1
|
Rajakumar A, Pontieri L, Li R, Larsen RS, Vásquez-Correa A, Frandsen JKL, Rafiqi AM, Zhang G, Abouheif E. From Egg to Adult: A Developmental Table of the Ant Monomorium pharaonis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:557-585. [PMID: 39584621 DOI: 10.1002/jez.b.23278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/08/2024] [Indexed: 11/26/2024]
Abstract
Ants are one of the most ecologically and evolutionarily successful groups of animals and exhibit a remarkable degree of phenotypic diversity. This success is largely attributed to the fact that all ants are eusocial and live in colonies with a reproductive division of labor between morphologically distinct queen and worker castes. Yet, despite over a century of studies on caste determination and evolution in ants, we lack a complete ontogenetic series from egg to adult for any ant species. We, therefore, present a developmental table for the Pharaoh ant Monomorium pharaonis, a species whose colonies simultaneously produce reproductive queens and completely sterile workers. In total, M. pharaonis embryonic, larval, and pupal development lasts 45 days. During embryogenesis, the majority of developmental events are conserved between M. pharaonis and the fruit fly Drosophila melanogaster. We discovered, however, two types of same-stage embryos before gastrulation: (1) embryos with internalized germ cells; and (2) embryos with germ cells outside of the blastoderm at the posterior pole. Moreover, we also found two-types of embryos following germ band extension: (1) embryos with primordial germ cells that will develop into reproductive queens; and (2) embryos with no germ cells that will develop into completely sterile workers. Together, these data show that queen and worker castes are already determined and differentiated by early embryogenesis. During larval development, we confirmed that reproductive and worker larvae proceed through three larval instars. Using anatomical and developmental markers, we can further discern the development of gyne (unmated queen) larvae, male larvae, and worker larvae as early as the 1st instar. Overall, we hope that the ontogenetic series we present here will serve as a blueprint for the generation of future ant developmental tables.
Collapse
Affiliation(s)
- Arjuna Rajakumar
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Luigi Pontieri
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ruyan Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Stenbak Larsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Johanne K L Frandsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ab Matteen Rafiqi
- Beykoz Institute of Life Science and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul, Turkey
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Centre for Evolutionary and Organismal Biology, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ehab Abouheif
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Reich S, Loschko T, Jung J, Nestel S, Sommer RJ, Werner MS. Developmental transcriptomics in Pristionchus reveals the logic of a plasticity gene regulatory network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612712. [PMID: 39345445 PMCID: PMC11429705 DOI: 10.1101/2024.09.12.612712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Developmental plasticity enables the production of alternative phenotypes in response to different environmental conditions. While significant advances in understanding the ecological and evolutionary implications of plasticity have been made, understanding its genetic basis has lagged. However, a decade of genetic screens in the model nematode Pristionchus pacificus has culminated in 30 genes which affect mouth-form plasticity. We also recently reported the critical window of environmental sensitivity, and therefore have clear expectations for when differential gene expression should matter. Here, we collated previous data into a gene-regulatory network (GRN), and performed developmental transcriptomics across different environmental conditions, genetic backgrounds, and mouth-form mutants to assess the regulatory logic of plasticity. We found that only two genes in the GRN (eud-1 and seud-1/sult-1) are sensitive to the environment during the critical window. Interestingly, the time points of their sensitivity differ, suggesting that they act as sequential checkpoints. We also observed temporal constraint upon the transcriptional effects of mutating the GRN and revealed unexpected feedback between mouth-form genes. Surprisingly, expression of seud-1/sult-1, but not eud-1, correlated with mouth form biases across different strains and species. Finally, a comprehensive analysis of all samples identified metabolism as a shared pathway for regulating mouth-form plasticity. These data are presented in a Shiny app to facilitate gene-expression comparisons across development in up to 14 different conditions. Collectively, our results suggest that mouth-form plasticity evolved a constrained, two-tiered logic to integrate environmental information leading up to the final developmental decision.
Collapse
Affiliation(s)
- Shelley Reich
- School of Biological Sciences, University of Utah; Salt Lake City, Utah, USA
| | - Tobias Loschko
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology; Tübingen, Germany
| | - Julie Jung
- School of Biological Sciences, University of Utah; Salt Lake City, Utah, USA
| | - Samantha Nestel
- School of Biological Sciences, University of Utah; Salt Lake City, Utah, USA
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology; Tübingen, Germany
| | - Michael S. Werner
- School of Biological Sciences, University of Utah; Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Brülhart J, Süß A, Oettler J, Heinze J, Schultner E. Sex- and caste-specific developmental responses to juvenile hormone in an ant with maternal caste determination. J Exp Biol 2024; 227:jeb247396. [PMID: 38779857 PMCID: PMC11418025 DOI: 10.1242/jeb.247396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Juvenile hormone is considered to be a master regulator of polyphenism in social insects. In the ant Cardiocondyla obscurior, whether a female egg develops into a queen or a worker is determined maternally and caste-specific differentiation occurs in embryos, so that queens and workers can be distinguished in a non-invasive manner from late embryogenesis onwards. This ant also exhibits two male morphs - winged and wingless males. Here, we used topical treatment with juvenile hormone III and its synthetic analogue methoprene, a method that influences caste determination and differentiation in some ant species, to investigate whether hormone manipulation affects the development and growth of male, queen- and worker-destined embryos and larvae. We found no effect of hormone treatment on female caste ratios or body sizes in any of the treated stages, even though individuals reacted to heightened hormone availability with increased expression of krüppel-homolog 1, a conserved JH first-response gene. In contrast, hormone treatment resulted in the emergence of significantly larger males, although male morph fate was not affected. These results show that in C. obscurior, maternal caste determination leads to irreversible and highly canalized caste-specific development and growth.
