1
|
Henke M, Prigione A, Schuelke M. Disease models of Leigh syndrome: From yeast to organoids. J Inherit Metab Dis 2024; 47:1292-1321. [PMID: 39385390 PMCID: PMC11586605 DOI: 10.1002/jimd.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Leigh syndrome (LS) is a severe mitochondrial disease that results from mutations in the nuclear or mitochondrial DNA that impairs cellular respiration and ATP production. Mutations in more than 100 genes have been demonstrated to cause LS. The disease most commonly affects brain development and function, resulting in cognitive and motor impairment. The underlying pathogenesis is challenging to ascertain due to the diverse range of symptoms exhibited by affected individuals and the variability in prognosis. To understand the disease mechanisms of different LS-causing mutations and to find a suitable treatment, several different model systems have been developed over the last 30 years. This review summarizes the established disease models of LS and their key findings. Smaller organisms such as yeast have been used to study the biochemical properties of causative mutations. Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been used to dissect the pathophysiology of the neurological and motor symptoms of LS. Mammalian models, including the widely used Ndufs4 knockout mouse model of complex I deficiency, have been used to study the developmental, cognitive, and motor functions associated with the disease. Finally, cellular models of LS range from immortalized cell lines and trans-mitochondrial cybrids to more recent model systems such as patient-derived induced pluripotent stem cells (iPSCs). In particular, iPSCs now allow studying the effects of LS mutations in specialized human cells, including neurons, cardiomyocytes, and even three-dimensional organoids. These latter models open the possibility of developing high-throughput drug screens and personalized treatments based on defined disease characteristics captured in the context of a defined cell type. By analyzing all these different model systems, this review aims to provide an overview of past and present means to elucidate the complex pathology of LS. We conclude that each approach is valid for answering specific research questions regarding LS, and that their complementary use could be instrumental in finding treatment solutions for this severe and currently untreatable disease.
Collapse
Affiliation(s)
- Marie‐Thérèse Henke
- NeuroCure Cluster of ExcellenceCharité–Universitätsmedizin BerlinBerlinGermany
- Department of NeuropediatricsCharité–Universitätsmedizin BerlinBerlinGermany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical FacultyHeinrich Heine UniversityDuesseldorfGermany
| | - Markus Schuelke
- NeuroCure Cluster of ExcellenceCharité–Universitätsmedizin BerlinBerlinGermany
- Department of NeuropediatricsCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
2
|
Boopathy S, Luce BE, Lugo CM, Hakim P, McDonald J, Kim HL, Ponce J, Ueberheide BM, Chao LH. Identification of SLC25A46 interaction interfaces with mitochondrial membrane fusogens Opa1 and Mfn2. J Biol Chem 2024; 300:107740. [PMID: 39222684 PMCID: PMC11459905 DOI: 10.1016/j.jbc.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Mitochondrial fusion requires the sequential merger of four bilayers to two. The outer-membrane solute carrier family 25 member (SLC25A46) interacts with both the outer and inner membrane dynamin family GTPases mitofusin 1/2 and optic atrophy 1 (Opa1). While SLC25A46 levels are known to affect mitochondrial morphology, how SLC25A46 interacts with mitofusin 1/2 and Opa1 to regulate membrane fusion is not understood. In this study, we use crosslinking mass spectrometry and AlphaFold 2 modeling to identify interfaces mediating an SLC25A46 interaction with Opa1 and Mfn2. We reveal that the bundle signaling element of Opa1 interacts with SLC25A46, and present evidence of an Mfn2 interaction involving the SLC25A46 cytosolic face. We validate these newly identified interaction interfaces and show that they play a role in mitochondrial network maintenance.
