1
|
Malawsky DS, van Walree E, Jacobs BM, Heng TH, Huang QQ, Sabir AH, Rahman S, Sharif SM, Khan A, Mirkov MU, Kuwahara H, Gao X, Alkuraya FS, Posthuma D, Newman WG, Griffiths CJ, Mathur R, van Heel DA, Finer S, O'Connell J, Martin HC. Influence of autozygosity on common disease risk across the phenotypic spectrum. Cell 2023; 186:4514-4527.e14. [PMID: 37757828 PMCID: PMC10580289 DOI: 10.1016/j.cell.2023.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Autozygosity is associated with rare Mendelian disorders and clinically relevant quantitative traits. We investigated associations between the fraction of the genome in runs of homozygosity (FROH) and common diseases in Genes & Health (n = 23,978 British South Asians), UK Biobank (n = 397,184), and 23andMe. We show that restricting analysis to offspring of first cousins is an effective way of reducing confounding due to social/environmental correlates of FROH. Within this group in G&H+UK Biobank, we found experiment-wide significant associations between FROH and twelve common diseases. We replicated associations with type 2 diabetes (T2D) and post-traumatic stress disorder via within-sibling analysis in 23andMe (median n = 480,282). We estimated that autozygosity due to consanguinity accounts for 5%-18% of T2D cases among British Pakistanis. Our work highlights the possibility of widespread non-additive genetic effects on common diseases and has important implications for global populations with high rates of consanguinity.
Collapse
Affiliation(s)
| | - Eva van Walree
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Complex Trait Genetics Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
| | - Benjamin M Jacobs
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Teng Hiang Heng
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Qin Qin Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ataf H Sabir
- West Midlands Regional Clinical Genetics Unit, Birmingham Women's and Children's NHS FT, Birmingham, UK; Institute of Cancer and Genomics, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Saadia Rahman
- Queen Square Institute of Neurology, University College London, London, UK
| | - Saghira Malik Sharif
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ahsan Khan
- Waltham Forest Council, Waltham Forest Town Hall, Forest Road, Walthamstow E17 4JF, UK
| | - Maša Umićević Mirkov
- Congenica Limited, BioData Innovation Centre, Wellcome Genome Campus, Hinxton, UK
| | - Hiroyuki Kuwahara
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Danielle Posthuma
- Department of Complex Trait Genetics Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
| | - William G Newman
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Christopher J Griffiths
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Rohini Mathur
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sarah Finer
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | | | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
2
|
The coefficients of inbreeding revealed by ROH study among inbred individuals belonging to each type of the first cousin marriage: A preliminary report from North India. Genes Genomics 2023; 45:813-825. [PMID: 36807878 DOI: 10.1007/s13258-023-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Genome-wide runs of homozygosity (ROH) are appropriate to estimate genomic inbreeding, determine population history, unravel the genetic architecture of complex traits and disorders. OBJECTIVE The study sought to investigate and compare the actual proportion of homozygosity or autozygosity in the genomes of progeny of four subtypes of first cousin mating in humans, using both pedigree and genomic measures for autosomes and sex chromosomes. METHODS For this purpose, Illumina Global Screening Array-24 v1.0 BeadChip followed by cyto-ROH analysis through Illumina Genome Studio was used to characterise the homozygosity in five participants from North Indian state (Uttar Pradesh). PLINK v.1.9 software was used to estimate the genomic inbreeding coefficients viz. ROH-based inbreeding estimate (FROH) and homozygous loci-based inbreeding estimate (FHOM). RESULTS A total of 133 ROH segments were detected with maximum number and genomic coverage in Matrilateral Parallel (MP) type and minimum in outbred individual. ROH pattern revealed that MP type has a higher degree of homozygosity than other subtypes. The comparison of FROH, FHOM, and pedigree-based inbreeding estimate (FPED) showed some difference in theoretical and realised proportion of homozygosity for sex-chromosomal loci but not for autosome for each type of consanguinity. CONCLUSIONS This is the very first study to compare and estimate the pattern of homozygosity among the kindreds of first cousin unions. However, a greater number of individuals from each type of marriage is required for statistical inference of no difference between theoretical and realized homozygosity among different degrees of inbreeding prevalent in humans worldwide.