Collapse
Affiliation(s)
- Jeanne Brülhart
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Anja Süß
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Jan Oettler
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Jürgen Heinze
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Eva Schultner
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Negroni MA, LeBoeuf AC. Social administration of juvenile hormone to larvae increases body size and nutritional needs for pupation. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231471. [PMID: 38126067 PMCID: PMC10731321 DOI: 10.1098/rsos.231471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Social insects often display extreme variation in body size and morphology within the same colony. In many species, adult morphology is socially regulated by workers during larval development. While larval nutrition may play a role in this regulation, it is often difficult to identify precisely what larvae receive from rearing workers, especially when larvae are fed through social regurgitation. Across insects, juvenile hormone is a major regulator of development. In the ant Camponotus floridanus, this hormone is present in the socially regurgitated fluid of workers. We investigated the role the social transfer of juvenile hormone in the social regulation of development. To do this, we administered an artificial regurgitate to larvae through a newly developed handfeeding method that was or was not supplemented with juvenile hormone. Orally administered juvenile hormone increased the nutritional needs of larvae, allowing them to reach a larger size at pupation. Instead of causing them to grow faster, the juvenile hormone treatment extended larval developmental time, allowing them to accumulate resources over a longer period. Handfeeding ant larvae with juvenile hormone resulted in larger adult workers after metamorphosis, suggesting a role for socially transferred juvenile hormone in the colony-level regulation of worker size over colony maturation.
Collapse
Affiliation(s)
- Matteo A. Negroni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Adria C. LeBoeuf
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
5
|
Casasa S, Katsougia E, Ragsdale EJ. A Mediator subunit imparts robustness to a polyphenism decision. Proc Natl Acad Sci U S A 2023; 120:e2308816120. [PMID: 37527340 PMCID: PMC10410750 DOI: 10.1073/pnas.2308816120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023] Open
Abstract
Polyphenism is a type of developmental plasticity that translates continuous environmental variability into discontinuous phenotypes. Such discontinuity likely requires a switch between alternative gene-regulatory networks, a principle that has been borne out by mechanisms found to promote morph-specific gene expression. However, whether robustness is required to execute a polyphenism decision has awaited testing at the molecular level. Here, we used a nematode model for polyphenism, Pristionchus pacificus, to identify the molecular regulatory factors that ensure the development of alternative forms. This species has a dimorphism in its adult feeding structures, specifically teeth, which are a morphological novelty that allows predation on other nematodes. Through a forward genetic screen, we determined that a duplicate homolog of the Mediator subunit MDT-15/MED15, P. pacificus MDT-15.1, is necessary for the polyphenism and the robustness of the resulting phenotypes. This transcriptional coregulator, which has a conserved role in metabolic responses to nutritional stress, coordinates these processes with its effects on this diet-induced polyphenism. Moreover, this MED15 homolog genetically interacts with two nuclear receptors, NHR-1 and NHR-40, to achieve dimorphism: Single and double mutants for these three factors result in morphologies that together produce a continuum of forms between the extremes of the polyphenism. In summary, we have identified a molecular regulator that confers discontinuity to a morphological polyphenism, while also identifying a role for MED15 as a plasticity effector.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN47405
| | - Eleni Katsougia
- Department of Biology, Indiana University, Bloomington, IN47405
| | | |
Collapse
|
6
|
Smith CR. Sexual dimorphism as a facilitator of worker caste evolution in ants. Ecol Evol 2023; 13:e9825. [PMID: 36818531 PMCID: PMC9929627 DOI: 10.1002/ece3.9825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Ant societies are primarily composed of females, whereby labor is divided into reproductive, or queen, and non-reproductive, or worker, castes. Workers and reproductive queens can differ greatly in behavior, longevity, physiology, and morphology, but queen-worker differences are usually modest relative to the differences in males. Males are short-lived, typically do not provide the colony with labor, often look like a different species, and only occur seasonally. It is these differences that have historically led to their neglect in social insect research, but also why they may facilitate novel phenotypic variation - by increasing the phenotypic variability that is available for selection. In this study, worker variation in multivariate size-shape space paralleled male-queen variation. As worker variation increased within species, so did sexual variation. Across species in two independent genera, using head width as a proxy for body size, sexual size dimorphism correlated with worker polymorphism regardless of whether the ancestral condition was large or small worker/sexual dimorphism. Mounting molecular data support the hypothesis that queen-worker caste determination has co-opted many genes/pathways from sex determination. The molecular evidence, coupled with the observations from this study, leads to the hypothesis that sexual selection and selection on colony-level traits are non-independent, and that sexual dimorphism may even have facilitated the evolution of the distinct worker caste.
Collapse
|
7
|
Wang Y, Rensink AH, Fricke U, Riddle MC, Trent C, van de Zande L, Verhulst EC. Doublesex regulates male-specific differentiation during distinct developmental time windows in a parasitoid wasp. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103724. [PMID: 35093500 DOI: 10.1016/j.ibmb.2022.103724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Sexually dimorphic traits in insects are subject to sexual selection, but our knowledge of the underlying molecular mechanisms is still scarce. Here we investigate how the highly conserved gene, Doublesex (Dsx), is involved in shaping sexual dimorphism in the model parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). First, we present the revised Dsx gene structure including an alternative transcription start, and two additional male NvDsx transcript isoforms. We show sex-specific NvDsx expression and splicing throughout development, and demonstrate that transient NvDsx silencing in different male developmental stages shifts two sexually dimorphic traits from male to female morphology, with the effect being dependent on the timing of silencing. In addition, we determined the effect of NvDsx on the development of reproductive organs. Transient silencing of NvDsx in early male larvae affects the growth and differentiation of the internal and external reproductive tissues. We did not observe phenotypic changes in females after NvDsx silencing. Our results indicate that male NvDsx is required to suppress female-specific traits and/or to promote male-specific traits during distinct developmental windows. This provides new insights into the regulatory activity of Dsx during male wasp development in the Hymenoptera.