Collapse
Affiliation(s)
- Sivakumar Boopathy
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston Massachusetts, USA
| | - Bridget E Luce
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Camila Makhlouta Lugo
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Pusparanee Hakim
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Julie McDonald
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Ha Lin Kim
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Jackeline Ponce
- Proteomics Resource Center, Division of Advanced Research Technologies, New York University Langone Health Center, New York New York, USA
| | - Beatrix M Ueberheide
- Proteomics Resource Center, Division of Advanced Research Technologies, New York University Langone Health Center, New York New York, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone Health Center, New York New York, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston Massachusetts, USA.
| |
Collapse
|
3
|
Arana ÁJ, Sánchez L. Knockout, Knockdown, and the Schrödinger Paradox: Genetic Immunity to Phenotypic Recapitulation in Zebrafish. Genes (Basel) 2024; 15:1164. [PMID: 39336755 PMCID: PMC11431394 DOI: 10.3390/genes15091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Previous research has highlighted significant phenotypic discrepancies between knockout and knockdown approaches in zebrafish, raising concerns about the reliability of these methods. However, our study suggests that these differences are not as pronounced as was once believed. By carefully examining the roles of maternal and zygotic gene contributions, we demonstrate that these factors significantly influence phenotypic outcomes, often accounting for the observed discrepancies. Our findings emphasize that morpholinos, despite their potential off-target effects, can be effective tools when used with rigorous controls. We introduce the concept of graded maternal contribution, which explains how the uneven distribution of maternal mRNA and proteins during gametogenesis impacts phenotypic variability. Our research categorizes genes into three types-susceptible, immune, and "Schrödinger" (conditional)-based on their phenotypic expression and interaction with genetic compensation mechanisms. This distinction provides new insights into the paradoxical outcomes observed in genetic studies. Ultimately, our work underscores the importance of considering both maternal and zygotic contributions, alongside rigorous experimental controls, to accurately interpret gene function and the mechanisms underlying disease. This study advocates for the continued use of morpholinos in conjunction with advanced genetic tools like CRISPR/Cas9, stressing the need for a meticulous experimental design to optimize the utility of zebrafish in genetic research and therapeutic development.
Collapse
|
4
|
Neikirk K, Kabugi K, Mungai M, Kula B, Smith N, Hinton AO. Ethnicity-related differences in mitochondrial regulation by insulin stimulation in diabetes. J Cell Physiol 2024; 239:e31317. [PMID: 38775168 PMCID: PMC11324399 DOI: 10.1002/jcp.31317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024]
Abstract
Mitochondrial dysfunction has long been implicated in the development of insulin resistance, which is a hallmark of type 2 diabetes. However, recent studies reveal ethnicity-related differences in mitochondrial processes, underscoring the need for nuance in studying mitochondrial dysfunction and insulin sensitivity. Furthermore, the higher prevalence of type 2 diabetes among African Americans and individuals of African descent has brought attention to the role of ethnicity in disease susceptibility. In this review, which covers existing literature, genetic studies, and clinical data, we aim to elucidate the complex relationship between mitochondrial alterations and insulin stimulation by considering how mitochondrial dynamics, contact sites, pathways, and metabolomics may be differentially regulated across ethnicities, through mechanisms such as single nucleotide polymorphisms (SNPs). In addition to achieving a better understanding of insulin stimulation, future studies identifying novel regulators of mitochondrial structure and function could provide valuable insights into ethnicity-dependent insulin signaling and personalized care.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Nathan Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
5
|
Boopathy S, Luce BE, Lugo CM, Hakim P, McDonald J, Kim HL, Ponce J, Ueberheide BM, Chao LH. Identification of SLC25A46 interaction interfaces with mitochondrial membrane fusogens Opa1 and Mfn2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573615. [PMID: 38234813 PMCID: PMC10793391 DOI: 10.1101/2023.12.29.573615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Mitochondrial fusion requires the sequential merger of four bilayers to two. The outer-membrane solute carrier protein SLC25A46 interacts with both the outer and inner-membrane dynamin family GTPases Mfn1/2 and Opa1. While SLC25A46 levels are known to affect mitochondrial morphology, how SLC25A46 interacts with Mfn1/2 and Opa1 to regulate membrane fusion is not understood. In this study, we use crosslinking mass-spectrometry and AlphaFold 2 modeling to identify interfaces mediating a SLC25A46 interactions with Opa1 and Mfn2. We reveal that the bundle signaling element of Opa1 interacts with SLC25A46, and present evidence of a Mfn2 interaction involving the SLC25A46 cytosolic face. We validate these newly identified interaction interfaces and show that they play a role in mitochondrial network maintenance.
