1
|
Gururaj M, Ohmura A, Ozawa M, Yamano T, Fukuzawa H, Matsuo T. A potential EARLY FLOWERING 3 homolog in Chlamydomonas is involved in the red/violet and blue light signaling pathways for the degradation of RHYTHM OF CHLOROPLAST 15. PLoS Genet 2022; 18:e1010449. [PMID: 36251728 PMCID: PMC9612821 DOI: 10.1371/journal.pgen.1010449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/27/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Light plays a major role in resetting the circadian clock, allowing the organism to synchronize with the environmental day and night cycle. In Chlamydomonas the light-induced degradation of the circadian clock protein, RHYTHM OF CHLOROPLAST 15 (ROC15), is considered one of the key events in resetting the circadian clock. Red/violet and blue light signals have been shown to reach the clock via different molecular pathways; however, many of the participating components of these pathways are yet to be elucidated. Here, we used a forward genetics approach using a reporter strain that expresses a ROC15-luciferase fusion protein. We isolated a mutant that showed impaired ROC15 degradation in response to a wide range of visible wavelengths and impaired light-induced phosphorylation of ROC15. These results suggest that the effects of different wavelengths converge before acting on ROC15 or at ROC15 phosphorylation. Furthermore, the mutant showed a weakened phase resetting in response to light, but its circadian rhythmicity remained largely unaffected under constant light and constant dark conditions. Surprisingly, the gene disrupted in this mutant was found to encode a protein that possessed a very weak similarity to the Arabidopsis thaliana EARLY FLOWERING 3 (ELF3). Our results suggest that this protein is involved in the many different light signaling pathways to the Chlamydomonas circadian clock. However, it may not influence the transcriptional oscillator of Chlamydomonas to a great extent. This study provides an opportunity to further understand the mechanisms underlying light-induced clock resetting and explore the evolution of the circadian clock architecture in Viridiplantae. Resetting of the circadian clock is crucial for an organism, as it allows the synchronization of its internal processes with the day/night cycle. Environmental signals—such as light and temperature—contribute to this event. In plants, the molecular mechanisms underlying the light-induced resetting of the circadian clock have been well-studied in the streptophyte, Arabidopsis thaliana, and has been explored in some chlorophyte algae such as Ostreococcus tauri and Chlamydomonas reinhardtii. Here, we used a forward genetics approach to examine the light signaling pathway of a process considered critical for the light resetting of the Chlamydomonas clock—light-induced degradation of the circadian clock protein ROC15. We explored various aspects of the isolated mutant, such as the degradation of ROC15 in response to a range of visible wavelengths, the circadian rhythm, and the phase resetting of the rhythm. We show that the effects of different wavelengths of light converge before acting on ROC15 or at ROC15 phosphorylation with the aid of a potential homolog of the Arabidopsis thaliana ELF3. Our findings contradict the existing view that there is no known homolog of ELF3 in chlorophyte algae. This study, therefore, sheds light on the evolutionary aspects of the Viridiplantae circadian clocks and their light resetting.
Collapse
Affiliation(s)
- Malavika Gururaj
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ayumi Ohmura
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Mariko Ozawa
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
2
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
3
|
Meher PK, Dash S, Sahu TK, Satpathy S, Pradhan SK. GIpred: a computational tool for prediction of GIGANTEA proteins using machine learning algorithm. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1-16. [PMID: 35221569 PMCID: PMC8847649 DOI: 10.1007/s12298-022-01130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED In plants, GIGANTEA (GI) protein plays different biological functions including carbon and sucrose metabolism, cell wall deposition, transpiration and hypocotyl elongation. This suggests that GI is an important class of proteins. So far, the resource-intensive experimental methods have been mostly utilized for identification of GI proteins. Thus, we made an attempt in this study to develop a computational model for fast and accurate prediction of GI proteins. Ten different supervised learning algorithms i.e., SVM, RF, JRIP, J48, LMT, IBK, NB, PART, BAGG and LGB were employed for prediction, where the amino acid composition (AAC), FASGAI features and physico-chemical (PHYC) properties were used as numerical inputs for the learning algorithms. Higher accuracies i.e., 96.75% of AUC-ROC and 86.7% of AUC-PR were observed for SVM coupled with AAC + PHYC feature combination, while evaluated with five-fold cross validation. With leave-one-out cross validation, 97.29% of AUC-ROC and 87.89% of AUC-PR were respectively achieved. While the performance of the model was evaluated with an independent dataset of 18 GI sequences, 17 were observed as correctly predicted. We have also performed proteome-wide identification of GI proteins in wheat, followed by functional annotation using Gene Ontology terms. A prediction server "GIpred" is freely accessible at http://cabgrid.res.in:8080/gipred/ for proteome-wide recognition of GI proteins. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01130-6.