Collapse
|
3
|
Colbert SM, Keller MC, Agrawal A, Johnson EC. Exploring the Relationships Between Autozygosity, Educational Attainment, and Cognitive Ability in a Contemporary, Trans-Ancestral American Sample. Behav Genet 2022; 52:315-323. [PMID: 36169746 PMCID: PMC10658661 DOI: 10.1007/s10519-022-10113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Previous studies have found significant associations between estimated autozygosity - the proportion of an individual's genome contained in homozygous segments due to distant inbreeding - and multiple traits, including educational attainment (EA) and cognitive ability. In one study, estimated autozygosity showed a stronger association with parental EA than the subject's own EA. This was likely driven by parental EA's association with mobility: more educated parents tended to migrate further from their hometown, and because of the strong correlation between ancestry and geography in the Netherlands, these individuals chose partners farther from their ancestry and therefore more different from them genetically. We examined the associations between estimated autozygosity, cognitive ability, and parental EA in a contemporary sub-sample of adolescents from the Adolescent Brain Cognitive Development Study℠ (ABCD Study®) (analytic N = 6,504). We found a negative association between autozygosity and child cognitive ability consistent with previous studies, while the associations between autozygosity and parental EA were in the expected direction of effect (with greater levels of autozygosity being associated with lower EA) but the effect sizes were significantly weaker than those estimated in previous work. We also found a lower mean level of autozygosity in the ABCD sample compared to previous autozygosity studies, which may reflect overall decreasing levels of autozygosity over generations. Variation in spousal similarities in ancestral background in the ABCD study compared to other studies may explain the pattern of associations between estimated autozygosity, EA, and cognitive ability in the current study.
Collapse
Affiliation(s)
- Sarah Mc Colbert
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Matthew C Keller
- Department of Psychology, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
4
|
Mowry BJ, Periyasamy S. Genome‐Wide Association Studies in Schizophrenia. ELS 2022:1-14. [DOI: 10.1002/9780470015902.a0025337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
5
|
Ben-Yosef N, Frampton M, Schiff ER, Daher S, Abu Baker F, Safadi R, Israeli E, Segal AW, Levine AP. Genetic analysis of four consanguineous multiplex families with inflammatory bowel disease. Gastroenterol Rep (Oxf) 2021; 9:521-532. [PMID: 34925849 PMCID: PMC8677555 DOI: 10.1093/gastro/goab007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Family studies support a genetic predisposition to inflammatory bowel diseases (IBD), but known genetic variants only partially explain the disease heritability. Families with multiple affected individuals potentially harbour rare and high-impact causal variants. Long regions of homozygosity due to recent inbreeding may increase the risk of individuals bearing homozygous loss-of-function variants. This study aimed to identify rare and homozygous genetic variants contributing to IBD. METHODS Four families with known consanguinity and multiple cases of IBD were recruited. In a family-specific analysis, we utilised homozygosity mapping complemented by whole-exome sequencing. RESULTS We detected a single region of homozygosity shared by Crohn's disease cases from a family of Druze ancestry, spanning 2.6 Mb containing the NOD2 gene. Whole-exome sequencing did not identify any potentially damaging variants within the region, suggesting that non-coding variation may be involved. In addition, affected individuals in the families harboured several rare and potentially damaging homozygous variants in genes with a role in autophagy and innate immunity including LRRK1, WHAMM, DENND3, and C5. CONCLUSION This study examined the potential contribution of rare, high-impact homozygous variants in consanguineous families with IBD. While the analysis was not designed to achieve statistical significance, our findings highlight genes or loci that warrant further research. Non-coding variants affecting NOD2 may be of importance in Druze patients with Crohn's disease.