Collapse
|
6
|
Abstract
Leigh syndrome, or subacute necrotizing encephalomyelopathy, was initially recognized as a neuropathological entity in 1951. Bilateral symmetrical lesions, typically extending from the basal ganglia and thalamus through brainstem structures to the posterior columns of the spinal cord, are characterized microscopically by capillary proliferation, gliosis, severe neuronal loss, and relative preservation of astrocytes. Leigh syndrome is a pan-ethnic disorder usually with onset in infancy or early childhood, but late-onset forms occur, including in adult life. Over the last six decades it has emerged that this complex neurodegenerative disorder encompasses more than 100 separate monogenic disorders associated with enormous clinical and biochemical heterogeneity. This chapter discusses clinical, biochemical and neuropathological aspects of the disorder, and postulated pathomechanisms. Known genetic causes, including defects of 16 mitochondrial DNA (mtDNA) genes and approaching 100 nuclear genes, are categorized into disorders of subunits and assembly factors of the five oxidative phosphorylation enzymes, disorders of pyruvate metabolism and vitamin and cofactor transport and metabolism, disorders of mtDNA maintenance, and defects of mitochondrial gene expression, protein quality control, lipid remodeling, dynamics, and toxicity. An approach to diagnosis is presented, together with known treatable causes and an overview of current supportive management options and emerging therapies on the horizon.
Collapse
Affiliation(s)
- Shamima Rahman
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Metabolic Medicine Department, Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|
7
|
Kodal LS, Hammer-Hansen S, Holm-Yildiz S, Grønskov K, Karstensen HG, Dysgaard T. Case report: A novel variant in SLC25A46 causing sensorimotor polyneuropathy and optic atrophy. Front Neurol 2022; 13:1066040. [PMID: 36578309 PMCID: PMC9790965 DOI: 10.3389/fneur.2022.1066040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
SLC25A46 is a mitochondrial protein involved in mitochondrial dynamics. Recently, bi-allelic variants have been identified as a pathogenic cause in a spectrum of neurological syndromes. We report a novel homozygous SLC25A46 variant in two siblings, originating from Iraq. Both presented with optic atrophy and varying neurological symptoms. The neurological examination and nerve conduction studies were consistent with sensorimotor polyneuropathy, one having mild polyneuropathy and the other pronounced polyneuropathy. The cases illustrate the disease spectrum and provide substantial information to the knowledge of polyneuropathy caused by SLC25A46 variants. It further highlights the diagnostic potentials of whole exome sequencing which can improve future understanding of disease mechanisms.
Collapse
Affiliation(s)
- Louise Sloth Kodal
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Louise Sloth Kodal
| | - Sophia Hammer-Hansen
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sonja Holm-Yildiz
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Tina Dysgaard
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Ledahawsky LM, Terzenidou ME, Edwards R, Kline RA, Graham LC, Eaton SL, van der Hoorn D, Chaytow H, Huang YT, Groen EJN, Motyl AAL, Lamont DJ, Tokatlidis K, Wishart TM, Gillingwater TH. The mitochondrial protein Sideroflexin 3 (SFXN3) influences neurodegeneration pathways in vivo. FEBS J 2022; 289:3894-3914. [PMID: 35092170 PMCID: PMC9542548 DOI: 10.1111/febs.16377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Abstract
Synapses are a primary pathological target in neurodegenerative diseases. Identifying therapeutic targets at the synapse could delay progression of numerous conditions. The mitochondrial protein SFXN3 is a neuronally enriched protein expressed in synaptic terminals and regulated by key synaptic proteins, including α-synuclein. We first show that SFXN3 uses the carrier import pathway to insert into the inner mitochondrial membrane. Using high-resolution proteomics on Sfxn3-KO mice synapses, we then demonstrate that SFXN3 influences proteins and pathways associated with neurodegeneration and cell death (including CSPα and Caspase-3), as well as neurological conditions (including Parkinson's disease and Alzheimer's disease). Overexpression of SFXN3 orthologues in Drosophila models of Parkinson's disease significantly reduced dopaminergic neuron loss. In contrast, the loss of SFXN3 was insufficient to trigger neurodegeneration in mice, indicating an anti- rather than pro-neurodegeneration role for SFXN3. Taken together, these results suggest a potential role for SFXN3 in the regulation of neurodegeneration pathways.