Collapse
Affiliation(s)
- Yidong Wang
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands
| | - Anna H Rensink
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Ute Fricke
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands
| | - Megan C Riddle
- Biology Department, Western Washington University, Washington, USA
| | - Carol Trent
- Biology Department, Western Washington University, Washington, USA
| | - Louis van de Zande
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Eveline C Verhulst
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands; Wageningen University, Laboratory of Genetics, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Boudinot BE, Moosdorf OTD, Beutel RG, Richter A. Anatomy and evolution of the head of Dorylus helvolus (Formicidae: Dorylinae): Patterns of sex- and caste-limited traits in the sausagefly and the driver ant. J Morphol 2021; 282:1616-1658. [PMID: 34427942 DOI: 10.1002/jmor.21410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/21/2022]
Abstract
Ants are highly polyphenic Hymenoptera, with at least three distinct adult forms in the vast majority of species. Their sexual dimorphism, however, is overlooked to the point of being a nearly forgotten phenomenon. Using a multimodal approach, we interrogate the near total head microanatomy of the male of Dorylus helvolus, the "sausagefly," and compare it with the conspecific or near-conspecific female castes, the "driver ants." We found that no specific features were shared uniquely between the workers and males to the exclusion of the queens, indicating independence of male and worker development; males and queens, however, uniquely shared several features. Certain previous generalizations about ant sexual dimorphism are confirmed, while we also discover discrete muscular presences and absences, for which reason we provide a coarse characterization of functional morphology. Based on the unexpected retention of a medial carinate line on the structurally simplified mandible of the male, we postulate a series of developmental processes to explain the patterning of ant mandibles. We invoke functional and anatomical principles to classify sensilla. Critically, we observe an inversion of the expected pattern of male-queen mandible development: male Dorylus mandibles are extremely large while queen mandibles are poorly developed. To explain this, we posit that the reproductive-limited mandible phenotype is canalized in Dorylus, thus partially decoupling the queen and worker castes. We discuss alternative hypotheses and provide further comparisons to understand mandibular evolution in army ants. Furthermore, we hypothesize that the expression of the falcate phenotype in the queen is coincidental, that is, a "spandrel," and that the form of male mandibles is also generally coincidental across the ants. We conclude that the theory of ant development and evolution is incomplete without consideration of the male system, and we call for focused study of male anatomy and morphogenesis, and of trait limitation across all castes.
Collapse
Affiliation(s)
- Brendon Elias Boudinot
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| | - Olivia Tikuma Diana Moosdorf
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| | - Rolf Georg Beutel
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| | - Adrian Richter
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| |
Collapse
|
9
|
Schrader L, Winter M, Errbii M, Delabie J, Oettler J, Gadau J. Inhibition of HSP90 causes morphological variation in the invasive ant
Cardiocondyla obscurior. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:333-340. [DOI: 10.1002/jez.b.23035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 01/16/2023]
Affiliation(s)
- Lukas Schrader
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Miles Winter
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Mohammed Errbii
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Jacques Delabie
- Laboratório de Mirmecologia Cocoa Research Center‐CEPLAC & UESC‐DCAA Itabuna Bahia Brazil
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie University of Regensburg Regensburg Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| |
Collapse
|
10
|
Hanna L, Abouheif E. The origin of wing polyphenism in ants: An eco-evo-devo perspective. Curr Top Dev Biol 2021; 141:279-336. [PMID: 33602491 DOI: 10.1016/bs.ctdb.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The evolution of eusociality, where solitary individuals integrate into a single colony, is a major transition in individuality. In ants, the origin of eusociality coincided with the origin of a wing polyphenism approximately 160 million years ago, giving rise to colonies with winged queens and wingless workers. As a consequence, both eusociality and wing polyphenism are nearly universal features of all ants. Here, we synthesize fossil, ecological, developmental, and evolutionary data in an attempt to understand the factors that contributed to the origin of wing polyphenism in ants. We propose multiple models and hypotheses to explain how wing polyphenism is orchestrated at multiple levels, from environmental cues to gene networks. Furthermore, we argue that the origin of wing polyphenism enabled the subsequent evolution of morphological diversity across the ants. We finally conclude by outlining several outstanding questions for future work.
Collapse
Affiliation(s)
- Lisa Hanna
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Ehab Abouheif
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Collins DH, Wirén A, Labédan M, Smith M, Prince DC, Mohorianu I, Dalmay T, Bourke AFG. Gene expression during larval caste determination and differentiation in intermediately eusocial bumblebees, and a comparative analysis with advanced eusocial honeybees. Mol Ecol 2021; 30:718-735. [PMID: 33238067 PMCID: PMC7898649 DOI: 10.1111/mec.15752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
The queen‐worker caste system of eusocial insects represents a prime example of developmental polyphenism (environmentally‐induced phenotypic polymorphism) and is intrinsic to the evolution of advanced eusociality. However, the comparative molecular basis of larval caste determination and subsequent differentiation in the eusocial Hymenoptera remains poorly known. To address this issue within bees, we profiled caste‐associated gene expression in female larvae of the intermediately eusocial bumblebee Bombus terrestris. In B. terrestris, female larvae experience a queen‐dependent period during which their caste fate as adults is determined followed by a nutrition‐sensitive period also potentially affecting caste fate but for which the evidence is weaker. We used mRNA‐seq and qRT‐PCR validation to isolate genes differentially expressed between each caste pathway in larvae at developmental stages before and after each of these periods. We show that differences in gene expression between caste pathways are small in totipotent larvae, then peak after the queen‐dependent period. Relatively few novel (i.e., taxonomically‐restricted) genes were differentially expressed between castes, though novel genes were significantly enriched in late‐instar larvae in the worker pathway. We compared sets of caste‐associated genes in B. terrestris with those reported from the advanced eusocial honeybee, Apis mellifera, and found significant but relatively low levels of overlap of gene lists between the two species. These results suggest both the existence of low numbers of shared toolkit genes and substantial divergence in caste‐associated genes between Bombus and the advanced eusocial Apis since their last common eusocial ancestor.