Collapse
Affiliation(s)
- Noam Ben-Yosef
- Centre for Molecular Medicine, Division of Medicine, University College London, London, UK
- Institute of Gastroenterology and Liver disease, Hadassah Medical Center, Jerusalem, Israel
| | - Matthew Frampton
- Centre for Molecular Medicine, Division of Medicine, University College London, London, UK
| | - Elena R Schiff
- Institute of Ophthalmology, Moorfields Eye Hospital, University College London, London, UK
| | - Saleh Daher
- Institute of Gastroenterology and Liver disease, Hadassah Medical Center, Jerusalem, Israel
| | - Fadi Abu Baker
- Institue of Gastroenterology and Hepatology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Rifaat Safadi
- Institute of Gastroenterology and Liver disease, Hadassah Medical Center, Jerusalem, Israel
| | - Eran Israeli
- Institute of Gastroenterology and Liver disease, E. Wolfson Medical Center, Holon, Israel
| | - Anthony W Segal
- Centre for Molecular Medicine, Division of Medicine, University College London, London, UK
| | - Adam P Levine
- Centre for Molecular Medicine, Division of Medicine, University College London, London, UK
- Department of Pathology, University College London, London, UK
| |
Collapse
|
6
|
Runs of homozygosity analysis reveals consensus homozygous regions affecting production traits in Chinese Simmental beef cattle. BMC Genomics 2021; 22:678. [PMID: 34548021 PMCID: PMC8454143 DOI: 10.1186/s12864-021-07992-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic regions with a high frequency of runs of homozygosity (ROH) are related to important traits in farm animals. We carried out a comprehensive analysis of ROH and evaluated their association with production traits using the BovineHD (770 K) SNP array in Chinese Simmental beef cattle. RESULTS We detected a total of 116,953 homozygous segments with 2.47Gb across the genome in the studied population. The average number of ROH per individual was 99.03 and the average length was 117.29 Mb. Notably, we detected 42 regions with a frequency of more than 0.2. We obtained 17 candidate genes related to body size, meat quality, and reproductive traits. Furthermore, using Fisher's exact test, we found 101 regions were associated with production traits by comparing high groups with low groups in terms of production traits. Of those, we identified several significant regions for production traits (P < 0.05) by association analysis, within which candidate genes including ECT2, GABRA4, and GABRB1 have been previously reported for those traits in beef cattle. CONCLUSIONS Our study explored ROH patterns and their potential associations with production traits in beef cattle. These results may help to better understand the association between production traits and genome homozygosity and offer valuable insights into managing inbreeding by designing reasonable breeding programs in farm animals.
Collapse
|
7
|
Yengo L, Yang J, Keller MC, Goddard ME, Wray NR, Visscher PM. Genomic partitioning of inbreeding depression in humans. Am J Hum Genet 2021; 108:1488-1501. [PMID: 34214457 DOI: 10.1016/j.ajhg.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Across species, offspring of related individuals often exhibit significant reduction in fitness-related traits, known as inbreeding depression (ID), yet the genetic and molecular basis for ID remains elusive. Here, we develop a method to quantify enrichment of ID within specific genomic annotations and apply it to human data. We analyzed the phenomes and genomes of ∼350,000 unrelated participants of the UK Biobank and found, on average of over 11 traits, significant enrichment of ID within genomic regions with high recombination rates (>21-fold; p < 10-5), with conserved function across species (>19-fold; p < 10-4), and within regulatory elements such as DNase I hypersensitive sites (∼5-fold; p = 8.9 × 10-7). We also quantified enrichment of ID within trait-associated regions and found suggestive evidence that genomic regions contributing to additive genetic variance in the population are enriched for ID signal. We find strong correlations between functional enrichment of SNP-based heritability and that of ID (r = 0.8, standard error: 0.1). These findings provide empirical evidence that ID is most likely due to many partially recessive deleterious alleles in low linkage disequilibrium regions of the genome. Our study suggests that functional characterization of ID may further elucidate the genetic architectures and biological mechanisms underlying complex traits and diseases.
