1
|
Pizzul P, Rinaldi C, Bonetti D. The multistep path to replicative senescence onset: zooming on triggering and inhibitory events at telomeric DNA. Front Cell Dev Biol 2023; 11:1250264. [PMID: 37771378 PMCID: PMC10524272 DOI: 10.3389/fcell.2023.1250264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Replicative senescence is an essential cellular process playing important physiological functions, but it is better known for its implications in aging, cancer, and other pathologies. One of the main triggers of replicative senescence is telomere shortening and/or its dysfunction and, therefore, a deep understanding of the molecular determinants is crucial. However, replicative senescence is a heterogeneous and hard to study process, especially in mammalian cells, and some important questions still need an answer. These questions concern i) the exact molecular causes triggering replicative senescence, ii) the role of DNA repair mechanisms and iii) the importance of R-loops at telomeres in regulating senescence onset, and iv) the mechanisms underlying the bypass of replicative senescence. In this review, we will report and discuss recent findings about these mechanisms both in mammalian cells and in the model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
| | | | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Sholes SL, Karimian K, Gershman A, Kelly TJ, Timp W, Greider CW. Chromosome-specific telomere lengths and the minimal functional telomere revealed by nanopore sequencing. Genome Res 2022; 32:616-628. [PMID: 34702734 PMCID: PMC8997346 DOI: 10.1101/gr.275868.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
We developed a method to tag telomeres and measure telomere length by nanopore sequencing in the yeast S. cerevisiae Nanopore allows long-read sequencing through the telomere, through the subtelomere, and into unique chromosomal sequence, enabling assignment of telomere length to a specific chromosome end. We observed chromosome end-specific telomere lengths that were stable over 120 cell divisions. These stable chromosome-specific telomere lengths may be explained by slow clonal variation or may represent a new biological mechanism that maintains equilibrium unique to each chromosome end. We examined the role of RIF1 and TEL1 in telomere length regulation and found that TEL1 is epistatic to RIF1 at most telomeres, consistent with the literature. However, at telomeres that lack subtelomeric Y' sequences, tel1Δ rif1Δ double mutants had a very small, but significant, increase in telomere length compared with the tel1Δ single mutant, suggesting an influence of Y' elements on telomere length regulation. We sequenced telomeres in a telomerase-null mutant (est2Δ) and found the minimal telomere length to be ∼75 bp. In these est2Δ mutants, there were apparent telomere recombination events at individual telomeres before the generation of survivors, and these events were significantly reduced in est2Δ rad52Δ double mutants. The rate of telomere shortening in the absence of telomerase was similar across all chromosome ends at ∼5 bp per generation. This new method gives quantitative, high-resolution telomere length measurement at each individual chromosome end and suggests possible new biological mechanisms regulating telomere length.
Collapse
Affiliation(s)
- Samantha L Sholes
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kayarash Karimian
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Thomas J Kelly
- Program in Molecular Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Carol W Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
3
|
Shah P, Magar ND, Barbadikar KM. Current technological interventions and applications of CRISPR/Cas for crop improvement. Mol Biol Rep 2021; 49:5751-5770. [PMID: 34807378 DOI: 10.1007/s11033-021-06926-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Efficient and innovative breeding strategies are immensely required to meet the global food demand, nutritional security and sustainable agriculture. Genome editing tools have emerged as an effective technology for site-directed genome modification causing the change in gene expression and protein function for the improvement of various important traits in particular the CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein). As the technology evolved with time, advances have been observed like prime editing, base editing, PAMless editing, Drosha based editing with multiple targets having the potential to fulfill the regulatory processes around the world. These recent interventions are highly proficient, cost-efficient, user-friendly, and holds promise for a major revolution in basic and applied plant biology research in the ever-evolving climatic conditions. In the review, we have discussed the most recent technologies and advances for CRISPR/Cas editing in plants.
