegia (HSP), which causes spasticity in both sexes' lower extremities. Through an unknown mechanism, Atl mutations stimulate the BMP (bone morphogenetic protein) pathway in vertebrates and Drosophila. Synaptic defects are caused by atl mutations, which affect the abundance and distribution of synaptic vesicles (SV) in the bouton. We hypothesize that BMP signaling, does not cause Atl-dependent SV abnormalities in Drosophila. RESULTS We show that atl knockdown in motor neurons (Atl-KD) increases synaptic and satellite boutons in the same way that constitutively activating the BMP-receptor Tkv (thick veins) (Tkv-CA) increases the bouton number. The SV proteins Cysteine string protein (CSP) and glutamate vesicular transporter are reduced in Atl-KD and Tkv-CA larvae. Reducing the activity of the BMP receptor Wishful thinking (wit) can rescue both phenotypes. Unlike Tkv-CA larvae, Atl-KD larvae display altered activity-dependent distributions of CSP staining. Furthermore, Atl-KD larvae display an increased FM 1-43 unload than Control and Tkv-CA larvae. As decreasing wit function does not reduce the phenotype, our hypothesis that BMP signaling is not involved is supported. We also found that Rab11/CSP colocalization increased in Atl-KD larvae, which supports the concept that late recycling endosomes regulate SV movements. CONCLUSIONS Our findings reveal that Atl modulates neurotransmitter release in motor neurons via SV distribution independently of BMP signaling, which could explain the observed SV accumulation and synaptic dysfunction. Our data suggest that Atl is involved in membrane traffic as well as formation and/or recycling of the late endosome.
Collapse
Affiliation(s)
- Francisca Bertin
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge Jara-Wilde
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Computational Sciences, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago, Chile
| | - Benedikt Auer
- Laboratory of Neuronal and Synaptic Signals, Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Andrés Köhler-Solís
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carolina González-Silva
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ulrich Thomas
- Functional Genetics of the Synapse, Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Jimena Sierralta
- Biomedical Neuroscience Institute (BNI), Santiago, Chile.
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
8
|
AP2 Regulates Thickveins Trafficking to Attenuate NMJ Growth Signaling in Drosophila. eNeuro 2022; 9:ENEURO.0044-22.2022. [PMID: 36180220 PMCID: PMC9581581 DOI: 10.1523/eneuro.0044-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022] Open
Abstract
Compromised endocytosis in neurons leads to synapse overgrowth and altered organization of synaptic proteins. However, the molecular players and the signaling pathways which regulate the process remain poorly understood. Here, we show that σ2-adaptin, one of the subunits of the AP2-complex, genetically interacts with Mad, Medea and Dad (components of BMP signaling) to control neuromuscular junction (NMJ) growth in Drosophila Ultrastructural analysis of σ2-adaptin mutants show an accumulation of large vesicles and membranous structures akin to endosomes at the synapse. We found that mutations in σ2-adaptin lead to an accumulation of Tkv receptors at the presynaptic membrane. Interestingly, the level of small GTPase Rab11 was significantly reduced in the σ2-adaptin mutant synapses. However, expression of Rab11 does not restore the synaptic defects of σ2-adaptin mutations. We propose a model in which AP2 regulates Tkv internalization and endosomal recycling to control synaptic growth.
Collapse
|
9
|
Vuilleumier R, Miao M, Medina-Giro S, Ell CM, Flibotte S, Lian T, Kauwe G, Collins A, Ly S, Pyrowolakis G, Haghighi A, Allan D. Dichotomous cis-regulatory motifs mediate the maturation of the neuromuscular junction by retrograde BMP signaling. Nucleic Acids Res 2022; 50:9748-9764. [PMID: 36029115 PMCID: PMC9508838 DOI: 10.1093/nar/gkac730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Retrograde bone morphogenetic protein (BMP) signaling at the Drosophila neuromuscular junction (NMJ) has served as a paradigm to study TGF-β-dependent synaptic function and maturation. Yet, how retrograde BMP signaling transcriptionally regulates these functions remains unresolved. Here, we uncover a gene network, enriched for neurotransmission-related genes, that is controlled by retrograde BMP signaling in motor neurons through two Smad-binding cis-regulatory motifs, the BMP-activating (BMP-AE) and silencer (BMP-SE) elements. Unpredictably, both motifs mediate direct gene activation, with no involvement of the BMP derepression pathway regulators Schnurri and Brinker. Genome editing of candidate BMP-SE and BMP-AE within the locus of the active zone gene bruchpilot, and a novel Ly6 gene witty, demonstrated the role of these motifs in upregulating genes required for the maturation of pre- and post-synaptic NMJ compartments. Our findings uncover how Smad-dependent transcriptional mechanisms specific to motor neurons directly orchestrate a gene network required for synaptic maturation by retrograde BMP signaling.
Collapse
Affiliation(s)
- Robin Vuilleumier
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Mo Miao
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sonia Medina-Giro
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Clara-Maria Ell
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, 79104, Germany
- CIBSS - Centre for Integrative Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Hilde Mangold Haus, Habsburgerstrasse 49, University of Freiburg, Freiburg, 79104, Germany
| | - Stephane Flibotte
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Annie Collins
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sophia Ly
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - George Pyrowolakis
- CIBSS - Centre for Integrative Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Hilde Mangold Haus, Habsburgerstrasse 49, University of Freiburg, Freiburg, 79104, Germany
| | | | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
10
|
Song C, Broadie K. Dysregulation of BMP, Wnt, and Insulin Signaling in Fragile X Syndrome. Front Cell Dev Biol 2022; 10:934662. [PMID: 35880195 PMCID: PMC9307498 DOI: 10.3389/fcell.2022.934662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 01/21/2023] Open
Abstract
Drosophila models of neurological disease contribute tremendously to research progress due to the high conservation of human disease genes, the powerful and sophisticated genetic toolkit, and the rapid generation time. Fragile X syndrome (FXS) is the most prevalent heritable cause of intellectual disability and autism spectrum disorders, and the Drosophila FXS disease model has been critical for the genetic screening discovery of new intercellular secretion mechanisms. Here, we focus on the roles of three major signaling pathways: BMP, Wnt, and insulin-like peptides. We present Drosophila FXS model defects compared to mouse models in stem cells/embryos, the glutamatergic neuromuscular junction (NMJ) synapse model, and the developing adult brain. All three of these secreted signaling pathways are strikingly altered in FXS disease models, giving new mechanistic insights into impaired cellular outcomes and neurological phenotypes. Drosophila provides a powerful genetic screening platform to expand understanding of these secretory mechanisms and to test cellular roles in both peripheral and central nervous systems. The studies demonstrate the importance of exploring broad genetic interactions and unexpected regulatory mechanisms. We discuss a number of research avenues to pursue BMP, Wnt, and insulin signaling in future FXS investigations and the development of potential therapeutics.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Kennedy Center for Research on Human Development, Nashville, TN, United States
- Vanderbilt Brain Institute, School of Medicine, Vanderbilt University and Medical Center, Nashville, TN, United States
| |
Collapse
|
11
|
Vicidomini R, Serpe M. Local BMP signaling: A sensor for synaptic activity that balances synapse growth and function. Curr Top Dev Biol 2022; 150:211-254. [PMID: 35817503 PMCID: PMC11102767 DOI: 10.1016/bs.ctdb.2022.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Synapse development is coordinated by intercellular communication between the pre- and postsynaptic compartments, and by neuronal activity itself. In flies as in vertebrates, neuronal activity induces input-specific changes in the synaptic strength so that the entire circuit maintains stable function in the face of many challenges, including changes in synapse number and strength. But how do neurons sense synapse activity? In several studies carried out using the Drosophila neuromuscular junction (NMJ), we demonstrated that local BMP signaling provides an exquisite sensor for synapse activity. Here we review the main features of this exquisite sensor and discuss its functioning beyond monitoring the synapse activity but rather as a key controller that operates in coordination with other BMP signaling pathways to balance synapse growth, maturation and function.