Collapse
|
8
|
Abstract
Dogs and humans have coexisted together for thousands of years, but it was not until the Victorian Era that humans practiced selective breeding to produce the modern standards we see today. Strong artificial selection during the breed formation period has simplified the genetic architecture of complex traits and caused an enrichment of identity-by-descent (IBD) segments in the dog genome. This study demonstrates the value of IBD segments and utilizes them to infer the recent demography of canids, predict case-control status for complex traits, locate regions of the genome potentially linked to inbreeding depression, and to identify understudied breeds where there is potential to discover new disease-associated variants. Domestic dogs have experienced population bottlenecks, recent inbreeding, and strong artificial selection. These processes have simplified the genetic architecture of complex traits, allowed deleterious variation to persist, and increased both identity-by-descent (IBD) segments and runs of homozygosity (ROH). As such, dogs provide an excellent model for examining how these evolutionary processes influence disease. We assembled a dataset containing 4,414 breed dogs, 327 village dogs, and 380 wolves genotyped at 117,288 markers and data for clinical and morphological phenotypes. Breed dogs have an enrichment of IBD and ROH, relative to both village dogs and wolves, and we use these patterns to show that breed dogs have experienced differing severities of bottlenecks in their recent past. We then found that ROH burden is associated with phenotypes in breed dogs, such as lymphoma. We next test the prediction that breeds with greater ROH have more disease alleles reported in the Online Mendelian Inheritance in Animals (OMIA). Surprisingly, the number of causal variants identified correlates with the popularity of that breed rather than the ROH or IBD burden, suggesting an ascertainment bias in OMIA. Lastly, we use the distribution of ROH across the genome to identify genes with depletions of ROH as potential hotspots for inbreeding depression and find multiple exons where ROH are never observed. Our results suggest that inbreeding has played a large role in shaping genetic and phenotypic variation in dogs and that future work on understudied breeds may reveal new disease-causing variation.
Collapse
|
9
|
Fieder M, Mitchell BL, Gordon S, Huber S, Martin NG. Ethnic Identity and Genome Wide Runs of Homozygosity. Behav Genet 2021; 51:405-413. [PMID: 33723681 PMCID: PMC8225526 DOI: 10.1007/s10519-021-10053-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/23/2021] [Indexed: 10/25/2022]
Abstract
It is long known that inbreeding increases the detrimental effects of recessive sequence variants in "Runs of Homozygosity" (ROHs). However, although the phenotypic association of ROH has been investigated for a variety of traits, the statistical power of the results often remains limited as a sufficiently high number of cases are available for only a restricted number of traits. In the present study, we aim to analyze the association of runs of homozygosity with the trait "in-group ethnic favoritism". This analysis assumes that if ethnic identity is important for an individual, that individual may tend to marry more frequently within their own group and therefore ROH are expected to increase. We hypothesize that an attitude preferring one's own ethnic group may be associated with a stronger tendency of inbreeding and, as a result, with more and longer ROHs. Accordingly, we investigated the association between the attitude to someone's own ethnicity and ROH, using the Wisconsin Longitudinal data (WLS, total N ~ 9000) as discovery data set and the Brisbane Twin data as replication data set (N ~ 8000). We find that both the number as well as the total length of homozygous segments are significantly positively associated with "in-group ethnic favoritism", independent of the method used for ROH calculation.
Collapse
Affiliation(s)
- Martin Fieder
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria. .,Research Centre of Religion and Transformation in Contemporary Society, University of Vienna, Vienna, Austria.