Collapse
Affiliation(s)
- Leire M Ledahawsky
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Maria Eirini Terzenidou
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Rachel A Kline
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Laura C Graham
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Samantha L Eaton
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Dinja van der Hoorn
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Helena Chaytow
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Yu-Ting Huang
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Ewout J N Groen
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, The Netherlands
| | - Anna A L Motyl
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | | | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Thomas M Wishart
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| |
Collapse
|
10
|
Hanaford AR, Cho YJ, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis 2022; 17:217. [PMID: 35668433 PMCID: PMC9169410 DOI: 10.1186/s13023-022-02324-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial diseases are a group of rare, heterogeneous diseases caused by gene mutations in both nuclear and mitochondrial genomes that result in defects in mitochondrial function. They are responsible for significant morbidity and mortality as they affect multiple organ systems and particularly those with high energy-utilizing tissues, such as the nervous system, skeletal muscle, and cardiac muscle. Virtually no effective treatments exist for these patients, despite the urgent need. As the majority of these conditions are monogenic and caused by mutations in nuclear genes, gene replacement is a highly attractive therapeutic strategy. Adeno-associated virus (AAV) is a well-characterized gene replacement vector, and its safety profile and ability to transduce quiescent cells nominates it as a potential gene therapy vehicle for several mitochondrial diseases. Indeed, AAV vector-based gene replacement is currently being explored in clinical trials for one mitochondrial disease (Leber hereditary optic neuropathy) and preclinical studies have been published investigating this strategy in other mitochondrial diseases. This review summarizes the preclinical findings of AAV vector-based gene replacement therapy for mitochondrial diseases including Leigh syndrome, Barth syndrome, ethylmalonic encephalopathy, and others.
Collapse
Affiliation(s)
- Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Reserach Institute, Seattle, WA, 98101, USA.
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Pediatric Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Molecular Immunology and Microbiology, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| |
Collapse
|
11
|
Koutrouli M, Karatzas E, Papanikolopoulou K, Pavlopoulos GA. NORMA: The Network Makeup Artist - A Web Tool for Network Annotation Visualization. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:578-586. [PMID: 34171457 PMCID: PMC9801029 DOI: 10.1016/j.gpb.2021.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/08/2020] [Accepted: 11/20/2020] [Indexed: 01/26/2023]
Abstract
The Network Makeup Artist (NORMA) is a web tool for interactive network annotation visualization and topological analysis, able to handle multiple networks and annotations simultaneously. Precalculated annotations (e.g., Gene Ontology, Pathway enrichment, community detection, or clustering results) can be uploaded and visualized in a network, either as colored pie-chart nodes or as color-filled areas in a 2D/3D Venn-diagram-like style. In the case where no annotation exists, algorithms for automated community detection are offered. Users can adjust the network views using standard layout algorithms or allow NORMA to slightly modify them for visually better group separation. Once a network view is set, users can interactively select and highlight any group of interest in order to generate publication-ready figures. Briefly, with NORMA, users can encode three types of information simultaneously. These are 1) the network, 2) the communities or annotations of interest, and 3) node categories or expression values. Finally, NORMA offers basic topological analysis and direct topological comparison across any of the selected networks. NORMA service is available at http://norma.pavlopouloslab.info, whereas the code is available at https://github.com/PavlopoulosLab/NORMA.
Collapse
Affiliation(s)
- Mikaela Koutrouli
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari 16672, Greece
| | - Evangelos Karatzas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari 16672, Greece,Department of Informatics and Telecommunications, University of Athens, Athens 15703, Greece
| | | | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari 16672, Greece,Corresponding author.