Collapse
Affiliation(s)
- Rosario Vicidomini
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mihaela Serpe
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
12
|
Song C, Leahy SN, Rushton EM, Broadie K. RNA-binding FMRP and Staufen sequentially regulate the Coracle scaffold to control synaptic glutamate receptor and bouton development. Development 2022; 149:274991. [PMID: 35394012 PMCID: PMC9148565 DOI: 10.1242/dev.200045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
Both mRNA-binding Fragile X mental retardation protein (FMRP; Fmr1) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. Here, we tested whether these RNA-binding proteins act jointly in a common mechanism. We found that both dfmr1 and staufen mutants, and trans-heterozygous double mutants, displayed increased synaptic bouton formation and GluRIIA accumulation. With cell-targeted RNA interference, we showed a downstream Staufen role within postsynaptic muscle. With immunoprecipitation, we showed that FMRP binds staufen mRNA to stabilize postsynaptic transcripts. Staufen is known to target actin-binding, GluRIIA anchor Coracle, and we confirmed that Staufen binds to coracle mRNA. We found that FMRP and Staufen act sequentially to co-regulate postsynaptic Coracle expression, and showed that Coracle, in turn, controls GluRIIA levels and synaptic bouton development. Consistently, we found that dfmr1, staufen and coracle mutants elevate neurotransmission strength. We also identified that FMRP, Staufen and Coracle all suppress pMad activation, providing a trans-synaptic signaling linkage between postsynaptic GluRIIA levels and presynaptic bouton development. This work supports an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulating structural and functional synapse development.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Emma M. Rushton
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Author for correspondence ()
| |
Collapse
|
13
|
Ho CH, Paolantoni C, Bawankar P, Tang Z, Brown S, Roignant J, Treisman JE. An exon junction complex-independent function of Barentsz in neuromuscular synapse growth. EMBO Rep 2022; 23:e53231. [PMID: 34726300 PMCID: PMC8728599 DOI: 10.15252/embr.202153231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
The exon junction complex controls the translation, degradation, and localization of spliced mRNAs, and three of its core subunits also play a role in splicing. Here, we show that a fourth subunit, Barentsz, has distinct functions within and separate from the exon junction complex in Drosophila neuromuscular development. The distribution of mitochondria in larval muscles requires Barentsz as well as other exon junction complex subunits and is not rescued by a Barentsz transgene in which residues required for binding to the core subunit eIF4AIII are mutated. In contrast, interactions with the exon junction complex are not required for Barentsz to promote the growth of neuromuscular synapses. We find that the Activin ligand Dawdle shows reduced expression in barentsz mutants and acts downstream of Barentsz to control synapse growth. Both barentsz and dawdle are required in motor neurons, muscles, and glia for normal synapse growth, and exogenous Dawdle can rescue synapse growth in the absence of barentsz. These results identify a biological function for Barentsz that is independent of the exon junction complex.
Collapse
Affiliation(s)
- Cheuk Hei Ho
- Skirball Institute for Biomolecular Medicine and Department of Cell BiologyNYU School of MedicineNew YorkNYUSA
| | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Praveen Bawankar
- Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg‐University MainzMainzGermany
| | - Zuojian Tang
- Center for Health Informatics and BioinformaticsNYU Langone Medical CenterNew YorkNYUSA
- Present address:
Computational Biology at Ridgefield US, Global Computational Biology and Digital ScienceBoehringer IngelheimRidgefieldCTUSA
| | - Stuart Brown
- Center for Health Informatics and BioinformaticsNYU Langone Medical CenterNew YorkNYUSA
- Present address:
ExxonMobil Corporate Strategic ResearchAnnandaleNJUSA
| | - Jean‐Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
- Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg‐University MainzMainzGermany
| | - Jessica E Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell BiologyNYU School of MedicineNew YorkNYUSA
| |
Collapse
|
14
|
Han TH, Vicidomini R, Ramos CI, Wang Q, Nguyen P, Jarnik M, Lee CH, Stawarski M, Hernandez RX, Macleod GT, Serpe M. Neto-α Controls Synapse Organization and Homeostasis at the Drosophila Neuromuscular Junction. Cell Rep 2021; 32:107866. [PMID: 32640231 PMCID: PMC7484471 DOI: 10.1016/j.celrep.2020.107866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/27/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Glutamate receptor auxiliary proteins control receptor distribution and function, ultimately controlling synapse assembly, maturation, and plasticity. At the Drosophila neuromuscular junction (NMJ), a synapse with both pre- and postsynaptic kainate-type glutamate receptors (KARs), we show that the auxiliary protein Neto evolved functionally distinct isoforms to modulate synapse development and homeostasis. Using genetics, cell biology, and electrophysiology, we demonstrate that Neto-α functions on both sides of the NMJ. In muscle, Neto-α limits the size of the postsynaptic receptor field. In motor neurons (MNs), Neto-α controls neurotransmitter release in a KAR-dependent manner. In addition, Neto-α is both required and sufficient for the presynaptic increase in neurotransmitter release in response to reduced postsynaptic sensitivity. This KAR-independent function of Neto-α is involved in activity-induced cytomatrix remodeling. We propose that Drosophila ensures NMJ functionality by acquiring two Neto isoforms with differential expression patterns and activities.