Collapse
Affiliation(s)
- Prabina Kumar Meher
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- Division of Statistical Genetics, ICAR-IASRI, New Delhi-12, India
| | - Sagarika Dash
- Orissa University of Agriculture and Technology, Bhubaneswar, Odisha India
| | - Tanmaya Kumar Sahu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Subhrajit Satpathy
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | |
Collapse
|
4
|
Mishra D, Suri GS, Kaur G, Tiwari M. Comprehensive analysis of structural, functional, and evolutionary dynamics of Leucine Rich Repeats-RLKs in Thinopyrum elongatum. Int J Biol Macromol 2021; 183:513-527. [PMID: 33933540 DOI: 10.1016/j.ijbiomac.2021.04.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
Leucine Rich Repeats-receptor-like protein kinases (LRR-RLKs) regulate several critical biological processes ranging from growth and development to stress response. Thinopyrum elongatum harbours many desirable traits such as biotic and abiotic stress resistance and therefore commonly used by wheat breeders. In the present investigation, in-silico analysis of LRR-RLKs yielded 589 genes of which 431 were membrane surface RLKs and 158 were receptor like cytoplasmic kinases. An insight into the gene and protein structure revealed quite a conserved nature of these proteins within subgroups. A large expansion in LRR-RLKs was due to tandem and segmental duplication event. Maximum number of tandem and segmentally duplicated pairs was observed in LRR-VI and LRR-XII subfamily, respectively. Furthermore, syntenic analyses revealed that chromosome 6 harboured more (48) tandem duplicated genes while chromosome 7 possessed more (47) segmentally duplicated genes. A detailed analysis about the gene duplication events coupled with expression profiles during Fusarium graminearum infection and water deficiency unravelled the expansion of the gene family with sub functionalization and neofunctionalization. Interaction network analysis showed that LRR-RLKs can heterodimerize upon ligand binding to perform various plant functional attributes.
Collapse
Affiliation(s)
- Divya Mishra
- Kansas State University, Manhattan, KS 66506, United States
| | | | - Gurleen Kaur
- California Baptist University, Riverside, CA 92504, United States
| | - Manish Tiwari
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, United States.
| |
Collapse
|
5
|
Matsuo T, Iida T, Ohmura A, Gururaj M, Kato D, Mutoh R, Ihara K, Ishiura M. The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008814. [PMID: 32555650 PMCID: PMC7299327 DOI: 10.1371/journal.pgen.1008814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/29/2020] [Indexed: 01/20/2023] Open
Abstract
The circadian clocks in chlorophyte algae have been studied in two model organisms, Chlamydomonas reinhardtii and Ostreococcus tauri. These studies revealed that the chlorophyte clocks include some genes that are homologous to those of the angiosperm circadian clock. However, the genetic network architectures of the chlorophyte clocks are largely unknown, especially in C. reinhardtii. In this study, using C. reinhardtii as a model, we characterized RHYTHM OF CHLOROPLAST (ROC) 75, a clock gene encoding a putative GARP DNA-binding transcription factor similar to the clock proteins LUX ARRHYTHMO (LUX, also called PHYTOCLOCK 1 [PCL1]) and BROTHER OF LUX ARRHYTHMO (BOA, also called NOX) of the angiosperm Arabidopsis thaliana. We observed that ROC75 is a day/subjective day-phase-expressed nuclear-localized protein that associates with some night-phased clock genes and represses their expression. This repression may be essential for the gating of reaccumulation of the other clock-related GARP protein, ROC15, after its light-dependent degradation. The restoration of ROC75 function in an arrhythmic roc75 mutant under constant darkness leads to the resumption of circadian oscillation from the subjective dawn, suggesting that the ROC75 restoration acts as a morning cue for the C. reinhardtii clock. Our study reveals a part of the genetic network of C. reinhardtii clock that could be considerably different from that of A. thaliana.
Collapse
Affiliation(s)
- Takuya Matsuo
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- * E-mail:
| | - Takahiro Iida
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Ayumi Ohmura
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Malavika Gururaj
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Daisaku Kato
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Risa Mutoh
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Masahiro Ishiura
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
6
|
Neochloris oleoabundans cell walls have an altered composition when cultivated under different growing conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101482] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Kottke T, Oldemeyer S, Wenzel S, Zou Y, Mittag M. Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:4-14. [PMID: 28619534 DOI: 10.1016/j.jplph.2017.05.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Green algae have a highly complex and diverse set of cryptochrome photoreceptor candidates including members of the following subfamilies: plant, plant-like, animal-like, DASH and cryptochrome photolyase family 1 (CPF1). While some green algae encode most or all of them, others lack certain members. Here we present an overview about functional analyses of so far investigated cryptochrome photoreceptors from the green algae Chlamydomonas reinhardtii (plant and animal-like cryptochromes) and Ostreococcus tauri (CPF1) with regard to their biological significance and spectroscopic properties. Cryptochromes of both algae have been demonstrated recently to be involved to various extents in circadian clock regulation and in Chlamydomonas additionally in life cycle control. Moreover, CPF1 even performs light-driven DNA repair. The plant cryptochrome and CPF1 are UVA/blue light receptors, whereas the animal-like cryptochrome responds to almost the whole visible spectrum including red light. Accordingly, plant cryptochrome, animal-like cryptochrome and CPF1 differ fundamentally in their structural response to light as revealed by their visible and infrared spectroscopic signatures, and in the role of the flavin neutral radical acting as dark form or signaling state.
Collapse
Affiliation(s)
- Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Sandra Wenzel
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Yong Zou
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|