Collapse
Affiliation(s)
- Priya Shah
- Tamil Nadu Agricultural University, Tamil Nadu, India
| | - Nakul D Magar
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State, 500030, India
| | - Kalyani M Barbadikar
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State, 500030, India.
| |
Collapse
|
4
|
Galli M, Frigerio C, Longhese MP, Clerici M. The regulation of the DNA damage response at telomeres: focus on kinases. Biochem Soc Trans 2021; 49:933-943. [PMID: 33769480 DOI: 10.1042/bst20200856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The natural ends of linear chromosomes resemble those of accidental double-strand breaks (DSBs). DSBs induce a multifaceted cellular response that promotes the repair of lesions and slows down cell cycle progression. This response is not elicited at chromosome ends, which are organized in nucleoprotein structures called telomeres. Besides counteracting DSB response through specialized telomere-binding proteins, telomeres also prevent chromosome shortening. Despite of the different fate of telomeres and DSBs, many proteins involved in the DSB response also localize at telomeres and participate in telomere homeostasis. In particular, the DSB master regulators Tel1/ATM and Mec1/ATR contribute to telomere length maintenance and arrest cell cycle progression when chromosome ends shorten, thus promoting a tumor-suppressive process known as replicative senescence. During senescence, the actions of both these apical kinases and telomere-binding proteins allow checkpoint activation while bulk DNA repair activities at telomeres are still inhibited. Checkpoint-mediated cell cycle arrest also prevents further telomere erosion and deprotection that would favor chromosome rearrangements, which are known to increase cancer-associated genome instability. This review summarizes recent insights into functions and regulation of Tel1/ATM and Mec1/ATR at telomeres both in the presence and in the absence of telomerase, focusing mainly on discoveries in budding yeast.
Collapse
Affiliation(s)
- Michela Galli
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Chiara Frigerio
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| |
Collapse
|
5
|
Physiological and Pathological Roles of RAD52 at DNA Replication Forks. Cancers (Basel) 2020; 12:cancers12020402. [PMID: 32050645 PMCID: PMC7072239 DOI: 10.3390/cancers12020402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding basic molecular mechanisms underlying the biology of cancer cells is of outmost importance for identification of novel therapeutic targets and biomarkers for patient stratification and better therapy selection. One of these mechanisms, the response to replication stress, fuels cancer genomic instability. It is also an Achille’s heel of cancer. Thus, identification of pathways used by the cancer cells to respond to replication-stress may assist in the identification of new biomarkers and discovery of new therapeutic targets. Alternative mechanisms that act at perturbed DNA replication forks and involve fork degradation by nucleases emerged as crucial for sensitivity of cancer cells to chemotherapeutics agents inducing replication stress. Despite its important role in homologous recombination and recombinational repair of DNA double strand breaks in lower eukaryotes, RAD52 protein has been considered dispensable in human cells and the full range of its cellular functions remained unclear. Very recently, however, human RAD52 emerged as an important player in multiple aspects of replication fork metabolism under physiological and pathological conditions. In this review, we describe recent advances on RAD52’s key functions at stalled or collapsed DNA replication forks, in particular, the unexpected role of RAD52 as a gatekeeper, which prevents unscheduled processing of DNA. Last, we will discuss how these functions can be exploited using specific inhibitors in targeted therapy or for an informed therapy selection.
Collapse
|
6
|
The nuclear pore complex prevents sister chromatid recombination during replicative senescence. Nat Commun 2020; 11:160. [PMID: 31919430 PMCID: PMC6952416 DOI: 10.1038/s41467-019-13979-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
The Nuclear Pore Complex (NPC) has emerged as an important hub for processing various types of DNA damage. Here, we uncover that fusing a DNA binding domain to the NPC basket protein Nup1 reduces telomere relocalization to nuclear pores early after telomerase inactivation. This Nup1 modification also impairs the relocalization to the NPC of expanded CAG/CTG triplet repeats. Strikingly, telomerase negative cells bypass senescence when expressing this Nup1 modification by maintaining a minimal telomere length compatible with proliferation through rampant unequal exchanges between sister chromatids. We further report that a Nup1 mutant lacking 36 C-terminal residues recapitulates the phenotypes of the Nup1-LexA fusion indicating a direct role of Nup1 in the relocation of stalled forks to NPCs and restriction of error-prone recombination between repeated sequences. Our results reveal a new mode of telomere maintenance that could shed light on how 20% of cancer cells are maintained without telomerase or ALT. The Nuclear Pore Complex has been linked to DNA damage processing. Here the authors reveal that the Nup1 C-terminus is critical for the relocalization of eroded telomeres to nuclear pores and that modification of Nup1 promotes sister chromatid recombination and unleashes a new telomere maintenance mechanism.