Collapse
Affiliation(s)
- David H Collins
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Anders Wirén
- School of Biological Sciences, University of East Anglia, Norwich, UK.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marjorie Labédan
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michael Smith
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - David C Prince
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Jeffrey Cheah Biomedical Centre, WT-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
12
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
13
|
Schwab DB, Newsom KD, Moczek AP. Serotonin signaling suppresses the nutrition-responsive induction of an alternate male morph in horn polyphenic beetles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:660-669. [PMID: 32959988 DOI: 10.1002/jez.2413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/31/2022]
Abstract
Environment-responsive development contributes significantly to the phenotypic variation visible to selection and as such possesses the potential to shape evolutionary trajectories. However, evaluation of the contributions of developmental plasticity to evolutionary diversification necessitates an understanding of the developmental mechanisms underpinning plastic trait expression. We investigated the role of serotonin signaling in the regulation and evolution of horn polyphenism in the beetle genus Onthophagus. Specifically, we assessed the role of serotonin in development by determining whether manipulating serotonin biosynthesis during the larval stage alters body size, developmental rate, and the formation of relative adult trait size in traits characterized by minimal (genitalia), moderate (elytra), and pronounced (horns) nutrition-responsive development in O. taurus. Second, we assessed serotonin's role in evolution by replicating a subset of our approaches across four species reflecting ancestral as well as derived conditions. Lastly, we employed immunohistochemical approaches to begin assessing whether serotonin may be acting via the endocrine or nervous system. Our results show that pharmacological manipulation of serotonin signaling affects overall size, developmental rate, and the body size threshold separating alternate male morphs. Threshold body sizes were affected across species, regardless of the severity of horn polyphenism, and independent of the precise morphological location of horns. However, histological assessments suggest it is unlikely serotonin functions as a neurotransmitter and instead may rely on other mechanisms that remain to be identified. We discuss the most important implications of our results for our understanding of the evolution of and through plasticity in horned beetles and beyond.
Collapse
Affiliation(s)
- Daniel B Schwab
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Keeley D Newsom
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
14
|
Deshmukh R, Lakhe D, Kunte K. Tissue-specific developmental regulation and isoform usage underlie the role of doublesex in sex differentiation and mimicry in Papilio swallowtails. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200792. [PMID: 33047041 PMCID: PMC7540742 DOI: 10.1098/rsos.200792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Adaptive phenotypes often arise by rewiring existing developmental networks. Co-option of transcription factors in novel contexts has facilitated the evolution of ecologically important adaptations. doublesex (dsx) governs fundamental sex differentiation during embryonic stages and has been co-opted to regulate diverse secondary sexual dimorphisms during pupal development of holometabolous insects. In Papilio polytes, dsx regulates female-limited mimetic polymorphism, resulting in mimetic and non-mimetic forms. To understand how a critical gene such as dsx regulates novel wing patterns while maintaining its basic function in sex differentiation, we traced its expression through metamorphosis in P. polytes using developmental transcriptome data. We found three key dsx expression peaks: (i) eggs in pre- and post-ovisposition stages; (ii) developing wing discs and body in final larval instar; and (iii) 3-day pupae. We identified potential dsx targets using co-expression and differential expression analysis, and found distinct, non-overlapping sets of genes-containing putative dsx-binding sites-in developing wings versus abdominal tissue and in mimetic versus non-mimetic individuals. This suggests that dsx regulates distinct downstream targets in different tissues and wing colour morphs and has perhaps acquired new, previously unknown targets, for regulating mimetic polymorphism. Additionally, we observed that the three female isoforms of dsx were differentially expressed across stages (from eggs to adults) and tissues and differed in their protein structure. This may promote differential protein-protein interactions for each isoform and facilitate sub-functionalization of dsx activity across its isoforms. Our findings suggest that dsx employs tissue-specific downstream effectors and partitions its functions across multiple isoforms to regulate primary and secondary sexual dimorphism through insect development.
Collapse
|
15
|
Developmental plasticity shapes social traits and selection in a facultatively eusocial bee. Proc Natl Acad Sci U S A 2020; 117:13615-13625. [PMID: 32471944 PMCID: PMC7306772 DOI: 10.1073/pnas.2000344117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Developmental processes are an important source of phenotypic variation, but the extent to which this variation contributes to evolutionary change is unknown. We used integrative genomic analyses to explore the relationship between developmental and social plasticity in a bee species that can adopt either a social or solitary lifestyle. We find genes regulating this social flexibility also regulate development, and positive selection on these genes is influenced by their function during development. This suggests that developmental plasticity may influence the evolution of sociality. Our additional finding of genetic variants linked to differences in social behavior sheds light on how phenotypic variation derived from development may become encoded into the genome, and thus contribute to evolutionary change. Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species (Megalopta genalis) that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality. We find that differences in social behavior are derived from genes that also regulate sex differentiation and metamorphosis. Positive selection on social traits is influenced by the function of these genes in development. We further identify evidence that social polyphenisms may become encoded in the genome via genetic changes in regulatory regions, specifically in transcription factor binding sites. Taken together, our results provide evidence that developmental plasticity provides the substrate for evolutionary novelty and shapes the selective landscape for molecular evolution in a major evolutionary innovation: Eusociality.
Collapse
|
16
|
Bui LT, Ragsdale EJ. Multiple plasticity regulators reveal targets specifying an induced predatory form in nematodes. Mol Biol Evol 2019; 36:2387-2399. [PMID: 31364718 DOI: 10.1093/molbev/msz171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
The ability to translate a single genome into multiple phenotypes, or developmental plasticity, defines how phenotype derives from more than just genes. However, to study the evolutionary targets of plasticity and their evolutionary fates, we need to understand how genetic regulators of plasticity control downstream gene expression. Here, we have identified a transcriptional response specific to polyphenism (i.e., discrete plasticity) in the nematode Pristionchus pacificus. This species produces alternative resource-use morphs - microbivorous and predatory forms, differing in the form of their teeth, a morphological novelty - as influenced by resource availability. Transcriptional profiles common to multiple polyphenism-controlling genes in P. pacificus reveal a suite of environmentally sensitive loci, or ultimate target genes, that make up an induced developmental response. Additionally, in vitro assays show that one polyphenism regulator, the nuclear receptor (NR) NHR-40, physically binds to promoters with putative HNF4⍺ (the NR class including NHR-40) binding sites, suggesting this receptor may directly regulate genes that describe alternative morphs. Among differentially expressed genes were morph-limited genes, highlighting factors with putative "on-off" function in plasticity regulation. Further, predatory morph-biased genes included candidates - namely, all four P. pacificus homologs of Hsp70, which have HNF4⍺ motifs - whose natural variation in expression matches phenotypic differences among P. pacificus wild isolates. In summary, our study links polyphenism regulatory loci to the transcription producing alternative forms of a morphological novelty. Consequently, our findings establish a platform for determining how specific regulators of morph-biased genes may influence selection on plastic phenotypes.