| | - Brittany L Mitchell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanne Huber
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | |
Collapse
|
10
|
Sole-Navais P, Bacelis J, Helgeland Ø, Modzelewska D, Vaudel M, Flatley C, Andreassen O, Njølstad PR, Muglia LJ, Johansson S, Zhang G, Jacobsson B. Autozygosity mapping and time-to-spontaneous delivery in Norwegian parent-offspring trios. Hum Mol Genet 2020; 29:3845-3858. [PMID: 33291140 PMCID: PMC7861013 DOI: 10.1093/hmg/ddaa255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Parental genetic relatedness may lead to adverse health and fitness outcomes in the offspring. However, the degree to which it affects human delivery timing is unknown. We use genotype data from ≃25 000 parent-offspring trios from the Norwegian Mother, Father and Child Cohort Study to optimize runs of homozygosity (ROH) calling by maximizing the correlation between parental genetic relatedness and offspring ROHs. We then estimate the effect of maternal, paternal and fetal autozygosity and that of autozygosity mapping (common segments and gene burden test) on the timing of spontaneous onset of delivery. The correlation between offspring ROH using a variety of parameters and parental genetic relatedness ranged between −0.2 and 0.6, revealing the importance of the minimum number of genetic variants included in an ROH and the use of genetic distance. The optimized compared to predefined parameters showed a ≃45% higher correlation between parental genetic relatedness and offspring ROH. We found no evidence of an effect of maternal, paternal nor fetal overall autozygosity on spontaneous delivery timing. Yet, through autozygosity mapping, we identified three maternal loci TBC1D1, SIGLECs and EDN1 gene regions reducing the median time-to-spontaneous onset of delivery by ≃2–5% (P-value < 2.3 × 10−6). We also found suggestive evidence of a fetal locus at 3q22.2, near the RYK gene region (P-value = 2.0 × 10−6). Autozygosity mapping may provide new insights on the genetic determinants of delivery timing beyond traditional genome-wide association studies, but particular and rigorous attention should be given to ROH calling parameter selection.
Collapse
Affiliation(s)
- Pol Sole-Navais
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41685, Sweden
| | - Jonas Bacelis
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41685, Sweden
| | - Øyvind Helgeland
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,Division of Health Data and Digitalization, Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Dominika Modzelewska
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41685, Sweden
| | - Marc Vaudel
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen 5021, Norway
| | - Christopher Flatley
- Division of Health Data and Digitalization, Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Ole Andreassen
- NORMENT, University of Oslo, Oslo 0450, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0450, Norway.,Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Pål R Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen 5021, Norway
| | - Louis J Muglia
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.,Division of Human Genetics, The Center for Prevention of Preterm Birth, Perinatal Institute, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Stefan Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,Center for Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Ge Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.,Division of Human Genetics, The Center for Prevention of Preterm Birth, Perinatal Institute, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41685, Sweden.,Division of Health Data and Digitalization, Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo 0213, Norway.,Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg 41685, Sweden
| |
Collapse
|
11
|
McClain L, Mansour H, Ibrahim I, Klei L, Fathi W, Wood J, Kodavali C, Maysterchuk A, Wood S, El-Chennawi F, Ibrahim N, Eissa A, El-Bahaei W, El Sayed H, Yassein A, Tobar S, El-Boraie H, El-Sheshtawy E, Salah H, Ali A, Erdin S, Devlin B, Talkowski M, Nimgaonkar V. Age dependent association of inbreeding with risk for schizophrenia in Egypt. Schizophr Res 2020; 216:450-459. [PMID: 31928911 PMCID: PMC8054776 DOI: 10.1016/j.schres.2019.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Self-reported consanguinity is associated with risk for schizophrenia (SZ) in several inbred populations, but estimates using DNA-based coefficients of inbreeding are unavailable. Further, it is not known whether recessively inherited risk mutations can be identified through homozygosity by descent (HBD) mapping. METHODS We studied self-reported and DNA-based estimates of inbreeding among Egyptian patients with SZ (n = 421, DSM IV criteria) and adult controls without psychosis (n = 301), who were evaluated using semi-structured diagnostic interview schedules and genotyped using the Illumina Infinium PsychArray. Following quality control checks, coefficients of inbreeding (F) and regions of homozygosity (ROH) were estimated using PLINK software for HBD analysis. Exome sequencing was conducted in selected cases. RESULTS Inbreeding was associated with schizophrenia based on self-reported consanguinity (χ2 = 4.506, 1 df, p = 0.034) and DNA-based estimates for inbreeding (F); the latter with a significant F × age interaction (β = 32.34, p = 0.0047). The association was most notable among patients older than age 40 years. Eleven ROH were over-represented in cases on chromosomes 1, 3, 6, 11, and 14; all but one region is novel for schizophrenia risk. Exome sequencing identified six recessively-acting genes in ROH with loss-of-function variants; one of which causes primary hereditary microcephaly. CONCLUSIONS We propose consanguinity as an age-dependent risk factor for SZ in Egypt. HBD mapping is feasible for SZ in adequately powered samples.