Collapse
|
7
|
Ghanem NZ, Malla SRL, Araki N, Lewis LK. Quantitative assessment of changes in cell growth, size and morphology during telomere-initiated cellular senescence in Saccharomyces cerevisiae. Exp Cell Res 2019; 381:18-28. [PMID: 31075257 DOI: 10.1016/j.yexcr.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
Telomerase-deficient cells of the budding yeast S. cerevisiae experience progressive telomere shortening and undergo senescence in a manner similar to that seen in cultured human fibroblasts. The cells exhibit a DNA damage checkpoint-like stress response, undergo changes in size and morphology, and eventually stop dividing. In this study, a new assay is described that allowed quantitation of senescence in telomerase-deficient est2 cells with applied statistics. Use of the new technique revealed that senescence was strongly accelerated in est2 mutants that had homologous recombination genes RAD51, RAD52 or RAD54 co-inactivated, but was only modestly affected when RAD55, RAD57 or RAD59 were knocked out. Additionally, a new approach for calculating population doublings indicated that loss of growth capacity occurred after approximately 64 generations in est2 cells but only 42 generations in est2 rad52 cells. Phase contrast microscopy experiments demonstrated that senescing est2 cells became enlarged in a time-dependent manner, ultimately exhibiting a 60% increase in cell size. Progressive alterations in physical properties were also observed, including striking changes in light scattering characteristics and cellular sedimentation rates. The results described herein will facilitate future studies of genetic and environmental factors that affect telomere shortening-associated cell senescence rates using the yeast model system.
Collapse
Affiliation(s)
- Neda Z Ghanem
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Shubha R L Malla
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Naoko Araki
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA.
| |
Collapse
|
8
|
Khan SH. Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:326-334. [PMID: 30965277 PMCID: PMC6454098 DOI: 10.1016/j.omtn.2019.02.027] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
The traditional healthcare system is at the doorstep for entering into the arena of molecular medicine. The enormous knowledge and ongoing research have now been able to demonstrate methodologies that can alter DNA coding. The techniques used to edit or change the genome evolved from the earlier attempts like nuclease technologies, homing endonucleases, and certain chemical methods. Molecular techniques like meganuclease, transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs) initially emerged as genome-editing technologies. These initial technologies suffer from lower specificity due to their off-targets side effects. Moreover, from biotechnology's perspective, the main obstacle was to develop simple but effective delivery methods for host cell entry. Later, small RNAs, including microRNA (miRNA) and small interfering RNA (siRNA), have been widely adopted in the research laboratories to replace lab animals and cell lines. The latest discovery of CRISPR/Cas9 technology seems more encouraging by providing better efficiency, feasibility, and multi-role clinical application. This later biotechnology seem to take genome-engineering techniques to the next level of molecular engineering. This review generally discusses the various gene-editing technologies in terms of the mechanisms of action, advantages, and side effects.
Collapse
Affiliation(s)
- Sikandar Hayat Khan
- Department of Pathology, PNS HAFEEZ Hospital, Pathology E-8, Islamabad, Islamabad 44400, Pakistan.