Collapse
Affiliation(s)
- Linh T Bui
- Department of Biology, Indiana University, Bloomington, IN
| | | |
Collapse
|
17
|
Comparative transcriptomics of social insect queen pheromones. Nat Commun 2019; 10:1593. [PMID: 30962449 PMCID: PMC6453924 DOI: 10.1038/s41467-019-09567-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Queen pheromones are chemical signals that mediate reproductive division of labor in eusocial animals. Remarkably, queen pheromones are composed of identical or chemically similar compounds in some ants, wasps and bees, even though these taxa diverged >150MYA and evolved queens and workers independently. Here, we measure the transcriptomic consequences of experimental exposure to queen pheromones in workers from two ant and two bee species (genera: Lasius, Apis, Bombus), and test whether they are similar across species. Queen pheromone exposure affected transcription and splicing at many loci. Many genes responded consistently in multiple species, and the set of pheromone-sensitive genes was enriched for functions relating to lipid biosynthesis and transport, olfaction, production of cuticle, oogenesis, and histone (de)acetylation. Pheromone-sensitive genes tend to be evolutionarily ancient, positively selected, peripheral in the gene coexpression network, hypomethylated, and caste-specific in their expression. Our results reveal how queen pheromones achieve their effects, and suggest that ants and bees use similar genetic modules to achieve reproductive division of labor.
Collapse
|
18
|
Jia LY, Chen L, Keller L, Wang J, Xiao JH, Huang DW. Doublesex Evolution Is Correlated with Social Complexity in Ants. Genome Biol Evol 2018; 10:3230-3242. [PMID: 30476039 PMCID: PMC6300070 DOI: 10.1093/gbe/evy250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
The Dmrt (doublesex and mab-3-related transcription factor) genes are transcription factors crucial for sex determination and sexual differentiation. In some social insects, doublesex (dsx) exhibits widespread caste-specific expression across different tissues and developmental stages and has been suggested as a candidate gene for regulating division of labor in social insects. We therefore conducted a molecular evolution analysis of the Dmrt gene family in 20 ants. We found that the insect-specific oligomerization domain of DSX, oligomerization domain 2, was absent in all ants, except for the two phylogenetically basal ant species (Ponerinae), whose social structure and organization resemble the presumed ancestral condition in ants. Phylogenetic reconstruction and selection analysis revealed that dsx evolved faster than the other three members of the Dmrt family. We found evidence for positive selection for dsx in the ant subfamilies with more advanced social organization (Myrmicinae and Formicinae), but not in the Ponerinae. Furthermore, we detected expression of two Dmrt genes, dsx and DMRT11E, in adult ants, and found a clear male-biased expression pattern of dsx in most species for which data are available. Interestingly, we did not detect male-biased expression of dsx in the two ant species that possess a genetic caste determination system. These results possibly suggest an association between the evolution of dsx and social organization as well as reproductive division of labor in ants.
Collapse
Affiliation(s)
- Ling-Yi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Laurent Keller
- Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jin-Hua Xiao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Da-Wei Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
19
|
|
20
|
Oettler J, Platschek T, Schmidt C, Rajakumar R, Favé MJ, Khila A, Heinze J, Abouheif E. Interruption points in the wing gene regulatory network underlying wing polyphenism evolved independently in male and female morphs in Cardiocondyla ants. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 332:7-16. [PMID: 30460750 DOI: 10.1002/jez.b.22834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/18/2018] [Indexed: 11/10/2022]
Abstract
Wing polyphenism in ants, which produces a winged female queen caste and a wingless female worker caste, evolved approximately 150 million years ago and has been key to the remarkable success of ants. Approximately 20 million years ago, the myrmicine ant genus Cardiocondyla evolved an additional wing polyphenism among males producing two male morphs: wingless males that fight to enhance mating success and winged males that disperse. Here we show that interruption of rudimentary wing-disc development in larvae of the ant Cardiocondyla obscurior occurs further downstream in the network in wingless males as compared with wingless female workers. This pattern is corroborated in C. kagutsuchi, a species from a different clade within the genus, indicating that late interruption of wing development in males is conserved across Cardiocondyla. Therefore, our results show that the novel male wing polyphenism was not developmentally constrained by the pre-existing female wing polyphenism and evolved through independent alteration of interruption points in the wing gene network. Furthermore, a comparison of adult morphological characters in C. obscurior reveals that developmental trajectories lead to similar morphological trait integration between winged and wingless females, but dramatically different integration between winged and wingless males. This suggests that the alternative sex-specific developmental routes to achieve winglessness in the genus Cardiocondyla may have evolved through different selection regimes acting on wingless males and females.