Collapse
Affiliation(s)
- Lora McClain
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Hader Mansour
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA; Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Ibtihal Ibrahim
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Warda Fathi
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Chowdari Kodavali
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Alina Maysterchuk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Shawn Wood
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Farha El-Chennawi
- Department of Clinical Pathology, Mansoura University School of Medicine, Mansoura, Egypt
| | - Nahed Ibrahim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Ahmed Eissa
- Department of Psychiatry and Neuropsychiatry, Port Said University, Port Said, Egypt
| | - Wafaa El-Bahaei
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Hanan El Sayed
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Amal Yassein
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Salwa Tobar
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Hala El-Boraie
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Eman El-Sheshtawy
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Hala Salah
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Ahmed Ali
- Department of Clinical Pathology, Mansoura University Student Hospital, Mansoura, Egypt
| | - Serkan Erdin
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Michael Talkowski
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, USA
| | - Vishwajit Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Magri C, Giacopuzzi E, La Via L, Bonini D, Ravasio V, Elhussiny MEA, Orizio F, Gangemi F, Valsecchi P, Bresciani R, Barbon A, Vita A, Gennarelli M. A novel homozygous mutation in GAD1 gene described in a schizophrenic patient impairs activity and dimerization of GAD67 enzyme. Sci Rep 2018; 8:15470. [PMID: 30341396 PMCID: PMC6195539 DOI: 10.1038/s41598-018-33924-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022] Open
Abstract
Recently, by whole exome sequencing of schizophrenia (SCZ) patients, we identified a subject that was homozygous for a novel missense substitution (c.391 A > G) in the glutamate acid decarboxylase 1 (GAD1) gene. GAD1 encodes for GAD67 enzyme, catalyzing the production of gamma-aminobutyric acid (GABA) from L-glutamic acid. Here, we studied the impact of this mutation on GAD67 activity, dimerization and subcellular localization. Biochemical assay revealed that c.391 A > G reduces GAD67 enzymatic activity by ~30%, probably due to the impaired homodimerization of homozygous mutants as highlighted by proximity ligation assays. The mutational screening of 120 genes of the "GABAergic system" in a cohort of 4,225 SCZ cases and 5,834 controls (dbGaP: phs000473.v1.p2), did not identify other cases that were homozygous for ultra-rare variants in GAD1, but highlighted an increased frequency of cases that were homozygous for rare variants in genes of the GABA system (SCZ: 0.14% vs. Controls: 0.00%; p-value = 0.0055). In conclusion, this study demonstrates the functional impact of c.391 A > G variant and its biological effect makes it a good candidate as risk variant for SCZ. This study also supports an involvement of ultra-rare variants in GABAergic genes in the etiopathogenesis of SCZ.