| |
Collapse
|
9
|
Waterman DP, Zhou F, Li K, Lee CS, Tsabar M, Eapen VV, Mazzella A, Haber JE. Live cell monitoring of double strand breaks in S. cerevisiae. PLoS Genet 2019; 15:e1008001. [PMID: 30822309 PMCID: PMC6415866 DOI: 10.1371/journal.pgen.1008001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/13/2019] [Accepted: 02/01/2019] [Indexed: 11/19/2022] Open
Abstract
We have used two different live-cell fluorescent protein markers to monitor the formation and localization of double-strand breaks (DSBs) in budding yeast. Using GFP derivatives of the Rad51 recombination protein or the Ddc2 checkpoint protein, we find that cells with three site-specific DSBs, on different chromosomes, usually display 2 or 3 foci that may coalesce and dissociate. This motion is independent of Rad52 and microtubules. Rad51-GFP, by itself, is unable to repair DSBs by homologous recombination in mitotic cells, but is able to form foci and allow repair when heterozygous with a wild type Rad51 protein. The kinetics of formation and disappearance of a Rad51-GFP focus parallels the completion of site-specific DSB repair. However, Rad51-GFP is proficient during meiosis when homozygous, similar to rad51 “site II” mutants that can bind single-stranded DNA but not complete strand exchange. Rad52-RFP and Rad51-GFP co-localize to the same DSB, but a significant minority of foci have Rad51-GFP without visible Rad52-RFP. We conclude that co-localization of foci in cells with 3 DSBs does not represent formation of a homologous recombination “repair center,” as the same distribution of Ddc2-GFP foci was found in the absence of the Rad52 protein. Double strand breaks (DSBs) pose the greatest threat to the fidelity of an organism’s genome. While much work has been done on the mechanisms of DSB repair, the arrangement and interaction of multiple DSBs within a single cell remain unclear. Using two live-cell fluorescent DSB markers, we show that cells with 3 site-specific DSBs usually form 2 or 3 foci that can may coalesce into fewer foci but also dissociate. The aggregation and mobility of DSBs into a single focus does not depend on the Rad52 recombination protein that is required for various mechanisms of homologous recombination, suggesting that merging of DSBs does not reflect formation of a homologous recombination repair center.
Collapse
Affiliation(s)
- David P. Waterman
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Felix Zhou
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Kevin Li
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Cheng-Sheng Lee
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael Tsabar
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vinay V. Eapen
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Allison Mazzella
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - James E. Haber
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Jolivet P, Serhal K, Graf M, Eberhard S, Xu Z, Luke B, Teixeira MT. A subtelomeric region affects telomerase-negative replicative senescence in Saccharomyces cerevisiae. Sci Rep 2019; 9:1845. [PMID: 30755624 PMCID: PMC6372760 DOI: 10.1038/s41598-018-38000-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 11/21/2022] Open
Abstract
In eukaryotes, telomeres determine cell proliferation potential by triggering replicative senescence in the absence of telomerase. In Saccharomyces cerevisiae, senescence is mainly dictated by the first telomere that reaches a critically short length, activating a DNA-damage-like response. How the corresponding signaling is modulated by the telomeric structure and context is largely unknown. Here we investigated how subtelomeric elements of the shortest telomere in a telomerase-negative cell influence the onset of senescence. We found that a 15 kb truncation of the 7L subtelomere widely used in studies of telomere biology affects cell growth when combined with telomerase inactivation. This effect is likely not explained by (i) elimination of sequence homology at chromosome ends that would compromise homology-directed DNA repair mechanisms; (ii) elimination of the conserved subtelomeric X-element; (iii) elimination of a gene that would become essential in the absence of telomerase; and (iv) heterochromatinization of inner genes, causing the silencing of an essential gene in replicative senescent cells. This works contributes to better delineate subtelomere functions and their impact on telomere biology.
Collapse
Affiliation(s)
- Pascale Jolivet
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005, Paris, France
| | - Kamar Serhal
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005, Paris, France.,Institut de Génétique Humaine, CNRS, Université Montpellier, Montpellier, France
| | - Marco Graf
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Stephan Eberhard
- Sorbonne Université, PSL, CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratoire de Physiologie Moléculaire et Membranaire du Chloroplaste, F-75005, Paris, France
| | - Zhou Xu
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005, Paris, France
| | - Brian Luke
- Institute of Neurobiology and Developmental Biology, JGU Mainz, Ackermannweg 4, 55128, Mainz, Germany.,Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Maria Teresa Teixeira
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005, Paris, France.