Collapse
Affiliation(s)
- Tae Hee Han
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Rosario Vicidomini
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Cathy Isaura Ramos
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA; Institute of Functional Genomics of Lyon, Lyon, France
| | - Qi Wang
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Peter Nguyen
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Michal Jarnik
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Chi-Hon Lee
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Michal Stawarski
- Wilkes Honors College and Department of Biology, Florida Atlantic University, Jupiter, FL, USA; Biomedical Department, University of Basel, Basel, Switzerland
| | - Roberto X Hernandez
- Wilkes Honors College and Department of Biology, Florida Atlantic University, Jupiter, FL, USA
| | - Gregory T Macleod
- Wilkes Honors College and Department of Biology, Florida Atlantic University, Jupiter, FL, USA
| | - Mihaela Serpe
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| |
Collapse
|
15
|
Kamimura K, Maeda N. Glypicans and Heparan Sulfate in Synaptic Development, Neural Plasticity, and Neurological Disorders. Front Neural Circuits 2021; 15:595596. [PMID: 33679334 PMCID: PMC7928303 DOI: 10.3389/fncir.2021.595596] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are components of the cell surface and extracellular matrix, which bear long polysaccharides called heparan sulfate (HS) attached to the core proteins. HSPGs interact with a variety of ligand proteins through the HS chains, and mutations in HSPG-related genes influence many biological processes and cause various diseases. In particular, recent findings from vertebrate and invertebrate studies have raised the importance of glycosylphosphatidylinositol-anchored HSPGs, glypicans, as central players in the development and functions of synapses. Glypicans are important components of the synapse-organizing protein complexes and serve as ligands for leucine-rich repeat transmembrane neuronal proteins (LRRTMs), leukocyte common antigen-related (LAR) family receptor protein tyrosine phosphatases (RPTPs), and G-protein-coupled receptor 158 (GPR158), regulating synapse formation. Many of these interactions are mediated by the HS chains of glypicans. Neurexins (Nrxs) are also synthesized as HSPGs and bind to some ligands in common with glypicans through HS chains. Therefore, glypicans and Nrxs may act competitively at the synapses. Furthermore, glypicans regulate the postsynaptic expression levels of ionotropic glutamate receptors, controlling the electrophysiological properties and non-canonical BMP signaling of synapses. Dysfunctions of glypicans lead to failures in neuronal network formation, malfunction of synapses, and abnormal behaviors that are characteristic of neurodevelopmental disorders. Recent human genetics revealed that glypicans and HS are associated with autism spectrum disorder, neuroticism, and schizophrenia. In this review, we introduce the studies showing the roles of glypicans and HS in synapse formation, neural plasticity, and neurological disorders, especially focusing on the mouse and Drosophila as potential models for human diseases.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Nobuaki Maeda
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| |
Collapse
|
16
|
Spinner MA, Pinter K, Drerup CM, Herman TG. A Conserved Role for Vezatin Proteins in Cargo-Specific Regulation of Retrograde Axonal Transport. Genetics 2020; 216:431-445. [PMID: 32788307 PMCID: PMC7536845 DOI: 10.1534/genetics.120.303499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Active transport of organelles within axons is critical for neuronal health. Retrograde axonal transport, in particular, relays neurotrophic signals received by axon terminals to the nucleus and circulates new material among enpassant synapses. A single motor protein complex, cytoplasmic dynein, is responsible for nearly all retrograde transport within axons: its linkage to and transport of diverse cargos is achieved by cargo-specific regulators. Here, we identify Vezatin as a conserved regulator of retrograde axonal transport. Vertebrate Vezatin (Vezt) is required for the maturation and maintenance of cell-cell junctions and has not previously been implicated in axonal transport. However, a related fungal protein, VezA, has been shown to regulate retrograde transport of endosomes in hyphae. In a forward genetic screen, we identified a loss-of-function mutation in the Drosophila vezatin-like (vezl) gene. We here show that vezl loss prevents a subset of endosomes, including signaling endosomes containing activated BMP receptors, from initiating transport out of motor neuron terminal boutons. vezl loss also decreases the transport of endosomes and dense core vesicles, but not mitochondria, within axon shafts. We disrupted vezt in zebrafish and found that vezt loss specifically impairs the retrograde axonal transport of late endosomes, causing their accumulation in axon terminals. Our work establishes a conserved, cargo-specific role for Vezatin proteins in retrograde axonal transport.
Collapse
Affiliation(s)
- Michael A Spinner
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Katherine Pinter
- Unit on Neuronal Cell Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Catherine M Drerup
- Unit on Neuronal Cell Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Tory G Herman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
17
|
Kamimura K, Odajima A, Ikegawa Y, Maru C, Maeda N. The HSPG Glypican Regulates Experience-Dependent Synaptic and Behavioral Plasticity by Modulating the Non-Canonical BMP Pathway. Cell Rep 2020; 28:3144-3156.e4. [PMID: 31533037 DOI: 10.1016/j.celrep.2019.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/11/2019] [Accepted: 08/08/2019] [Indexed: 01/05/2023] Open
Abstract
Under food deprivation conditions, Drosophila larvae exhibit increases in locomotor speed and synaptic bouton numbers at neuromuscular junctions (NMJs). Octopamine, the invertebrate counterpart of noradrenaline, plays critical roles in this process; however, the underlying mechanisms remain unclear. We show here that a glypican (Dlp) negatively regulates type I synaptic bouton formation, postsynaptic expression of GluRIIA, and larval locomotor speed. Starvation-induced octopaminergic signaling decreases Dlp expression, leading to increases in synapse formation and locomotion. Dlp is expressed by postsynaptic muscle cells and suppresses the non-canonical BMP pathway, which is composed of the presynaptic BMP receptor Wit and postsynaptic GluRIIA-containing ionotropic glutamate receptor. We find that during starvation, decreases in Dlp increase non-canonical BMP signaling, leading to increases in GluRIIA expression, type I bouton number, and locomotor speed. Our results demonstrate that octopamine controls starvation-induced neural plasticity by regulating Dlp and provides insights into how proteoglycans can influence behavioral and synaptic plasticity.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| | - Aiko Odajima
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Yuko Ikegawa
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Chikako Maru
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Nobuaki Maeda
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| |
Collapse
|
18
|
Nguyen TH, Han TH, Newfeld SJ, Serpe M. Selective Disruption of Synaptic BMP Signaling by a Smad Mutation Adjacent to the Highly Conserved H2 Helix. Genetics 2020; 216:159-175. [PMID: 32737119 PMCID: PMC7463279 DOI: 10.1534/genetics.120.303484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) shape normal development and function via canonical and noncanonical signaling pathways. BMPs initiate canonical signaling by binding to transmembrane receptors that phosphorylate Smad proteins and induce their translocation into the nucleus and regulation of target genes. Phosphorylated Smads also accumulate at cellular junctions, but this noncanonical, local BMP signaling modality remains less defined. We have recently reported that phosphorylated Smad (pMad in Drosophila) accumulates at synaptic junctions in protein complexes with genetically distinct composition and regulation. Here, we examined a wide collection of DrosophilaMad alleles and searched for molecular features relevant to pMad accumulation at synaptic junctions. We found that strong Mad alleles generally disrupt both synaptic and nuclear pMad, whereas moderate Mad alleles have a wider range of phenotypes and can selectively impact different BMP signaling pathways. Interestingly, regulatory Mad mutations reveal that synaptic pMad appears to be more sensitive to a net reduction in Mad levels than nuclear pMad. Importantly, a previously uncharacterized allele, Mad8 , showed markedly reduced synaptic pMad but only moderately diminished nuclear pMad. The postsynaptic composition and electrophysiological properties of Mad8 neuromuscular junctions (NMJs) were also altered. Using biochemical approaches, we examined how a single point mutation in Mad8 could influence the Mad-receptor interface and identified a key motif, the H2 helix. Our study highlights the biological relevance of Smad-dependent, synaptic BMP signaling and uncovers a highly conserved structural feature of Smads, critical for normal development and function.