Collapse
Affiliation(s)
- Chiara Magri
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Edoardo Giacopuzzi
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Bonini
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Viola Ravasio
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mohammed E A Elhussiny
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Flavia Orizio
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabrizio Gangemi
- Unit of Physics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Valsecchi
- Neuroscience Section, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Roberto Bresciani
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Barbon
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Vita
- Neuroscience Section, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Massimo Gennarelli
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetic Unit, IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
13
|
Johnson EC, Evans LM, Keller MC. Relationships between estimated autozygosity and complex traits in the UK Biobank. PLoS Genet 2018; 14:e1007556. [PMID: 30052639 PMCID: PMC6082573 DOI: 10.1371/journal.pgen.1007556] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/08/2018] [Accepted: 07/11/2018] [Indexed: 11/25/2022] Open
Abstract
Inbreeding increases the risk of certain Mendelian disorders in humans but may also reduce fitness through its effects on complex traits and diseases. Such inbreeding depression is thought to occur due to increased homozygosity at causal variants that are recessive with respect to fitness. Until recently it has been difficult to amass large enough sample sizes to investigate the effects of inbreeding depression on complex traits using genome-wide single nucleotide polymorphism (SNP) data in population-based samples. Further, it is difficult to infer causation in analyses that relate degree of inbreeding to complex traits because confounding variables (e.g., education) may influence both the likelihood for parents to outbreed and offspring trait values. The present study used runs of homozygosity in genome-wide SNP data in up to 400,000 individuals in the UK Biobank to estimate the proportion of the autosome that exists in autozygous tracts—stretches of the genome which are identical due to a shared common ancestor. After multiple testing corrections and controlling for possible sociodemographic confounders, we found significant relationships in the predicted direction between estimated autozygosity and three of the 26 traits we investigated: age at first sexual intercourse, fluid intelligence, and forced expiratory volume in 1 second. Our findings corroborate those of several published studies. These results may imply that these traits have been associated with Darwinian fitness over evolutionary time. However, some of the autozygosity-trait relationships were attenuated after controlling for background sociodemographic characteristics, suggesting that alternative explanations for these associations have not been eliminated. Care needs to be taken in the design and interpretation of ROH studies in order to glean reliable information about the genetic architecture and evolutionary history of complex traits. Inbreeding is well known to increase the risk of rare, monogenic diseases, and there has been some evidence that it also affects complex traits, such as cognition and educational attainment. However, difficulties can arise when inferring causation in these types of analyses because of the potential for confounding variables (e.g., socioeconomic status) to bias the observed relationships between distant inbreeding and complex traits. In this investigation, we used single-nucleotide polymorphism data in a very large (N > 400,000) sample of seemingly outbred individuals to quantify the degree to which distant inbreeding is associated with 26 complex traits. We found robust evidence that distant inbreeding is inversely associated with fluid intelligence and a measure of lung function, and is positively associated with age at first sex, while other trait associations with inbreeding were attenuated after controlling for background sociodemographic characteristics. Our findings are consistent with evolutionary predictions that fluid intelligence, lung function, and age at first sex have been under selection pressures over time; however, they also suggest that confounding variables must be accounted for in order to reliably interpret results from these types of analyses.
Collapse
Affiliation(s)
- Emma C. Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Luke M. Evans
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Matthew C. Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
14
|
Relationship between Deleterious Variation, Genomic Autozygosity, and Disease Risk: Insights from The 1000 Genomes Project. Am J Hum Genet 2018; 102:658-675. [PMID: 29551419 DOI: 10.1016/j.ajhg.2018.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
Genomic regions of autozygosity (ROAs) represent segments of individual genomes that are homozygous for haplotypes inherited identical-by-descent (IBD) from a common ancestor. ROAs are nonuniformly distributed across the genome, and increased ROA levels are a reported risk factor for numerous complex diseases. Previously, we hypothesized that long ROAs are enriched for deleterious homozygotes as a result of young haplotypes with recent deleterious mutations-relatively untouched by purifying selection-being paired IBD as a consequence of recent parental relatedness, a pattern supported by ROA and whole-exome sequence data on 27 individuals. Here, we significantly bolster support for our hypothesis and expand upon our original analyses using ROA and whole-genome sequence data on 2,436 individuals from The 1000 Genomes Project. Considering CADD deleteriousness scores, we reaffirm our previous observation that long ROAs are enriched for damaging homozygotes worldwide. We show that strongly damaging homozygotes experience greater enrichment than weaker damaging homozygotes, while overall enrichment varies appreciably among populations. Mendelian disease genes and those encoding FDA-approved drug targets have significantly increased rates of gain in damaging homozygotes with increasing ROA coverage relative to all other genes. In genes implicated in eight complex phenotypes for which ROA levels have been identified as a risk factor, rates of gain in damaging homozygotes vary across phenotypes and populations but frequently differ significantly from non-disease genes. These findings highlight the potential confounding effects of population background in the assessment of associations between ROA levels and complex disease risk, which might underlie reported inconsistencies in ROA-phenotype associations.