| |
Collapse
|
11
|
Harrington L, Pucci F. In medio stat virtus: unanticipated consequences of telomere dysequilibrium. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0444. [PMID: 29335368 PMCID: PMC5784064 DOI: 10.1098/rstb.2016.0444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2017] [Indexed: 12/13/2022] Open
Abstract
The integrity of chromosome ends, or telomeres, depends on myriad processes that must balance the need to compact and protect the telomeric, G-rich DNA from detection as a double-stranded DNA break, and yet still permit access to enzymes that process, replicate and maintain a sufficient reserve of telomeric DNA. When unable to maintain this equilibrium, erosion of telomeres leads to perturbations at or near the telomeres themselves, including loss of binding by the telomere protective complex, shelterin, and alterations in transcription and post-translational modifications of histones. Although the catastrophic consequences of full telomere de-protection are well described, recent evidence points to other, less obvious perturbations that arise when telomere length equilibrium is altered. For example, critically short telomeres also perturb DNA methylation and histone post-translational modifications at distal sites throughout the genome. In murine stem cells for example, this dysregulated chromatin leads to inappropriate suppression of pluripotency regulator factors such as Nanog. This review summarizes these recent findings, with an emphasis on how these genome-wide, telomere-induced perturbations can have profound consequences on cell function and fate. This article is part of the theme issue ‘Understanding diversity in telomere dynamics’.
Collapse
Affiliation(s)
- Lea Harrington
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, College of Science and Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Fabio Pucci
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, College of Science and Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
12
|
Coutelier H, Xu Z. Adaptation in replicative senescence: a risky business. Curr Genet 2019; 65:711-716. [PMID: 30637477 DOI: 10.1007/s00294-019-00933-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 12/16/2022]
Abstract
Cell proliferation is tightly regulated to avoid propagating DNA damage and mutations, which can lead to pathologies such as cancer. To ensure genome integrity, cells activate the DNA damage checkpoint in response to genotoxic lesions to block cell cycle progression. This surveillance mechanism provides time to repair the damage before resuming cell cycle with an intact genome. When the damage is not repaired, cells can, in some conditions, override the cell cycle arrest and proceed with proliferation, a phenomenon known as adaptation to DNA damage. A subpopulation of adapted cells might eventually survive, but only at the cost of extensive genome instability. How and in which context adaptation operates the trade-off between survival and genome stability is a fascinating question. After a brief review of the current knowledge on adaptation to DNA damage in budding yeast, we will discuss a new role of adaptation in the context of telomerase-negative cells and replicative senescence. We highlight the idea that, in all settings studied so far, survival through adaptation is a double-edged sword as it comes with increased genomic instability.
Collapse
Affiliation(s)
- Héloïse Coutelier
- Sorbonne Université, PSL Research University, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, 75005, Paris, France
| | - Zhou Xu
- Sorbonne Université, PSL Research University, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, 75005, Paris, France. .,Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005, Paris, France.
| |
Collapse
|
13
|
Synthetic lethal combinations of low-toxicity drugs for breast cancer identified in silico by genetic screens in yeast. Oncotarget 2018; 9:36379-36391. [PMID: 30555636 PMCID: PMC6284748 DOI: 10.18632/oncotarget.26372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
In recent years, the concept of synthetic lethality, describing a cellular state where loss of two genes leads to a non-viable phenotype while loss of one gene can be compensated, has emerged as a novel strategy for cancer therapy. Various compounds targeting synthetic lethal pathways are either under clinical investigation or are already routinely used in multiple cancer entities such as breast cancer. Most of them target the well-described synthetic lethal interplay between PARP1 and BRCA1/2. In our study, we investigated, using an in silico methodological approach, clinically utilized drug combinations for breast cancer treatment, by correlating their known molecular targets with known homologous interaction partners that cause synthetic lethality in yeast. Further, by creating a machine-learning algorithm, we were able to suggest novel synthetic lethal drug combinations of low-toxicity drugs in breast cancer and showed their negative effects on cancer cell viability in vitro. Our findings foster the understanding of evolutionarily conserved synthetic lethality in breast cancer cells and might lead to new drug combinations with favorable toxicity profile in this entity.