Collapse
Affiliation(s)
- Tho Huu Nguyen
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Stuart J Newfeld
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
19
|
Patel PH, Wilkinson EC, Starke EL, McGimsey MR, Blankenship JT, Barbee SA. Vps54 regulates Drosophila neuromuscular junction development and interacts genetically with Rab7 to control composition of the postsynaptic density. Biol Open 2020; 9:bio053421. [PMID: 32747448 PMCID: PMC7473652 DOI: 10.1242/bio.053421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 01/04/2023] Open
Abstract
Vps54 is a subunit of the Golgi-associated retrograde protein (GARP) complex, which is involved in tethering endosome-derived vesicles to the trans-Golgi network (TGN). In the wobbler mouse, a model for human motor neuron (MN) disease, reduction in the levels of Vps54 causes neurodegeneration. However, it is unclear how disruption of the GARP complex leads to MN dysfunction. To better understand the role of Vps54 in MNs, we have disrupted expression of the Vps54 ortholog in Drosophila and examined the impact on the larval neuromuscular junction (NMJ). Surprisingly, we show that both null mutants and MN-specific knockdown of Vps54 leads to NMJ overgrowth. Reduction of Vps54 partially disrupts localization of the t-SNARE, Syntaxin-16, to the TGN but has no visible impact on endosomal pools. MN-specific knockdown of Vps54 in MNs combined with overexpression of the small GTPases Rab5, Rab7, or Rab11 suppresses the Vps54 NMJ phenotype. Conversely, knockdown of Vps54 combined with overexpression of dominant negative Rab7 causes NMJ and behavioral abnormalities including a decrease in postsynaptic Dlg and GluRIIB levels without any effect on GluRIIA. Taken together, these data suggest that Vps54 controls larval MN axon development and postsynaptic density composition through a mechanism that requires Rab7.
Collapse
Affiliation(s)
- Prajal H Patel
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Emily C Wilkinson
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Emily L Starke
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Malea R McGimsey
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210, USA
| | - Scott A Barbee
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
20
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Multiple MuSK signaling pathways and the aging neuromuscular junction. Neurosci Lett 2020; 731:135014. [PMID: 32353380 DOI: 10.1016/j.neulet.2020.135014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
The neuromuscular junction (NMJ) is the vehicle for fast, reliable and robust communication between motor neuron and muscle. The unparalleled accessibility of this synapse to morphological, electrophysiological and genetic analysis has yielded an in depth understanding of many molecular components mediating its formation, maturation and stability. However, key questions surrounding the signaling pathways mediating these events and how they play out across the lifetime of the synapse remain unanswered. Such information is critical since the NMJ is necessary for normal movement and is compromised in several settings including myasthenia gravis, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), muscular dystrophy, sarcopenia and aging. Muscle specific kinase (MuSK) is a central player in most if not all contexts of NMJ formation and stability. However, elucidating the function of this receptor in this range of settings is challenging since MuSK participates in at least three signaling pathways: as a tyrosine kinase-dependent receptor for agrin-LRP4 and Wnts; and, as a kinase-independent BMP co-receptor. Here we focus on NMJ stability during aging and discuss open questions regarding the molecular mechanisms that govern active maintenance of the NMJ, with emphasis on MuSK and the potential role of its multiple signaling contexts.
Collapse
|
22
|
Berke B, Le L, Keshishian H. Target-dependent retrograde signaling mediates synaptic plasticity at the Drosophila neuromuscular junction. Dev Neurobiol 2020; 79:895-912. [PMID: 31950660 DOI: 10.1002/dneu.22731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Neurons that innervate multiple targets often establish synapses with target-specific strengths, and local forms of synaptic plasticity. We have examined the molecular-genetic mechanisms that allow a single Drosophila motoneuron, the ventral Common Exciter (vCE), to establish connections with target-specific properties at its various synaptic partners. By driving transgenes in a subset of vCE's targets, we found that individual target cells are able to independently control the properties of vCE's innervating branch and synapses. This is achieved by means of a trans-synaptic growth factor secreted by the target cell. At the larval neuromuscular junction, postsynaptic glutamate receptor activity stimulates the release of the BMP4/5/6 homolog Glass bottom boat (Gbb). As larvae mature and motoneuron terminals grow, Gbb activates the R-Smad transcriptional regulator phosphorylated Mad (pMad) to facilitate presynaptic development. We found that manipulations affecting glutamate receptors or Gbb within subsets of target muscles led to local effects either specific to the manipulated muscle or by a limited gradient within the presynaptic branches. While presynaptic development depends on pMad transcriptional activity within the motoneuron nucleus, we find that the Gbb growth factor may also act locally within presynaptic terminals. Local Gbb signaling and presynaptic pMad accumulation within boutons may therefore participate in a "synaptic tagging" mechanism, to influence synaptic growth and plasticity in Drosophila.