| |
Collapse
|
12
|
Jiang YJ, Fann CSJ, Fuh JL, Chung MY, Huang HY, Chu KC, Wang YF, Hsu CL, Kao LS, Chen SP, Wang SJ. Genome-wide analysis identified novel susceptible genes of restless legs syndrome in migraineurs. J Headache Pain 2022; 23:39. [PMID: 35350973 PMCID: PMC8966278 DOI: 10.1186/s10194-022-01409-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Restless legs syndrome is a highly prevalent comorbidity of migraine; however, its genetic contributions remain unclear. Objectives To identify the genetic variants of restless legs syndrome in migraineurs and to investigate their potential pathogenic roles. Methods We conducted a two-stage genome-wide association study (GWAS) to identify susceptible genes for restless legs syndrome in 1,647 patients with migraine, including 264 with and 1,383 without restless legs syndrome, and also validated the association of lead variants in normal controls unaffected with restless legs syndrome (n = 1,053). We used morpholino translational knockdown (morphants), CRISPR/dCas9 transcriptional knockdown, transient CRISPR/Cas9 knockout (crispants) and gene rescue in one-cell stage embryos of zebrafish to study the function of the identified genes. Results We identified two novel susceptibility loci rs6021854 (in VSTM2L) and rs79823654 (in CCDC141) to be associated with restless legs syndrome in migraineurs, which remained significant when compared to normal controls. Two different morpholinos targeting vstm2l and ccdc141 in zebrafish demonstrated behavioural and cytochemical phenotypes relevant to restless legs syndrome, including hyperkinetic movements of pectoral fins and decreased number in dopaminergic amacrine cells. These phenotypes could be partially reversed with gene rescue, suggesting the specificity of translational knockdown. Transcriptional CRISPR/dCas9 knockdown and transient CRISPR/Cas9 knockout of vstm2l and ccdc141 replicated the findings observed in translationally knocked-down morphants. Conclusions Our GWAS and functional analysis suggest VSTM2L and CCDC141 are highly relevant to the pathogenesis of restless legs syndrome in migraineurs. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01409-9.
Collapse
Affiliation(s)
- Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Ming-Yi Chung
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Hui-Ying Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Kuo-Chang Chu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chia-Lin Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Lung-Sen Kao
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
13
|
Perivolidi VI, Violitzi F, Ioannidou E, Rinotas V, Stamatakis G, Samiotaki M, Panayotou G, Douni E. Proteomic Identification of the SLC25A46 Interactome in Transgenic Mice Expressing SLC25A46-FLAG. J Proteome Res 2022; 21:375-394. [PMID: 34983179 DOI: 10.1021/acs.jproteome.1c00728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The outer mitochondrial membrane protein SLC25A46 has been recently identified as a novel genetic cause of a wide spectrum of neurological diseases. The aim of the present work was to elucidate the physiological role of SLC25A46 through the identification of its interactome with immunoprecipitation and proteomic analysis in whole cell extracts from the cerebellum, cerebrum, heart, and thymus of transgenic mice expressing ubiquitously SLC25A46-FLAG. Our analysis identified 371 novel putative interactors of SLC25A46 and confirmed 17 known ones. A total of 79 co-immunoprecipitated proteins were common in two or more tissues, mainly participating in mitochondrial activities such as oxidative phosphorylation (OXPHOS) and ATP production, active transport of ions or molecules, and the metabolism. Tissue-specific co-immunoprecipitated proteins were enriched for synapse annotated proteins in the cerebellum and cerebrum for metabolic processes in the heart and for nuclear processes and proteasome in the thymus. Our proteomic approach confirmed known mitochondrial interactors of SLC25A46 including MICOS complex subunits and also OPA1 and VDACs, while we identified novel interactors including the ADP/ATP translocases SLC25A4 and SLC25A5, subunits of the OXPHOS complexes and F1Fo-ATP synthase, and components of the mitochondria-ER contact sites. Our results show that SLC25A46 interacts with a large number of proteins and protein complexes involved in the mitochondria architecture, energy production, and flux and also in inter-organellar contacts.