Collapse
|
14
|
Upregulation of dNTP Levels After Telomerase Inactivation Influences Telomerase-Independent Telomere Maintenance Pathway Choice in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018; 8:2551-2558. [PMID: 29848621 PMCID: PMC6071591 DOI: 10.1534/g3.118.200280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In 10–15% of cancers, telomere length is maintained by a telomerase-independent, recombination-mediated pathway called alternative lengthening of telomeres (ALT). ALT mechanisms were first seen, and have been best studied, in telomerase-null Saccharomyces cerevisiae cells called “survivors”. There are two main types of survivors. Type I survivors amplify Y′ subtelomeric elements while type II survivors, similar to the majority of human ALT cells, amplify the terminal telomeric repeats. Both types of survivors require Rad52, a key homologous recombination protein, and Pol32, a non-essential subunit of DNA polymerase δ. A number of additional proteins have been reported to be important for either type I or type II survivor formation, but it is still unclear how these two pathways maintain telomeres. In this study, we performed a genome-wide screen to identify novel genes that are important for the formation of type II ALT-like survivors. We identified 23 genes that disrupt type II survivor formation when deleted. 17 of these genes had not been previously reported to do so. Several of these genes (DUN1, CCR4, and MOT2) are known to be involved in the regulation of dNTP levels. We find that dNTP levels are elevated early after telomerase inactivation and that this increase favors the formation of type II survivors.
Collapse
|
15
|
Barrientos-Moreno M, Murillo-Pineda M, Muñoz-Cabello AM, Prado F. Histone depletion prevents telomere fusions in pre-senescent cells. PLoS Genet 2018; 14:e1007407. [PMID: 29879139 PMCID: PMC5991667 DOI: 10.1371/journal.pgen.1007407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Upon telomerase inactivation, telomeres gradually shorten with each cell division until cells enter replicative senescence. In Saccharomyces cerevisiae, the kinases Mec1/ATR and Tel1/ATM protect the genome during pre-senescence by preventing telomere-telomere fusions (T-TFs) and the subsequent genetic instability associated with fusion-bridge-breakage cycles. Here we report that T-TFs in mec1Δ tel1Δ cells can be suppressed by reducing the pool of available histones. This protection associates neither with changes in bulk telomere length nor with major changes in the structure of subtelomeric chromatin. We show that the absence of Mec1 and Tel1 strongly augments double-strand break (DSB) repair by non-homologous end joining (NHEJ), which might contribute to the high frequency of T-TFs in mec1Δ tel1Δ cells. However, histone depletion does not prevent telomere fusions by inhibiting NHEJ, which is actually increased in histone-depleted cells. Rather, histone depletion protects telomeres from fusions by homologous recombination (HR), even though HR is proficient in maintaining the proliferative state of pre-senescent mec1Δ tel1Δ cells. Therefore, HR during pre-senescence not only helps stalled replication forks but also prevents T-TFs by a mechanism that, in contrast to the previous one, is promoted by a reduction in the histone pool and can occur in the absence of Rad51. Our results further suggest that the Mec1-dependent depletion of histones that occurs during pre-senescence in cells without telomerase (tlc1Δ) prevents T-TFs by favoring the processing of unprotected telomeres by Rad51-independent HR. Telomere shortening upon telomerase inactivation leads to an irreversible cell division arrest known as replicative senescence, which is considered as a tumor suppressor mechanism. Since pre-senescence is critical for tissue homeostasis, cells are endowed with recombination mechanisms that facilitate the replication of short telomeres and prevent premature entry into senescence. Consequently, pre-senescent cells divide with critically short telomeres, which have lost most of their shelterin proteins. The tumor suppressor genes ATR and ATM, as well as their yeast homologs Mec1 and Tel1, prevent telomere fusions during pre-senescence by unknown mechanisms. Here we show that the absence of Mec1 and Tel1 strongly augments DSB repair by non-homologous end joining, which might explain the high rate of telomere fusions in mec1Δ tel1Δ cells. Moreover, we show that a reduction in the pool of available histones prevents telomere fusions in mec1Δ tel1Δ cells by stimulating Rad51-independent homologous recombination. Our results suggest that the Mec1-dependent process of histone depletion that accompanies pre-senescence in cells lacking telomerase activity is required to prevent telomere fusions by promoting the processing of unprotected telomeres by recombination instead of non-homologous end joining.