Collapse
Affiliation(s)
- Brett Berke
- Molecular, Cellular, and Developmental Biology Department, Yale University, New Haven, CT, USA
| | - Linh Le
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Haig Keshishian
- Molecular, Cellular, and Developmental Biology Department, Yale University, New Haven, CT, USA
| |
Collapse
|
23
|
Badawi Y, Nishimune H. Super-resolution microscopy for analyzing neuromuscular junctions and synapses. Neurosci Lett 2020; 715:134644. [PMID: 31765730 PMCID: PMC6937598 DOI: 10.1016/j.neulet.2019.134644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
Super-resolution microscopy techniques offer subdiffraction limited resolution that is two- to ten-fold improved compared to that offered by conventional confocal microscopy. This breakthrough in resolution for light microscopy has contributed to new findings in neuroscience and synapse biology. This review will focus on the Structured Illumination Microscopy (SIM), Stimulated emission depletion (STED) microscopy, and Stochastic optical reconstruction microscopy (STORM) / Single molecule localization microscopy (SMLM) techniques and compare them for the better understanding of their differences and their suitability for the analysis of synapse biology. In addition, we will discuss a few practical aspects of these microscopic techniques, including resolution, image acquisition speed, multicolor capability, and other advantages and disadvantages. Tips for the improvement of microscopy will be introduced; for example, information resources for recommended dyes, the limitations of multicolor analysis, and capabilities for live imaging. In addition, we will summarize how super-resolution microscopy has been used for analyses of neuromuscular junctions and synapses.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
24
|
Hoover KM, Gratz SJ, Qi N, Herrmann KA, Liu Y, Perry-Richardson JJ, Vanderzalm PJ, O'Connor-Giles KM, Broihier HT. The calcium channel subunit α 2δ-3 organizes synapses via an activity-dependent and autocrine BMP signaling pathway. Nat Commun 2019; 10:5575. [PMID: 31811118 PMCID: PMC6898181 DOI: 10.1038/s41467-019-13165-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Synapses are highly specialized for neurotransmitter signaling, yet activity-dependent growth factor release also plays critical roles at synapses. While efficient neurotransmitter signaling relies on precise apposition of release sites and neurotransmitter receptors, molecular mechanisms enabling high-fidelity growth factor signaling within the synaptic microenvironment remain obscure. Here we show that the auxiliary calcium channel subunit α2δ-3 promotes the function of an activity-dependent autocrine Bone Morphogenetic Protein (BMP) signaling pathway at the Drosophila neuromuscular junction (NMJ). α2δ proteins have conserved synaptogenic activity, although how they execute this function has remained elusive. We find that α2δ-3 provides an extracellular scaffold for an autocrine BMP signal, suggesting a mechanistic framework for understanding α2δ's conserved role in synapse organization. We further establish a transcriptional requirement for activity-dependent, autocrine BMP signaling in determining synapse density, structure, and function. We propose that activity-dependent, autocrine signals provide neurons with continuous feedback on their activity state for modulating both synapse structure and function.
Collapse
Affiliation(s)
- Kendall M Hoover
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Scott J Gratz
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Nova Qi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kelsey A Herrmann
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Yizhou Liu
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jahci J Perry-Richardson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Pamela J Vanderzalm
- Department of Biology, John Carroll University, University Heights, OH, 44118, USA
| | | | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
25
|
Brown JR, Phongthachit C, Sulkowski MJ. Immunofluorescence and image analysis pipeline for Drosophila motor neurons. Biol Methods Protoc 2019; 4:bpz010. [PMID: 31403085 PMCID: PMC6676502 DOI: 10.1093/biomethods/bpz010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
Abstract
The neuromuscular junction (NMJ) of larval Drosophila is widely used as a genetic model for basic neuroscience research. The presynaptic side of the NMJ is formed by axon terminals of motor neurons, the soma of which reside in the ventral ganglion of the central nervous system (CNS). Here we describe a streamlined protocol for dissection and immunostaining of the Drosophila CNS and NMJ that allows processing of multiple genotypes within a single staining tube. We also present a computer script called Automated Image Analysis with Background Subtraction which facilitates identification of motor nuclei, quantification of pixel intensity, and background subtraction. Together, these techniques provide a pipeline for neuroscientists to compare levels of different biomolecules in motor nuclei. We conclude that these methods should be adaptable to a variety of different cell and tissue types for the improvement of efficiency, reproducibility, and throughput during data quantification.
Collapse
Affiliation(s)
- Jeremy R Brown
- Biology Department, Southern Arkansas University, Magnolia, AR, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | | | - Mikolaj J Sulkowski
- Biology Department, Southern Connecticut State University, New Haven, CT, USA
| |
Collapse
|
26
|
Held A, Major P, Sahin A, Reenan RA, Lipscombe D, Wharton KA. Circuit Dysfunction in SOD1-ALS Model First Detected in Sensory Feedback Prior to Motor Neuron Degeneration Is Alleviated by BMP Signaling. J Neurosci 2019; 39:2347-2364. [PMID: 30659087 PMCID: PMC6433758 DOI: 10.1523/jneurosci.1771-18.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which the origin and underlying cellular defects are not fully understood. Although motor neuron degeneration is the signature feature of ALS, it is not clear whether motor neurons or other cells of the motor circuit are the site of disease initiation. To better understand the contribution of multiple cell types in ALS, we made use of a Drosophila Sod1G85R knock-in model, in which all cells harbor the disease allele. End-stage dSod1G85R animals of both sexes exhibit severe motor deficits with clear degeneration of motor neurons. Interestingly, earlier in dSod1G85R larvae, motor function is also compromised, but their motor neurons exhibit only subtle morphological and electrophysiological changes that are unlikely to cause the observed decrease in locomotion. We analyzed the intact motor circuit and identified a defect in sensory feedback that likely accounts for the altered motor activity of dSod1G85R We found cell-autonomous activation of bone morphogenetic protein signaling in proprioceptor sensory neurons which are critical for the relay of the contractile status of muscles back to the central nerve cord, completely rescues early-stage motor defects and partially rescue late-stage motor function to extend lifespan. Identification of a defect in sensory feedback as a potential initiating event in ALS motor dysfunction, coupled with the ability of modified proprioceptors to alleviate such motor deficits, underscores the critical role that nonmotor neurons play in disease progression and highlights their potential as a site to identify early-stage ALS biomarkers and for therapeutic intervention.SIGNIFICANCE STATEMENT At diagnosis, many cellular processes are already disrupted in the amyotrophic lateral sclerosis (ALS) patient. Identifying the initiating cellular events is critical for achieving an earlier diagnosis to slow or prevent disease progression. Our findings indicate that neurons relaying sensory information underlie early stage motor deficits in a Drosophila knock-in model of ALS that best replicates gene dosage in familial ALS (fALS). Importantly, studies on intact motor circuits revealed defects in sensory feedback before evidence of motor neuron degeneration. These findings strengthen our understanding of how neural circuit dysfunctions lead to neurodegeneration and, coupled with our demonstration that the activation of bone morphogenetic protein signaling in proprioceptors alleviates both early and late motor dysfunction, underscores the importance of considering nonmotor neurons as therapeutic targets.