Collapse
Affiliation(s)
- Jan Oettler
- Zoologie-Evolutionsbiologie, Universität Regensburg, Regensburg, Germany
| | - Tobias Platschek
- Zoologie-Evolutionsbiologie, Universität Regensburg, Regensburg, Germany.,Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Christine Schmidt
- Zoologie-Evolutionsbiologie, Universität Regensburg, Regensburg, Germany
| | | | - Marie-Julie Favé
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | - Jürgen Heinze
- Zoologie-Evolutionsbiologie, Universität Regensburg, Regensburg, Germany
| | - Ehab Abouheif
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Faragalla KM, Chernyshova AM, Gallo AJ, Thompson GJ. From gene list to gene network: Recognizing functional connections that regulate behavioral traits. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:317-329. [DOI: 10.1002/jez.b.22829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
|
22
|
Bui LT, Ivers NA, Ragsdale EJ. A sulfotransferase dosage-dependently regulates mouthpart polyphenism in the nematode Pristionchus pacificus. Nat Commun 2018; 9:4119. [PMID: 30297689 PMCID: PMC6175886 DOI: 10.1038/s41467-018-05612-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/11/2018] [Indexed: 01/26/2023] Open
Abstract
Polyphenism, the extreme form of developmental plasticity, is the ability of a genotype to produce discrete morphologies matched to alternative environments. Because polyphenism is likely to be under switch-like molecular control, a comparative genetic approach could reveal the molecular targets of plasticity evolution. Here we report that the lineage-specific sulfotransferase SEUD-1, which responds to environmental cues, dosage-dependently regulates polyphenism of mouthparts in the nematode Pristionchus pacificus. SEUD-1 is expressed in cells producing dimorphic morphologies, thereby integrating an intercellular signalling mechanism at its ultimate target. Additionally, multiple alterations of seud-1 support it as a potential target for plasticity evolution. First, a recent duplication of seud-1 in a sister species reveals a direct correlation between genomic dosage and polyphenism threshold. Second, inbreeding to produce divergent polyphenism thresholds resulted in changes in transcriptional dosage of seud-1. Our study thus offers a genetic explanation for how plastic responses evolve.
Collapse
Affiliation(s)
- Linh T Bui
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN, 47405, USA
| | - Nicholas A Ivers
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN, 47405, USA
| | - Erik J Ragsdale
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN, 47405, USA.
| |
Collapse
|
23
|
Queen Control or Queen Signal in Ants: What Remains of the Controversy 25 Years After Keller and Nonacs' Seminal Paper? J Chem Ecol 2018; 44:805-817. [PMID: 29858748 DOI: 10.1007/s10886-018-0974-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/05/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
Abstract
Ant queen pheromones (QPs) have long been known to affect colony functioning. In many species, QPs affect important reproductive functions such as diploid larvae sexualization and egg-laying by workers, unmated queens (gynes), or other queens. Until the 1990s, these effects were generally viewed to be the result of queen manipulation through the use of coercive or dishonest signals. However, in their seminal 1993 paper, Keller and Nonacs challenged this idea, suggesting that QPs had evolved as honest signals that informed workers and other colony members of the queen's presence and reproductive state. This paper has greatly influenced the study of ant QPs and inspired numerous attempts to identify fertility-related compounds and test their physiological and behavioral effects. In the present article, we review the literature on ant QPs in various contexts and pay special attention to the role of cuticular hydrocarbons (CHCs). Although the controversy generated by Keller and Nonacs' (Anim Behav 45:787-794, 1993) paper is currently less intensively debated, there is still no clear evidence which allows the rejection of the queen control hypothesis in favor of the queen signal hypothesis. We argue that important questions remain regarding the mode of action of QPs, and their targets which may help understanding their evolution.
Collapse
|
24
|
TGFβ signaling related genes are involved in hormonal mediation during termite soldier differentiation. PLoS Genet 2018; 14:e1007338. [PMID: 29641521 PMCID: PMC5912798 DOI: 10.1371/journal.pgen.1007338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/23/2018] [Accepted: 03/27/2018] [Indexed: 11/19/2022] Open
Abstract
A working knowledge of the proximate factors intrinsic to sterile caste differentiation is necessary to understand the evolution of eusocial insects. Genomic and transcriptomic analyses in social hymenopteran insects have resulted in the hypothesis that sterile castes are generated by the novel function of co-opted or recruited universal gene networks found in solitary ancestors. However, transcriptome analysis during caste differentiation has not been tested in termites, and evolutionary processes associated with acquiring the caste are still unknown. Termites possess the soldier caste, which is regarded as the first acquired permanently sterile caste in the taxon. In this study, we performed a comparative transcriptome analysis in termite heads during 3 molting processes, i.e., worker, presoldier and soldier molts, under natural conditions in an incipient colony of the damp-wood termite Zootermopsis nevadensis. Although similar expression patterns were observed during each molting process, more than 50 genes were shown to be highly expressed before the presoldier (intermediate stage of soldier) molt. We then performed RNA interference (RNAi) of the candidate 13 genes, including transcription factors and uncharacterized protein genes, during presoldier differentiation induced by juvenile hormone (JH) analog treatment. Presoldiers induced after RNAi of two genes related to TGFβ (Transforming growth factor beta) signaling were extremely unusual and possessed soldier-like phenotypes. These individuals also displayed aggressive behaviors similar to natural soldiers when confronted with Formica ants as hypothetical enemies. These presoldiers never molted into the next instar, presumably due to the decreased expression levels of the molting hormone (20-hydroxyecdysone; 20E) signaling genes. These results suggest that TGFβ signaling was acquired for the novel function of regulating between JH and 20E signaling during soldier differentiation in termites.
Collapse
|
25
|
Schultner E, Oettler J, Helanterä H. The Role of Brood in Eusocial Hymenoptera. QUARTERLY REVIEW OF BIOLOGY 2018; 92:39-78. [PMID: 29558609 DOI: 10.1086/690840] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Study of social traits in offspring traditionally reflects on interactions in simple family groups, with famous examples including parent-offspring conflict and sibling rivalry in birds and mammals. In contrast, studies of complex social groups such as the societies of ants, bees, and wasps focus mainly on adults and, in particular, on traits and interests of queens and workers. The social role of developing individuals in complex societies remains poorly understood. We attempt to fill this gap by illustrating that development in social Hymenoptera constitutes a crucial life stage with important consequences for the individual as well as the colony. We begin by describing the complex social regulatory network that modulates development in Hymenoptera societies. By highlighting the inclusive fitness interests of developing individuals, we show that they may differ from those of other colony members. We then demonstrate that offspring have evolved specialized traits that allow them to play a functional, cooperative role within colonies and give them the potential power to act toward increasing their inclusive fitness. We conclude by providing testable predictions for investigating the role of brood in colony interactions and giving a general outlook on what can be learned from studying offspring traits in hymenopteran societies.