Collapse
|
15
|
Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet 2018; 19:220-234. [PMID: 29335644 DOI: 10.1038/nrg.2017.109] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long runs of homozygosity (ROH) arise when identical haplotypes are inherited from each parent and thus a long tract of genotypes is homozygous. Cousin marriage or inbreeding gives rise to such autozygosity; however, genome-wide data reveal that ROH are universally common in human genomes even among outbred individuals. The number and length of ROH reflect individual demographic history, while the homozygosity burden can be used to investigate the genetic architecture of complex disease. We discuss how to identify ROH in genome-wide microarray and sequence data, their distribution in human populations and their application to the understanding of inbreeding depression and disease risk.
Collapse
Affiliation(s)
- Francisco C Ceballos
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, South Africa.,Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - David W Clark
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, South Africa.,Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa
| | - James F Wilson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK.,Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| |
Collapse
|
16
|
Fatima W, Mahmood S, Hasnain S, Rana NH, Khan NS, Naeem F, Ayub M. Parental Consanguineous Marriages are Associated with Early Age of Onset of Schizophrenia in a Pakistani Cohort. INT J HUM GENET 2017. [DOI: 10.1080/09723757.2017.1368221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Warda Fatima
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Saqib Mahmood
- Department of Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Shahida Hasnain
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
- The Women University Multan, Multan, Pakistan
| | | | | | - Farooq Naeem
- Department of Psychiatry, Queen’s University, Kingston, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen’s University, Kingston, Canada
| |
Collapse
|
17
|
Giacopuzzi E, Gennarelli M, Minelli A, Gardella R, Valsecchi P, Traversa M, Bonvicini C, Vita A, Sacchetti E, Magri C. Exome sequencing in schizophrenic patients with high levels of homozygosity identifies novel and extremely rare mutations in the GABA/glutamatergic pathways. PLoS One 2017; 12:e0182778. [PMID: 28787007 PMCID: PMC5546675 DOI: 10.1371/journal.pone.0182778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/24/2017] [Indexed: 11/18/2022] Open
Abstract
Inbreeding is a known risk factor for recessive Mendelian diseases and previous studies have suggested that it could also play a role in complex disorders, such as psychiatric diseases. Recent inbreeding results in the presence of long runs of homozygosity (ROHs) along the genome, which are also defined as autozygosity regions. Genetic variants in these regions have two alleles that are identical by descent, thus increasing the odds of bearing rare recessive deleterious mutations due to a homozygous state. A recent study showed a suggestive enrichment of long ROHs in schizophrenic patients, suggesting that recent inbreeding could play a role in the disease. To better understand the impact of autozygosity on schizophrenia risk, we selected, from a cohort of 180 Italian patients, seven subjects with extremely high numbers of large ROHs that were likely due to recent inbreeding and characterized the mutational landscape within their ROHs using Whole Exome Sequencing and, gene set enrichment analysis. We identified a significant overlap (17%; empirical p-value = 0.0171) between genes inside ROHs affected by low frequency functional homozygous variants (107 genes) and the group of most promising candidate genes mutated in schizophrenia. Moreover, in four patients, we identified novel and extremely rare damaging mutations in the genes involved in neurodevelopment (MEGF8) and in GABA/glutamatergic synaptic transmission (GAD1, FMN1, ANO2). These results provide insights into the contribution of rare recessive mutations and inbreeding as risk factors for schizophrenia. ROHs that are likely due to recent inbreeding harbor a combination of predisposing low-frequency variants and extremely rare variants that have a high impact on pivotal biological pathways implicated in the disease. In addition, this study confirms that focusing on patients with high levels of homozygosity could be a useful prioritization strategy for discovering new high-impact mutations in genetically complex disorders.
Collapse
Affiliation(s)
- Edoardo Giacopuzzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetic Unit, IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rita Gardella
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Valsecchi
- Department of Clinical and Experimental Sciences, Neuroscience Section, University of Brescia, Brescia, Italy
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Michele Traversa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristian Bonvicini
- Genetic Unit, IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonio Vita
- Department of Clinical and Experimental Sciences, Neuroscience Section, University of Brescia, Brescia, Italy
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Emilio Sacchetti
- Department of Clinical and Experimental Sciences, Neuroscience Section, University of Brescia, Brescia, Italy
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|