Collapse
Affiliation(s)
- Aaron Held
- Department of Molecular Biology, Cell Biology and Biochemistry
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Paxton Major
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Asli Sahin
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Robert A Reenan
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Diane Lipscombe
- Department of Neuroscience, and
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry,
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
27
|
BMP signaling downstream of the Highwire E3 ligase sensitizes nociceptors. PLoS Genet 2018; 14:e1007464. [PMID: 30001326 PMCID: PMC6042685 DOI: 10.1371/journal.pgen.1007464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/01/2018] [Indexed: 01/18/2023] Open
Abstract
A comprehensive understanding of the molecular machinery important for nociception is essential to improving the treatment of pain. Here, we show that the BMP signaling pathway regulates nociception downstream of the E3 ubiquitin ligase highwire (hiw). hiw loss of function in nociceptors caused antagonistic and pleiotropic phenotypes with simultaneous insensitivity to noxious heat but sensitized responses to optogenetic activation of nociceptors. Thus, hiw functions to both positively and negatively regulate nociceptors. We find that a sensory reception-independent sensitization pathway was associated with BMP signaling. BMP signaling in nociceptors was up-regulated in hiw mutants, and nociceptor-specific expression of hiw rescued all nociception phenotypes including the increased BMP signaling. Blocking the transcriptional output of the BMP pathway with dominant negative Mad suppressed nociceptive hypersensitivity that was induced by interfering with hiw. The up-regulated BMP signaling phenotype in hiw genetic mutants could not be suppressed by mutation in wallenda suggesting that hiw regulates BMP in nociceptors via a wallenda independent pathway. In a newly established Ca2+ imaging preparation, we observed that up-regulated BMP signaling caused a significantly enhanced Ca2+ signal in the axon terminals of nociceptors that were stimulated by noxious heat. This response likely accounts for the nociceptive hypersensitivity induced by elevated BMP signaling in nociceptors. Finally, we showed that 24-hour activation of BMP signaling in nociceptors was sufficient to sensitize nociceptive responses to optogenetically-triggered nociceptor activation without altering nociceptor morphology. Overall, this study demonstrates the previously unrevealed roles of the Hiw-BMP pathway in the regulation of nociception and provides the first direct evidence that up-regulated BMP signaling physiologically sensitizes responses of nociceptors and nociception behaviors. Although pain is a universally experienced sensation that has a significant impact on human lives and society, the molecular mechanisms of pain remain poorly understood. Elucidating these mechanisms is particularly important to gaining insight into the clinical development of currently incurable chronic pain diseases. Taking an advantage of the powerful genetic model organism Drosophila melanogaster (fruit flies), we unveil the Highwire-BMP signaling pathway as a novel molecular pathway that regulates the sensitivity of nociceptive sensory neurons. Highwire and the molecular components of the BMP signaling pathway are known to be widely conserved among animal phyla, from nematode worms to humans. Since abnormal sensitivity of nociceptive sensory neurons can play a critical role in the development of chronic pain conditions, a deeper understanding of the regulation of nociceptor sensitivity has the potential to advance effective therapeutic strategies to treat difficult pain conditions.
Collapse
|
28
|
Wang Q, Han TH, Nguyen P, Jarnik M, Serpe M. Tenectin recruits integrin to stabilize bouton architecture and regulate vesicle release at the Drosophila neuromuscular junction. eLife 2018; 7:35518. [PMID: 29901439 PMCID: PMC6040883 DOI: 10.7554/elife.35518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/13/2018] [Indexed: 11/15/2022] Open
Abstract
Assembly, maintenance and function of synaptic junctions depend on extracellular matrix (ECM) proteins and their receptors. Here we report that Tenectin (Tnc), a Mucin-type protein with RGD motifs, is an ECM component required for the structural and functional integrity of synaptic specializations at the neuromuscular junction (NMJ) in Drosophila. Using genetics, biochemistry, electrophysiology, histology and electron microscopy, we show that Tnc is secreted from motor neurons and striated muscles and accumulates in the synaptic cleft. Tnc selectively recruits αPS2/βPS integrin at synaptic terminals, but only the cis Tnc/integrin complexes appear to be biologically active. These complexes have distinct pre- and postsynaptic functions, mediated at least in part through the local engagement of the spectrin-based membrane skeleton: the presynaptic complexes control neurotransmitter release, while postsynaptic complexes ensure the size and architectural integrity of synaptic boutons. Our study reveals an unprecedented role for integrin in the synaptic recruitment of spectrin-based membrane skeleton. Nerve cells or neurons can communicate with each other by releasing chemical messengers into the gap between them, the synapse. Both neurons and synapses are surrounded by a network of proteins called the extracellular matrix, which anchors, protects and supports the synapse. The matrix also helps to regulate the dynamic communication across the synapses and consequently neurons. Little is known about the proteins of the extracellular matrix, in particular about the ones involved in structural support. This is especially important for the so-called neuromuscular junctions, where neurons stimulate muscle contraction and trigger vigorous movement. Receptor proteins on cell surfaces, such as integrins, can bind to the extracellular matrix proteins to anchor the cells and are important for all cell junctions, including synaptic junctions. But because of their many essential roles during development, it was unclear how integrins modulate the activity of the synapse. To investigate this further, Wang et al. studied the neuromuscular junctions of fruit flies. The experiments revealed that both muscle and neurons secrete a large protein called Tenectin, which accumulates into the small space between the neuron and the muscle, the synaptic cleft. This protein can bind to integrin and is necessary to support the neuromuscular junction structurally and functionally. Wang et al. discovered that Tenectin works by gathering integrins on the surface of the neuron and the muscle. In the neuron, Tenectin forms complexes with integrin to regulate the release of neurotransmitters. In the muscle, the complexes provide support to the synaptic structures. However, when Tenectin was experimentally removed, it only disrupted the integrins at the neuromuscular junction, without affecting integrins in other regions of the cells, such as the site where the muscle uses integrins to attach to the tendon. Moreover, without Tenectin an important intracellular scaffolding meshwork that lines up and reinforces cell membranes was no longer organized properly at the synapse. A next step will be to identify the missing components between Tenectin/integrin complexes on the surface of neurons and the neurotransmitter release machinery inside the cells. The extracellular matrix and its receptors play fundamental roles in the development and function of the nervous system. A better knowledge of the underlying mechanisms will help us to better understand the complex interplay between the synapse and the extracellular matrix.