Collapse
Affiliation(s)
- Vasiliki-Iris Perivolidi
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Fleming 34, 16672 Vari, Greece
| | - Foteini Violitzi
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Fleming 34, 16672 Vari, Greece
| | - Elisavet Ioannidou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Fleming 34, 16672 Vari, Greece
| | - Vagelis Rinotas
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Fleming 34, 16672 Vari, Greece
| | - George Stamatakis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Fleming 34, 16672 Vari, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Fleming 34, 16672 Vari, Greece
| | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Fleming 34, 16672 Vari, Greece
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Fleming 34, 16672 Vari, Greece
| |
Collapse
|
14
|
Rouf MA, Wen L, Mahendra Y, Wang J, Zhang K, Liang S, Wang Y, Li Z, Wang Y, Wang G. The recent advances and future perspectives of genetic compensation studies in the zebrafish model. Genes Dis 2022; 10:468-479. [DOI: 10.1016/j.gendis.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
|
15
|
Li Q, Madden JA, Lin J, Shi J, Rosen SM, Schmitz-Abe K, Agrawal PB. Reanalysis of Exome Data Identifies Novel SLC25A46 Variants Associated with Leigh Syndrome. J Pers Med 2021; 11:jpm11121277. [PMID: 34945750 PMCID: PMC8703603 DOI: 10.3390/jpm11121277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
SLC25A46 (solute carrier family 25 member 46) mutations have been linked to various neurological diseases with recessive inheritance, including Leigh syndrome, optic atrophy, and lethal congenital pontocerebellar hypoplasia. SLC25A46 is expressed in the outer membrane of mitochondria, where it plays a critical role in mitochondrial dynamics. A deceased 7-month-old female infant was suspected to have Leigh syndrome. Clinical exome sequencing was non-diagnostic, but research reanalysis of the sequencing data identified two novel variants in SLC25A46: a missense (c.1039C>T, p.Arg347Cys; NM_138773, hg19) and a donor splice region variant (c.283+5G>A) in intron 1. Both variants were predicted to be damaging. Sanger sequencing of cDNA detected a single missense allele in the patient compared to control, and the SLC25A46 transcript levels were also reduced due to the splice region variant. Additionally, Western blot analysis of whole-cell lysate showed a decrease of SLC25A46 expression in proband fibroblasts, relative to control cells. Further, analysis of mitochondrial morphology revealed evidence of increased fragmentation of the mitochondrial network in proband fibroblasts, compared to control cells. Collectively, our findings suggest that these novel variants in SLC24A46, the donor splice one and the missense variant, are the cause of the neurological phenotype in this proband.
Collapse
Affiliation(s)
- Qifei Li
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.L.); (J.L.); (S.M.R.); (K.S.-A.)
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jill A. Madden
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine Lin
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.L.); (J.L.); (S.M.R.); (K.S.-A.)
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China;
| | - Samantha M. Rosen
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.L.); (J.L.); (S.M.R.); (K.S.-A.)
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Klaus Schmitz-Abe
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.L.); (J.L.); (S.M.R.); (K.S.-A.)
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Pankaj B. Agrawal
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.L.); (J.L.); (S.M.R.); (K.S.-A.)
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-6179192153
| |
Collapse
|
16
|
Wang M, Xu P, Liao L, Gao L, Amakye WK, Zhang Y, Yao M, Ren J. Haematococcus Pluvialis Extends Yeast Lifespan and Improves Slc25a46 Gene Knockout-Associated Mice Phenotypic Defects. Mol Nutr Food Res 2021; 65:e2100086. [PMID: 34672083 DOI: 10.1002/mnfr.202100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/02/2021] [Indexed: 12/18/2022]
Abstract
SCOPE Aging has become one of major concern worldwide. It is therefore of great significance in finding food resources as therapeutic candidates for aging-related functional decline improvement and prevention. This study aimed to define the potency of Haematococcus pluvialis (H. pluvialis) as an anti-aging food resource. METHODS AND RESULTS Yeast is used to explore the anti-aging effects of H. pluvialis. The result showed that H. pluvialis extract could effectively extend yeast chronological lifespan (CLS) by reducing intracellular reactive oxygen species (ROS) levels, promoting mitochondrial membrane potential (MMP) levels and accumulating storage carbohydrate (glycogen). Subsequently, Slc25a46 knockout (Slc25a46-/- ) mice with mitochondrial dysfunction are fed with 100 mg kg-1 H. pluvialis extracts for 10 days. The in vivo data demonstrated that H. pluvialis extract could effectively improve the phenotypic deficits, including underweight, muscle weakness, redox imbalance, and mitochondrial respiratory chain dysfunction, etc., in Slc25a46-/- mice. CONCLUSIONS This work highlights that the mitochondria may be a potential therapeutic target for combating aging, and demonstrated that H. pluvialis, as a dietary supplement, may potentially be an effective preventive substance that may contribute to the promotion of healthy aging.
