1
|
Zhao T, Guan L, Ma X, Chen B, Ding M, Zou W. The cell cortex-localized protein CHDP-1 is required for dendritic development and transport in C. elegans neurons. PLoS Genet 2022; 18:e1010381. [PMID: 36126047 PMCID: PMC9524629 DOI: 10.1371/journal.pgen.1010381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/30/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cortical actin, a thin layer of actin network underneath the plasma membranes, plays critical roles in numerous processes, such as cell morphogenesis and migration. Neurons often grow highly branched dendrite morphologies, which is crucial for neural circuit assembly. It is still poorly understood how cortical actin assembly is controlled in dendrites and whether it is critical for dendrite development, maintenance and function. In the present study, we find that knock-out of C. elegans chdp-1, which encodes a cell cortex-localized protein, causes dendrite formation defects in the larval stages and spontaneous dendrite degeneration in adults. Actin assembly in the dendritic growth cones is significantly reduced in the chdp-1 mutants. PVD neurons sense muscle contraction and act as proprioceptors. Loss of chdp-1 abolishes proprioception, which can be rescued by expressing CHDP-1 in the PVD neurons. In the high-ordered branches, loss of chdp-1 also severely affects the microtubule cytoskeleton assembly, intracellular organelle transport and neuropeptide secretion. Interestingly, knock-out of sax-1, which encodes an evolutionary conserved serine/threonine protein kinase, suppresses the defects mentioned above in chdp-1 mutants. Thus, our findings suggest that CHDP-1 and SAX-1 function in an opposing manner in the multi-dendritic neurons to modulate cortical actin assembly, which is critical for dendrite development, maintenance and function. Neurons often grow highly-branched cell protrusions called “dendrites” to receive signals from the environment or other neurons. Inside these cells, two types of cytoskeletons, known as the actin cytoskeleton and microtubule cytoskeleton, play essential roles during dendritic branching, growth and function. However, it is not fully understood how the dynamics of the neuronal cytoskeletons are controlled. Using the nematode C. elegans (a tiny roundworm found in the soil) as a research model, we found that CHDP-1, a protein localized on the cell cortex, plays a vital role in the formation of actin and microtubule cytoskeleton in the dendrites. Mutations in chdp-1 cause defective dendrite branching and transport of intracellular organelles. chdp-1 mutants cannot secrete neuropeptides from the PVD dendrites to module the muscle contraction. Surprisingly, mutating a gene called sax-1, which encodes a protein kinase, restores dendrite formation and organelle transport. Our findings reveal novel regulatory mechanisms for dendritic cytoskeleton assembly and intracellular transport.
Collapse
Affiliation(s)
- Ting Zhao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Liying Guan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuehua Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Baohui Chen
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (MD); (WZ)
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (MD); (WZ)
| |
Collapse
|
2
|
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022; 13:14-47. [PMID: 33955328 PMCID: PMC9707551 DOI: 10.1080/21541248.2021.1885264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Synaptic connections between neurons are essential for every facet of human cognition and are thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators (GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho-GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho-family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the nervous system in almost every step of development, and prominently figure into the processes of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disability, autism spectrum disorder, schizophrenia, and Alzheimer's Disease. Thus, decoding the mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential for combatting many of the biggest current challenges in mental health.