Collapse
|
26
|
Miyakawa MO, Tsuchida K, Miyakawa H. The doublesex gene integrates multi-locus complementary sex determination signals in the Japanese ant, Vollenhovia emeryi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 94:42-49. [PMID: 29408414 DOI: 10.1016/j.ibmb.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 06/07/2023]
Abstract
A female diploid, male haploid sex determination system (haplodiploidy) is found in hymenopteran taxa, such as ants, wasps, bees and sawflies. In this system, a single, complementary sex-determination (sl-CSD) locus functions as the primary sex-determination signal. In the taxa that has evolved this system, females and males are heterozygous and hemi/homozygous at the CSD locus, respectively. While the sl-CSD system enables females to alter sex ratios in the nest, it carries a high cost in terms of inbreeding, as individuals that are homozygous at the CSD locus become sterile diploid males. To counter this risk, some of hymenopteran species have evolved a multi-locus CSD (ml-CSD) system, which effectively reduces the proportion of sterile males. However, the mechanism by which these multiple primary signals are integrated and how they affect the terminal sex-differentiation signal of the molecular cascade have not yet been clarified. To resolve these questions, we examined the molecular cascade in the Japanese ant Vollenhovia emeryi, which we previously confirmed has two CSD loci. Here, we showed that the sex-determination gene, doublesex (dsx), which is highly conserved among phylogenetically distant taxa, is responsible for integrating two CSD signals in V. emeryi. After identifying and characterizing dsx, genotypes containing two CSD loci and splicing patterns of dsx were found to correspond to the sexual phenotype, suggesting that two primary signals are integrated into dsx. These findings will facilitate future molecular and functional studies of the sex determination cascade in V. emeryi, and shed light on the evolution and diversification of sex determination systems in insects.
Collapse
Affiliation(s)
- Misato Okamoto Miyakawa
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350, Minemachi, Utsunomiya, Tochigi 321-8505, Japan.
| | - Koji Tsuchida
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, 350, Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
27
|
Pharaoh ant colonies dynamically regulate reproductive allocation based on colony demography. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-017-2430-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Heinze J. Life-history evolution in ants: the case of Cardiocondyla. Proc Biol Sci 2018; 284:rspb.2016.1406. [PMID: 28298341 DOI: 10.1098/rspb.2016.1406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/06/2016] [Indexed: 01/09/2023] Open
Abstract
Ants are important components of most terrestrial habitats, and a better knowledge of the diversity of their life histories is essential to understand many aspects of ecosystem functioning. The myrmicine genus Cardiocondyla shows a wide range of colony structures, reproductive behaviours, queen and male lifespans, and habitat use. Reconstructing the evolutionary pathways of individual and social phenotypic traits suggests that the ancestral life history of Cardiocondyla was characterized by the presence of multiple, short-lived queens in small-sized colonies and a male polyphenism with winged dispersers and wingless fighters, which engage in lethal combat over female sexuals within their natal nests. Single queening, queen polyphenism, the loss of winged males and tolerance among wingless males appear to be derived traits that evolved with changes in nesting habits, colony size and the spread from tropical to seasonal environments. The aim of this review is to bring together the information on life-history evolution in Cardiocondyla and to highlight the suitability of this genus for functional genomic studies of adaptation, phenotypic plasticity, senescence, invasiveness and other key life-history traits of ants.
Collapse
Affiliation(s)
- Jürgen Heinze
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
29
|
Pennell TM, Holman L, Morrow EH, Field J. Building a new research framework for social evolution: intralocus caste antagonism. Biol Rev Camb Philos Soc 2018; 93:1251-1268. [PMID: 29341390 PMCID: PMC5896731 DOI: 10.1111/brv.12394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 01/02/2023]
Abstract
The breeding and non‐breeding ‘castes’ of eusocial insects provide a striking example of role‐specific selection, where each caste maximises fitness through different morphological, behavioural and physiological trait values. Typically, queens are long‐lived egg‐layers, while workers are short‐lived, largely sterile foragers. Remarkably, the two castes are nevertheless produced by the same genome. The existence of inter‐caste genetic correlations is a neglected consequence of this shared genome, potentially hindering the evolution of caste dimorphism: alleles that increase the productivity of queens may decrease the productivity of workers and vice versa, such that each caste is prevented from reaching optimal trait values. A likely consequence of this ‘intralocus caste antagonism’ should be the maintenance of genetic variation for fitness and maladaptation within castes (termed ‘caste load’), analogous to the result of intralocus sexual antagonism. The aim of this review is to create a research framework for understanding caste antagonism, drawing in part upon conceptual similarities with sexual antagonism. By reviewing both the social insect and sexual antagonism literature, we highlight the current empirical evidence for caste antagonism, discuss social systems of interest, how antagonism might be resolved, and challenges for future research. We also introduce the idea that sexual and caste antagonism could interact, creating a three‐way antagonism over gene expression. This includes unpacking the implications of haplodiploidy for the outcome of this complex interaction.
Collapse
Affiliation(s)
- Tanya M Pennell
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Luke Holman
- School of Biosciences, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Edward H Morrow
- Evolution Behaviour and Environment Group, School of Life Sciences, University of Sussex, Falmer, East Sussex, BN1 9QG, UK
| | - Jeremy Field
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
30
|
Deshmukh R, Baral S, Gandhimathi A, Kuwalekar M, Kunte K. Mimicry in butterflies: co-option and a bag of magnificent developmental genetic tricks. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28913870 DOI: 10.1002/wdev.291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 07/04/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023]
Abstract
Butterfly wing patterns are key adaptations that are controlled by remarkable developmental and genetic mechanisms that facilitate rapid evolutionary change. With swift advancements in the fields of genomics and genetic manipulations, identifying the regulators of wing development and mimetic wing patterns has become feasible even in nonmodel organisms such as butterflies. Recent mapping and gene expression studies have identified single switch loci of major effects such as transcription factors and supergenes as the main drivers of adaptive evolution of mimetic and polymorphic butterfly wing patterns. We highlight several of these examples, with emphasis on doublesex, optix, WntA and other dynamic, yet essential, master regulators that control critical color variation and sex-specific traits. Co-option emerges as a predominant theme, where typically embryonic and other early-stage developmental genes and networks have been rewired to regulate polymorphic and sex-limited mimetic wing patterns in iconic butterfly adaptations. Drawing comparisons from our knowledge of wing development in Drosophila, we illustrate the functional space of genes that have been recruited to regulate butterfly wing patterns. We also propose a developmental pathway that potentially results in dorsoventral mismatch in butterfly wing patterns. Such dorsoventrally mismatched color patterns modulate signal components of butterfly wings that are used in intra- and inter-specific communication. Recent advances-fuelled by RNAi-mediated knockdowns and CRISPR/Cas9-based genomic edits-in the developmental genetics of butterfly wing patterns, and the underlying biological diversity and complexity of wing coloration, are pushing butterflies as an emerging model system in ecological genetics and evolutionary developmental biology. WIREs Dev Biol 2018, 7:e291. doi: 10.1002/wdev.291 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties.