Collapse
Affiliation(s)
- Marta Barrientos-Moreno
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Marina Murillo-Pineda
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Ana M. Muñoz-Cabello
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
- * E-mail:
| |
Collapse
|
16
|
Maicher A, Gazy I, Sharma S, Marjavaara L, Grinberg G, Shemesh K, Chabes A, Kupiec M. Rnr1, but not Rnr3, facilitates the sustained telomerase-dependent elongation of telomeres. PLoS Genet 2017; 13:e1007082. [PMID: 29069086 PMCID: PMC5673236 DOI: 10.1371/journal.pgen.1007082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/06/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Abstract
Ribonucleotide reductase (RNR) provides the precursors for the generation of dNTPs, which are required for DNA synthesis and repair. Here, we investigated the function of the major RNR subunits Rnr1 and Rnr3 in telomere elongation in budding yeast. We show that Rnr1 is essential for the sustained elongation of short telomeres by telomerase. In the absence of Rnr1, cells harbor very short, but functional, telomeres, which cannot become elongated by increased telomerase activity or by tethering of telomerase to telomeres. Furthermore, we demonstrate that Rnr1 function is critical to prevent an early onset of replicative senescence and premature survivor formation in telomerase-negative cells but dispensable for telomere elongation by Homology-Directed-Repair. Our results suggest that telomerase has a "basal activity" mode that is sufficient to compensate for the “end-replication-problem” and does not require the presence of Rnr1 and a different "sustained activity" mode necessary for the elongation of short telomeres, which requires an upregulation of dNTP levels and dGTP ratios specifically through Rnr1 function. By analyzing telomere length and dNTP levels in different mutants showing changes in RNR complex composition and activity we provide evidence that the Mec1ATR checkpoint protein promotes telomere elongation by increasing both dNTP levels and dGTP ratios through Rnr1 upregulation in a mechanism that cannot be replaced by its homolog Rnr3. Telomeres protect the ends of eukaryotic chromosomes and as such determine the replicative capacity of a cell. In budding yeast and approximately 80% of human tumors the enzyme telomerase maintains telomere length by adding newly synthesized repeats to telomeres using dNTPs generated by Ribonucleotide reductase (RNR) complexes. Similarly, telomerase activity can restore telomere length after more severe telomere shortenings that result from collapsed replication forks or lead to telomere over-elongation in the absence of negative regulators of telomerase. Here we provide evidence for two activity modes of telomerase that differentially depend on the major RNR subunit Rnr1. We demonstrate that telomere maintenance and a compensation of the "end-replication-problem" is possible under conditions where Rnr1 activity is absent but that a sustained elongation of short telomeres fully depends on Rnr1 activity. We show that the Rnr1-homolog, Rnr3, cannot compensate for this telomeric function of Rnr1 even when overall cellular dNTP values are restored.
Collapse
Affiliation(s)
- André Maicher
- Dept. of Molecular Microbiology & Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Inbal Gazy
- Dept. of Molecular Microbiology & Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Gilad Grinberg
- Dept. of Molecular Microbiology & Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Keren Shemesh
- Dept. of Molecular Microbiology & Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Martin Kupiec
- Dept. of Molecular Microbiology & Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
17
|
Strecker J, Stinus S, Caballero MP, Szilard RK, Chang M, Durocher D. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres. eLife 2017; 6:23783. [PMID: 28826474 PMCID: PMC5595431 DOI: 10.7554/elife.23783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) and short telomeres are structurally similar, yet they have diametrically opposed fates. Cells must repair DSBs while blocking the action of telomerase on these ends. Short telomeres must avoid recognition by the DNA damage response while promoting telomerase recruitment. In Saccharomyces cerevisiae, the Pif1 helicase, a telomerase inhibitor, lies at the interface of these end-fate decisions. Using Pif1 as a sensor, we uncover a transition point in which 34 bp of telomeric (TG1-3)n repeat sequence renders a DNA end insensitive to Pif1 action, thereby enabling extension by telomerase. A similar transition point exists at natural chromosome ends, where telomeres shorter than ~40 bp are inefficiently extended by telomerase. This phenomenon is not due to known Pif1 modifications and we instead propose that Cdc13 renders TG34+ ends insensitive to Pif1 action. We contend that the observed threshold of Pif1 activity defines a dividing line between DSBs and telomeres.
Collapse
Affiliation(s)
- Jonathan Strecker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariana Pliego Caballero
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|