Collapse
Affiliation(s)
- Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Piao Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Linfeng Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Li Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Ying Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
17
|
Mukherjee I, Ghosh M, Meinecke M. MICOS and the mitochondrial inner membrane morphology - when things get out of shape. FEBS Lett 2021; 595:1159-1183. [PMID: 33837538 DOI: 10.1002/1873-3468.14089] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
Mitochondria play a key role in cellular signalling, metabolism and energetics. Proper architecture and remodelling of the inner mitochondrial membrane are essential for efficient respiration, apoptosis and quality control in the cell. Several protein complexes including mitochondrial contact site and cristae organizing system (MICOS), F1 FO -ATP synthase, and Optic Atrophy 1 (OPA1), facilitate formation, maintenance and stability of cristae membranes. MICOS, the F1 FO -ATP synthase, OPA1 and inner membrane phospholipids such as cardiolipin and phosphatidylethanolamine interact with each other to organize the inner membrane ultra-structure and remodel cristae in response to the cell's demands. Functional alterations in these proteins or in the biosynthesis pathway of cardiolipin and phosphatidylethanolamine result in an aberrant inner membrane architecture and impair mitochondrial function. Mitochondrial dysfunction and abnormalities hallmark several human conditions and diseases including neurodegeneration, cardiomyopathies and diabetes mellitus. Yet, they have long been regarded as secondary pathological effects. This review discusses emerging evidence of a direct relationship between protein- and lipid-dependent regulation of the inner mitochondrial membrane morphology and diseases such as fatal encephalopathy, Leigh syndrome, Parkinson's disease, and cancer.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Mausumi Ghosh
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany.,Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, Göttingen, Germany
| |
Collapse
|
18
|
Yang L, Slone J, Li Z, Lou X, Hu YC, Queme LF, Jankowski MP, Huang T. Systemic administration of AAV-Slc25a46 mitigates mitochondrial neuropathy in Slc25a46-/- mice. Hum Mol Genet 2021; 29:649-661. [PMID: 31943007 DOI: 10.1093/hmg/ddz277] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders are the result of nuclear and mitochondrial DNA mutations that affect multiple organs, with the central and peripheral nervous system often affected. Currently, there is no cure for mitochondrial disorders. Currently, gene therapy offers a novel approach for treating monogenetic disorders, including nuclear genes associated with mitochondrial disorders. We utilized a mouse model carrying a knockout of the mitochondrial fusion-fission-related gene solute carrier family 25 member 46 (Slc25a46) and treated them with neurotrophic AAV-PHP.B vector carrying the mouse Slc25a46 coding sequence. Thereafter, we used immunofluorescence staining and western blot to test the transduction efficiency of this vector. Toluidine blue staining and electronic microscopy were utilized to assess the morphology of optic and sciatic nerves following treatment, and the morphology and respiratory chain activity of mitochondria within these tissues were determined as well. The adeno-associated virus (AAV) vector effectively transduced in the cerebrum, cerebellum, heart, liver and sciatic nerves. AAV-Slc25a46 treatment was able to rescue the premature death in the mutant mice (Slc25a46-/-). The treatment-improved electronic conductivity of the peripheral nerves increased mobility and restored mitochondrial complex activities. Most notably, mitochondrial morphology inside the tissues of both the central and peripheral nervous systems was normalized, and the neurodegeneration, chronic neuroinflammation and loss of Purkinje cell dendrites observed within the mutant mice were alleviated. Overall, our study shows that AAV-PHP.B's neurotrophic properties are plausible for treating conditions where the central nervous system is affected, such as many mitochondrial diseases, and that AAV-Slc25a46 could be a novel approach for treating SLC25A46-related mitochondrial disorders.