Collapse
Affiliation(s)
| | - Saurav Baral
- National Centre for Biological Sciences, Bengaluru, India
| | - A Gandhimathi
- National Centre for Biological Sciences, Bengaluru, India
| | | | | |
Collapse
|
31
|
Abstract
The study of insect social behavior has offered tremendous insight into the molecular mechanisms mediating behavioral and phenotypic plasticity. Genomic applications to the study of eusocial insect species, in particular, have led to several hypotheses for the processes underlying the molecular evolution of behavior. Advances in understanding the genetic control of social organization have also been made, suggesting an important role for supergenes in the evolution of divergent behavioral phenotypes. Intensive study of social phenotypes across species has revealed that behavior and caste are controlled by an interaction between genetic and environmentally mediated effects and, further, that gene expression and regulation mediate plastic responses to environmental signals. However, several key methodological flaws that are hindering progress in the study of insect social behavior remain. After reviewing the current state of knowledge, we outline ongoing challenges in experimental design that remain to be overcome in order to advance the field.
Collapse
Affiliation(s)
- Chelsea A Weitekamp
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland; ,
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland; ,
| |
Collapse
|
32
|
Trible W, Kronauer DJC. Caste development and evolution in ants: it's all about size. ACTA ACUST UNITED AC 2017; 220:53-62. [PMID: 28057828 DOI: 10.1242/jeb.145292] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Female ants display a wide variety of morphological castes, including workers, soldiers, ergatoid (worker-like) queens and queens. Alternative caste development within a species arises from a variable array of genetic and environmental factors. Castes themselves are also variable across species and have been repeatedly gained and lost throughout the evolutionary history of ants. Here, we propose a simple theory of caste development and evolution. We propose that female morphology varies as a function of size, such that larger individuals possess more queen-like traits. Thus, the diverse mechanisms that influence caste development are simply mechanisms that affect size in ants. Each caste-associated trait has a unique relationship with size, producing a phenotypic space that permits some combinations of worker- and queen-like traits, but not others. We propose that castes are gained and lost by modifying the regions of this phenotypic space that are realized within a species. These modifications can result from changing the size-frequency distribution of individuals within a species, or by changing the association of tissue growth and size. We hope this synthesis will help unify the literature on caste in ants, and facilitate the discovery of molecular mechanisms underlying caste development and evolution.
Collapse
Affiliation(s)
- Waring Trible
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
33
|
Projecto-Garcia J, Biddle JF, Ragsdale EJ. Decoding the architecture and origins of mechanisms for developmental polyphenism. Curr Opin Genet Dev 2017; 47:1-8. [PMID: 28810163 DOI: 10.1016/j.gde.2017.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023]
Abstract
Developmental polyphenism affords a single genotype multiple solutions to match an organism to its environment. Because polyphenism is the extreme example of how development deviates from a linear genetic blueprint, it demands a genetic explanation for how environmental cues shunt development to hypothetically alternative modules. We highlight several recent advances that have begun to illuminate genetic mechanisms for polyphenism and how this recurring developmental novelty may arise. An emerging genetic knowledge of polyphenism is providing precise targets for testing hypotheses of how switch mechanisms are built-out of olfactory, nutrient-sensing, hormone-reception, and developmental and genetic buffering systems-to accommodate plasticity. Moreover, classic and new model systems are testing the genetic basis of polyphenism's proposed causal roles in evolutionary change.
Collapse
Affiliation(s)
- Joana Projecto-Garcia
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States
| | - Joseph F Biddle
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States
| | - Erik J Ragsdale
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States.
| |
Collapse
|
34
|
Schrader L, Helanterä H, Oettler J. Accelerated Evolution of Developmentally Biased Genes in the Tetraphenic Ant Cardiocondyla obscurior. Mol Biol Evol 2017; 34:535-544. [PMID: 27999112 PMCID: PMC5400372 DOI: 10.1093/molbev/msw240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Plastic gene expression underlies phenotypic plasticity and plastically expressed genes evolve under different selection regimes compared with ubiquitously expressed genes. Social insects are well-suited models to elucidate the evolutionary dynamics of plastic genes for their genetically and environmentally induced discrete polymorphisms. Here, we study the evolution of plastically expressed genes in the ant Cardiocondyla obscurior—a species that produces two discrete male morphs in addition to the typical female polymorphism of workers and queens. Based on individual-level gene expression data from 28 early third instar larvae, we test whether the same evolutionary dynamics that pertain to plastically expressed genes in adults also pertain to genes with plastic expression during development. In order to quantify plasticity of gene expression over multiple contrasts, we develop a novel geometric measure. For genes expressed during development, we show that plasticity of expression is positively correlated with evolutionary rates. We furthermore find a strong correlation between expression plasticity and expression variation within morphs, suggesting a close link between active and passive plasticity of gene expression. Our results support the notion of relaxed selection and neutral processes as important drivers in the evolution of adaptive plasticity.
Collapse
Affiliation(s)
- Lukas Schrader
- Institut für Zoologie, Universität Regensburg, Regensburg, Germany.,Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Heikki Helanterä
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jan Oettler
- Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|