Collapse
Affiliation(s)
- Qi Wang
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Peter Nguyen
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michal Jarnik
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
29
|
Correction: A Novel, Noncanonical BMP Pathway Modulates Synapse Maturation at the Drosophila Neuromuscular Junction. PLoS Genet 2018; 14:e1007343. [PMID: 29750785 PMCID: PMC5947887 DOI: 10.1371/journal.pgen.1007343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Myers L, Perera H, Alvarado MG, Kidd T. The Drosophila Ret gene functions in the stomatogastric nervous system with the Maverick TGFβ ligand and the Gfrl co-receptor. Development 2018; 145:dev.157446. [PMID: 29361562 DOI: 10.1242/dev.157446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/18/2017] [Indexed: 01/19/2023]
Abstract
The RET receptor tyrosine kinase is crucial for the development of the enteric nervous system (ENS), acting as a receptor for Glial cell line-derived neurotrophic factor (GDNF) via GFR co-receptors. Drosophila has a well-conserved RET homolog (Ret) that has been proposed to function independently of the Gfr-like co-receptor (Gfrl). We find that Ret is required for development of the stomatogastric (enteric) nervous system in both embryos and larvae, and its loss results in feeding defects. Live imaging analysis suggests that peristaltic waves are initiated but not propagated in mutant midguts. Examination of axons innervating the midgut reveals increased branching but the area covered by the branches is decreased. This phenotype can be rescued by Ret expression. Additionally, Gfrl shares the same ENS and feeding defects, suggesting that Ret and Gfrl might function together via a common ligand. We identified the TGFβ family member Maverick (Mav) as a ligand for Gfrl and a Mav chromosomal deficiency displayed similar embryonic ENS defects. Our results suggest that the Ret and Gfrl families co-evolved before the separation of invertebrate and vertebrate lineages.
Collapse
Affiliation(s)
- Logan Myers
- Department of Biology/ms 314, University of Nevada, Reno, NV 89557, USA
| | - Hiran Perera
- Department of Biology/ms 314, University of Nevada, Reno, NV 89557, USA
| | | | - Thomas Kidd
- Department of Biology/ms 314, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
31
|
Epigenetic mechanisms modulate differences in Drosophila foraging behavior. Proc Natl Acad Sci U S A 2017; 114:12518-12523. [PMID: 29078350 DOI: 10.1073/pnas.1710770114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about how genetic variation and epigenetic marks interact to shape differences in behavior. The foraging (for) gene regulates behavioral differences between the rover and sitter Drosophila melanogaster strains, but the molecular mechanisms through which it does so have remained elusive. We show that the epigenetic regulator G9a interacts with for to regulate strain-specific adult foraging behavior through allele-specific histone methylation of a for promoter (pr4). Rovers have higher pr4 H3K9me dimethylation, lower pr4 RNA expression, and higher foraging scores than sitters. The rover-sitter differences disappear in the presence of G9a null mutant alleles, showing that G9a is necessary for these differences. Furthermore, rover foraging scores can be phenocopied by transgenically reducing pr4 expression in sitters. This compelling evidence shows that genetic variation can interact with an epigenetic modifier to produce differences in gene expression, establishing a behavioral polymorphism in Drosophila.
Collapse
|
32
|
Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O'Connor MB. TGF-β Family Signaling in Drosophila. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022152. [PMID: 28130362 DOI: 10.1101/cshperspect.a022152] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transforming growth factor β (TGF-β) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-β family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-β family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
33
|
Laugks U, Hieke M, Wagner N. MAN1 Restricts BMP Signaling During Synaptic Growth in Drosophila. Cell Mol Neurobiol 2017; 37:1077-1093. [PMID: 27848060 PMCID: PMC11482078 DOI: 10.1007/s10571-016-0442-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/05/2016] [Indexed: 01/25/2023]
Abstract
Bone morphogenic protein (BMP) signaling is crucial for coordinated synaptic growth and plasticity. Here, we show that the nuclear LEM-domain protein MAN1 is a negative regulator of synaptic growth at Drosophila larval and adult neuromuscular junctions (NMJs). Loss of MAN1 is associated with synaptic structural defects, including floating T-bars, membrane attachment defects, and accumulation of vesicles between perisynaptic membranes and membranes of the subsynaptic reticulum. In addition, MAN1 mutants accumulate more heterogeneously sized vesicles and multivesicular bodies in larval and adult synapses, the latter indicating that MAN1 may function in synaptic vesicle recycling and endosome-to-lysosome trafficking. Synaptic overgrowth in MAN1 is sensitive to BMP signaling levels, and loss of key BMP components attenuate BMP-induced synaptic overgrowth. Based on these observations, we propose that MAN1 negatively regulates accumulation and distribution of BMP signaling components to ensure proper synaptic growth and integrity at larval and adult NMJs.
Collapse
Affiliation(s)
- Ulrike Laugks
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marie Hieke
- Neurobiology and Genetics, Biocenter, Theodor-Boveri Institute, Julius-Maximilians University Wuerzburg, Wuerzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, Julius-Maximilians University Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
34
|
Shilts J, Broadie K. Secreted tissue inhibitor of matrix metalloproteinase restricts trans-synaptic signaling to coordinate synaptogenesis. J Cell Sci 2017; 130:2344-2358. [PMID: 28576972 DOI: 10.1242/jcs.200808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/29/2017] [Indexed: 12/20/2022] Open
Abstract
Synaptogenesis is coordinated by trans-synaptic signals that traverse the specialized synaptomatrix between presynaptic and postsynaptic cells. Matrix metalloproteinase (Mmp) activity sculpts this environment, balanced by secreted tissue inhibitors of Mmp (Timp). Here, we use the simplified Drosophila melanogaster matrix metalloproteome to test the consequences of eliminating all Timp regulatory control of Mmp activity at the neuromuscular junction (NMJ). Using in situ zymography, we find Timp limits Mmp activity at the NMJ terminal and shapes extracellular proteolytic dynamics surrounding individual synaptic boutons. In newly generated timp null mutants, NMJs exhibit architectural overelaboration with supernumerary synaptic boutons. With cell-targeted RNAi and rescue studies, we find that postsynaptic Timp limits presynaptic architecture. Functionally, timp null mutants exhibit compromised synaptic vesicle cycling, with activity that is lower in amplitude and fidelity. NMJ defects manifest in impaired locomotor function. Mechanistically, we find that Timp limits BMP trans-synaptic signaling and the downstream synapse-to-nucleus signal transduction. Pharmacologically restoring Mmp inhibition in timp null mutants corrects bone morphogenetic protein (BMP) signaling and synaptic properties. Genetically restoring BMP signaling in timp null mutants corrects NMJ structure and motor function. Thus, Timp inhibition of Mmp proteolytic activity restricts BMP trans-synaptic signaling to coordinate synaptogenesis.