Collapse
Affiliation(s)
- Joseph G. Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. Cronkite
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kelly C. Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Motor domain-mediated autoinhibition dictates axonal transport by the kinesin UNC-104/KIF1A. PLoS Genet 2021; 17:e1009940. [PMID: 34843479 PMCID: PMC8659337 DOI: 10.1371/journal.pgen.1009940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 12/09/2021] [Accepted: 11/11/2021] [Indexed: 12/01/2022] Open
Abstract
The UNC-104/KIF1A motor is crucial for axonal transport of synaptic vesicles, but how the UNC-104/KIF1A motor is activated in vivo is not fully understood. Here, we identified point mutations located in the motor domain or the inhibitory CC1 domain, which resulted in gain-of-function alleles of unc-104 that exhibit hyperactive axonal transport and abnormal accumulation of synaptic vesicles. In contrast to the cell body localization of wild type motor, the mutant motors accumulate on neuronal processes. Once on the neuronal process, the mutant motors display dynamic movement similarly to wild type motors. The gain-of-function mutation on the motor domain leads to an active dimeric conformation, releasing the inhibitory CC1 region from the motor domain. Genetically engineered mutations in the motor domain or CC1 of UNC-104, which disrupt the autoinhibitory interface, also led to the gain of function and hyperactivation of axonal transport. Thus, the CC1/motor domain-mediated autoinhibition is crucial for UNC-104/KIF1A-mediated axonal transport in vivo. UNC-104/KIF1A is the founding member of the kinesin-3 family. When not transporting cargos, most kinesin-3 motors adopt an autoinhibited conformation, and how the UNC-104/KIF1A motor is activated in vivo is not fully understood. Here, we identified gain-of-function mutations in the motor domain or CC1 domain that significantly enhance the synaptic vesicle transport. Further biochemical and structural analyses revealed that these mutations could disrupt the CC1/motor mediated autoinhibition. Thus, our work provides a mechanistic explanation for the role of some disease-related mutations in motor hyperactivation.
Collapse
|
4
|
Guerrero-Gómez D, Mora-Lorca JA, Sáenz-Narciso B, Naranjo-Galindo FJ, Muñoz-Lobato F, Parrado-Fernández C, Goikolea J, Cedazo-Minguez Á, Link CD, Neri C, Sequedo MD, Vázquez-Manrique RP, Fernández-Suárez E, Goder V, Pané R, Cabiscol E, Askjaer P, Cabello J, Miranda-Vizuete A. Loss of glutathione redox homeostasis impairs proteostasis by inhibiting autophagy-dependent protein degradation. Cell Death Differ 2019; 26:1545-1565. [PMID: 30770874 DOI: 10.1038/s41418-018-0270-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 01/10/2023] Open
Abstract
In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C. elegans loss-of-function mutants for the glutathione reductase gsr-1 gene enhance the deleterious phenotypes of heterologous human, as well as endogenous worm aggregation-prone proteins. These effects are phenocopied by the GSH-depleting agent diethyl maleate. Additionally, gsr-1 mutants abolish the nuclear translocation of HLH-30/TFEB transcription factor, a key inducer of autophagy, and strongly impair the degradation of the autophagy substrate p62/SQST-1::GFP, revealing glutathione reductase may have a role in the clearance of protein aggregates by autophagy. Blocking autophagy in gsr-1 worms expressing aggregation-prone proteins results in strong synthetic developmental phenotypes and lethality, supporting the physiological importance of glutathione reductase in the regulation of misfolded protein clearance. Furthermore, impairing redox homeostasis in both yeast and mammalian cells induces toxicity phenotypes associated with protein aggregation. Together, our data reveal that glutathione redox homeostasis may be central to proteostasis maintenance through autophagy regulation.
Collapse
Affiliation(s)
- David Guerrero-Gómez
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | - José Antonio Mora-Lorca
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.,Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | | | - Francisco José Naranjo-Galindo
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | - Fernando Muñoz-Lobato
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | - Cristina Parrado-Fernández
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden
| | - Julen Goikolea
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden
| | - Ángel Cedazo-Minguez
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden
| | - Christopher D Link
- Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Christian Neri
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative and Aging (Brain-C), F-75252, Paris, France
| | - María Dolores Sequedo
- Research Group in Molecular, Cellular and Genomic Biomedicine, Health Research Institute-La Fe, 46026, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Rafael P Vázquez-Manrique
- Research Group in Molecular, Cellular and Genomic Biomedicine, Health Research Institute-La Fe, 46026, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Elena Fernández-Suárez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Veit Goder
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Roser Pané
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan Cabello
- CIBIR (Center for Biomedical Research of La Rioja), 26006, Logroño, Spain.