Collapse
Affiliation(s)
- Jarrod Shilts
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
35
|
Regulatory Mechanisms of Metamorphic Neuronal Remodeling Revealed Through a Genome-Wide Modifier Screen in Drosophila melanogaster. Genetics 2017; 206:1429-1443. [PMID: 28476867 PMCID: PMC5500141 DOI: 10.1534/genetics.117.200378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/28/2017] [Indexed: 02/01/2023] Open
Abstract
During development, neuronal remodeling shapes neuronal connections to establish fully mature and functional nervous systems. Our previous studies have shown that the RNA-binding factor alan shepard (shep) is an important regulator of neuronal remodeling during metamorphosis in Drosophila melanogaster, and loss of shep leads to smaller soma size and fewer neurites in a stage-dependent manner. To shed light on the mechanisms by which shep regulates neuronal remodeling, we conducted a genetic modifier screen for suppressors of shep-dependent wing expansion defects and cellular morphological defects in a set of peptidergic neurons, the bursicon neurons, that promote posteclosion wing expansion. Out of 702 screened deficiencies that covered 86% of euchromatic genes, we isolated 24 deficiencies as candidate suppressors, and 12 of them at least partially suppressed morphological defects in shep mutant bursicon neurons. With RNA interference and mutant alleles of individual genes, we identified Daughters against dpp (Dad) and Olig family (Oli) as shep suppressor genes, and both of them restored the adult cellular morphology of shep-depleted bursicon neurons. Dad encodes an inhibitory Smad protein that inhibits bone morphogenetic protein (BMP) signaling, raising the possibility that shep interacted with BMP signaling through antagonism of Dad. By manipulating expression of the BMP receptor tkv, we found that activated BMP signaling was sufficient to rescue loss-of-shep phenotypes. These findings reveal mechanisms of shep regulation during neuronal development, and they highlight a novel genetic shep interaction with the BMP signaling pathway that controls morphogenesis in mature, terminally differentiated neurons during metamorphosis.
Collapse
|
36
|
Banerjee S, Venkatesan A, Bhat MA. Neurexin, Neuroligin and Wishful Thinking coordinate synaptic cytoarchitecture and growth at neuromuscular junctions. Mol Cell Neurosci 2016; 78:9-24. [PMID: 27838296 DOI: 10.1016/j.mcn.2016.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/19/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022] Open
Abstract
Trans-synaptic interactions involving Neurexins and Neuroligins are thought to promote adhesive interactions for precise alignment of the pre- and postsynaptic compartments and organize synaptic macromolecular complexes across species. In Drosophila, while Neurexin (Dnrx) and Neuroligins (Dnlg) are emerging as central organizing molecules at synapses, very little is known of the spectrum of proteins that might be recruited to the Dnrx/Dnlg trans-synaptic interface for organization and growth of the synapses. Using full length and truncated forms of Dnrx and Dnlg1 together with cell biological analyses and genetic interactions, we report novel functions of Dnrx and Dnlg1 in clustering of pre- and postsynaptic proteins, coordination of synaptic growth and ultrastructural organization. We show that Dnrx and Dnlg1 extracellular and intracellular regions are required for proper synaptic growth and localization of Dnlg1 and Dnrx, respectively. dnrx and dnlg1 single and double mutants display altered subcellular distribution of Discs large (Dlg), which is the homolog of mammalian post-synaptic density protein, PSD95. dnrx and dnlg1 mutants also display ultrastructural defects ranging from abnormal active zones, misformed pre- and post-synaptic areas with underdeveloped subsynaptic reticulum. Interestingly, dnrx and dnlg1 mutants have reduced levels of the Bone Morphogenetic Protein (BMP) receptor Wishful thinking (Wit), and Dnrx and Dnlg1 are required for proper localization and stability of Wit. In addition, the synaptic overgrowth phenotype resulting from the overexpression of Dnrx fails to manifest in wit mutants. Phenotypic analyses of dnrx/wit and dnlg1/wit mutants indicate that Dnrx/Dnlg1/Wit coordinate synaptic growth and architecture at the NMJ. Our findings also demonstrate that loss of Dnrx and Dnlg1 leads to decreased levels of the BMP co-receptor, Thickveins and the downstream effector phosphorylated Mad at the Neuromuscular Junction (NMJ) synapses indicating that Dnrx/Dnlg1 regulate components of the BMP signaling pathway. Together our findings reveal that Dnrx/Dnlg are at the core of a highly orchestrated process that combines adhesive and signaling mechanisms to ensure proper synaptic organization and growth during NMJ development.
Collapse
Affiliation(s)
- Swati Banerjee
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | - Anandakrishnan Venkatesan
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| |
Collapse
|
37
|
Lee SH, Kim YJ, Choi SY. BMP signaling modulates the probability of neurotransmitter release and readily releasable pools in Drosophila neuromuscular junction synapses. Biochem Biophys Res Commun 2016; 479:440-446. [DOI: 10.1016/j.bbrc.2016.09.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
|
38
|
Deshpande M, Feiger Z, Shilton AK, Luo CC, Silverman E, Rodal AA. Role of BMP receptor traffic in synaptic growth defects in an ALS model. Mol Biol Cell 2016; 27:2898-910. [PMID: 27535427 PMCID: PMC5042577 DOI: 10.1091/mbc.e16-07-0519] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022] Open
Abstract
In a Drosophila model of ALS, neuronal defects are associated with altered endosomal traffic of growth factor receptors and loss of growth-promoting signals. Manipulation of an endosomal recycling pathway suppresses these neuronal defects. The findings suggest that rerouting membrane traffic could be therapeutic in ALS. TAR DNA-binding protein 43 (TDP-43) is genetically and functionally linked to amyotrophic lateral sclerosis (ALS) and regulates transcription, splicing, and transport of thousands of RNA targets that function in diverse cellular pathways. In ALS, pathologically altered TDP-43 is believed to lead to disease by toxic gain-of-function effects on RNA metabolism, as well as by sequestering endogenous TDP-43 and causing its loss of function. However, it is unclear which of the numerous cellular processes disrupted downstream of TDP-43 dysfunction lead to neurodegeneration. Here we found that both loss and gain of function of TDP-43 in Drosophila cause a reduction of synaptic growth–promoting bone morphogenic protein (BMP) signaling at the neuromuscular junction (NMJ). Further, we observed a shift of BMP receptors from early to recycling endosomes and increased mobility of BMP receptor–containing compartments at the NMJ. Inhibition of the recycling endosome GTPase Rab11 partially rescued TDP-43–induced defects in BMP receptor dynamics and distribution and suppressed BMP signaling, synaptic growth, and larval crawling defects. Our results indicate that defects in receptor traffic lead to neuronal dysfunction downstream of TDP-43 misregulation and that rerouting receptor traffic may be a viable strategy for rescuing neurological impairment.
Collapse
Affiliation(s)
| | - Zachary Feiger
- Department of Biology, Brandeis University, Waltham, MA 02453
| | | | - Christina C Luo
- Department of Biology, Brandeis University, Waltham, MA 02453
| | - Ethan Silverman
- Department of Biology, Brandeis University, Waltham, MA 02453
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA 02453
| |
Collapse
|