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.
| |
Collapse
|
5
|
Tang NH, Jin Y. Shaping neurodevelopment: distinct contributions of cytoskeletal proteins. Curr Opin Neurobiol 2018; 51:111-118. [PMID: 29574219 PMCID: PMC6066413 DOI: 10.1016/j.conb.2018.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 12/28/2022]
Abstract
Development of a neuron critically depends on the organization of its cytoskeleton. Cytoskeletal components, such as tubulins and actins, have the remarkable ability to organize themselves into filaments and networks to support specialized and compartmentalized functions. Alterations in cytoskeletal proteins have long been associated with a variety of neurodevelopmental disorders. This review focuses on recent findings, primarily from forward genetic screens in Caenorhabditis elegans that illustrate how different tubulin protein isotypes can play distinct roles in neuronal development and function. Additionally, we discuss studies revealing new regulators of the actin cytoskeleton, and highlight recent technological advances in in vivo imaging and functional dissection of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Flavin monooxygenases regulate Caenorhabditis elegans axon guidance and growth cone protrusion with UNC-6/Netrin signaling and Rac GTPases. PLoS Genet 2017; 13:e1006998. [PMID: 28859089 PMCID: PMC5597259 DOI: 10.1371/journal.pgen.1006998] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/13/2017] [Accepted: 08/25/2017] [Indexed: 01/05/2023] Open
Abstract
The guidance cue UNC-6/Netrin regulates both attractive and repulsive axon guidance. Our previous work showed that in C. elegans, the attractive UNC-6/Netrin receptor UNC-40/DCC stimulates growth cone protrusion, and that the repulsive receptor, an UNC-5:UNC-40 heterodimer, inhibits growth cone protrusion. We have also shown that inhibition of growth cone protrusion downstream of the UNC-5:UNC-40 repulsive receptor involves Rac GTPases, the Rac GTP exchange factor UNC-73/Trio, and the cytoskeletal regulator UNC-33/CRMP, which mediates Semaphorin-induced growth cone collapse in other systems. The multidomain flavoprotein monooxygenase (FMO) MICAL (Molecule Interacting with CasL) also mediates growth cone collapse in response to Semaphorin by directly oxidizing F-actin, resulting in depolymerization. The C. elegans genome does not encode a multidomain MICAL-like molecule, but does encode five flavin monooxygenases (FMO-1, -2, -3, -4, and 5) and another molecule, EHBP-1, similar to the non-FMO portion of MICAL. Here we show that FMO-1, FMO-4, FMO-5, and EHBP-1 may play a role in UNC-6/Netrin directed repulsive guidance mediated through UNC-40 and UNC-5 receptors. Mutations in fmo-1, fmo-4, fmo-5, and ehbp-1 showed VD/DD axon guidance and branching defects, and variably enhanced unc-40 and unc-5 VD/DD axon guidance defects. Developing growth cones in vivo of fmo-1, fmo-4, fmo-5, and ehbp-1 mutants displayed excessive filopodial protrusion, and transgenic expression of FMO-5 inhibited growth cone protrusion. Mutations suppressed growth cone inhibition caused by activated UNC-40 and UNC-5 signaling, and activated Rac GTPase CED-10 and MIG-2, suggesting that these molecules are required downstream of UNC-6/Netrin receptors and Rac GTPases. From these studies we conclude that FMO-1, FMO-4, FMO-5, and EHBP-1 represent new players downstream of UNC-6/Netrin receptors and Rac GTPases that inhibit growth cone filopodial protrusion in repulsive axon guidance. Mechanisms that guide axons to their targets in the developing nervous system have been elucidated, but how these pathways affect behavior of the growth cone of the axon during outgrowth remains poorly understood. We previously showed that the guidance cue UNC-6/Netrin and its receptors UNC-40/DCC and UNC-5 inhibit lamellipodial and filopodial growth cone protrusion to mediate repulsion from UNC-6/Netrin in C. elegans. Here we report a new mechanism downstream of UNC-6/Netrin involving flavin monooxygenase redox enzymes (FMOs). We show that FMOs are normally required for axon guidance and to inhibit growth cone protrusion. Furthermore, we show that they are required for the anti-protrusive effects of activated UNC-40 and UNC-5 receptors, and that they can partially compensate for loss of molecules in the pathway, indicating that they act downstream of UNC-6/Netrin signaling. Based on the function of the FMO-containing MICAL molecules in Drosophila and vertebrates, we speculate that the FMOs might directly oxidize actin, leading to filament disassembly and collapse, and/or lead to the phosphorylation of UNC-33/CRMP, which we show also genetically interacts with the FMOs downstream of UNC-6/Netrin. In conclusion, this is the first evidence that FMOs might act downstream of UNC-6/Netrin signaling in growth cone protrusion and axon repulsion.
Collapse
|