Collapse
Affiliation(s)
- Li Yang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhuo Li
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiaoting Lou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Luis F Queme
- Division of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael P Jankowski
- Division of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
19
|
Zou W, Chen Q, Slone J, Yang L, Lou X, Diao J, Huang T. Nanoscopic quantification of sub-mitochondrial morphology, mitophagy and mitochondrial dynamics in living cells derived from patients with mitochondrial diseases. J Nanobiotechnology 2021; 19:136. [PMID: 33985528 PMCID: PMC8120746 DOI: 10.1186/s12951-021-00882-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
SLC25A46 mutations have been found to lead to mitochondrial hyper-fusion and reduced mitochondrial respiratory function, which results in optic atrophy, cerebellar atrophy, and other clinical symptoms of mitochondrial disease. However, it is generally believed that mitochondrial fusion is attributable to increased mitochondrial oxidative phosphorylation (OXPHOS), which is inconsistent with the decreased OXPHOS of highly-fused mitochondria observed in previous studies. In this paper, we have used the live-cell nanoscope to observe and quantify the structure of mitochondrial cristae, and the behavior of mitochondria and lysosomes in patient-derived SLC25A46 mutant fibroblasts. The results show that the cristae have been markedly damaged in the mutant fibroblasts, but there is no corresponding increase in mitophagy. This study suggests that severely damaged mitochondrial cristae might be the predominant cause of reduced OXPHOS in SLC25A46 mutant fibroblasts. This study demonstrates the utility of nanoscope-based imaging for realizing the sub-mitochondrial morphology, mitophagy and mitochondrial dynamics in living cells, which may be particularly valuable for the quick evaluation of pathogenesis of mitochondrial morphological abnormalities. ![]()
Collapse
Affiliation(s)
- Weiwei Zou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qixin Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Li Yang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoting Lou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
20
|
Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. BIOLOGY 2021; 10:268. [PMID: 33810506 PMCID: PMC8066130 DOI: 10.3390/biology10040268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
21
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
22
|
Genetic locus responsible for diabetic phenotype in the insulin hyposecretion (ihs) mouse. PLoS One 2020; 15:e0234132. [PMID: 32502168 PMCID: PMC7274380 DOI: 10.1371/journal.pone.0234132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetic animal models have made significant contributions to understanding the etiology of diabetes and to the development of new medications. Our research group recently developed a novel diabetic mouse strain, the insulin hyposecretion (ihs)mouse. The strain involves neither obesity nor insulitis but exhibits notable pancreatic β-cell dysfunction, distinguishing it from other well-characterized animal models. In ihs mice, severe impairment of insulin secretion from pancreas has been elicited by glucose or potassium chloride stimulation. To clarify the genetic basis of impaired insulin secretion, beginning with identifying the causative gene, genetic linkage analysis was performed using [(C57BL/6 × ihs) F1 × ihs] backcross progeny. Genetic linkage analysis and quantitative trait loci analysis for blood glucose after oral glucose loading indicated that a recessively acting locus responsible for impaired glucose tolerance was mapped to a 14.9-Mb region of chromosome 18 between D18Mit233 and D18Mit235 (the ihs locus). To confirm the gene responsible for the ihs locus, a congenic strain harboring the ihs locus on the C57BL/6 genetic background was developed. Phenotypic analysis of B6.ihs-(D18Mit233-D18Mit235) mice showed significant glucose tolerance impairment and markedly lower plasma insulin levels during an oral glucose tolerance test. Whole-genome sequencing and Sanger sequencing analyses on the ihs genome detected two ihs-specific variants changing amino acids within the ihs locus; both variants in Slc25a46 and Tcerg1 were predicted to disrupt the protein function. Based on information regarding gene functions involving diabetes mellitus and insulin secretion, reverse-transcription quantitative polymerase chain reaction analysis revealed that the relative abundance of Reep2 and Sil1 transcripts from ihs islets was significantly decreased whereas that of Syt4 transcripts were significantly increased compared with those of control C57BL/6 mice. Thus, Slc25a46, Tcerg1, Syt4, Reep2 and Sil1 are potential candidate genes for the ihs locus. This will be the focus of future studies in both mice and humans.
Collapse
|
23
|
Colina-Tenorio L, Horten P, Pfanner N, Rampelt H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med 2020; 287:645-664. [PMID: 32012363 DOI: 10.1111/joim.13031] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria play central roles in cellular energetics, metabolism and signalling. Efficient respiration, mitochondrial quality control, apoptosis and inheritance of mitochondrial DNA depend on the proper architecture of the mitochondrial membranes and a dynamic remodelling of inner membrane cristae. Defects in mitochondrial architecture can result in severe human diseases affecting predominantly the nervous system and the heart. Inner membrane morphology is generated and maintained in particular by the mitochondrial contact site and cristae organizing system (MICOS), the F1 Fo -ATP synthase, the fusion protein OPA1/Mgm1 and the nonbilayer-forming phospholipids cardiolipin and phosphatidylethanolamine. These protein complexes and phospholipids are embedded in a network of functional interactions. They communicate with each other and additional factors, enabling them to balance different aspects of cristae biogenesis and to dynamically remodel the inner mitochondrial membrane. Genetic alterations disturbing these membrane-shaping factors can lead to human pathologies including fatal encephalopathy, dominant optic atrophy, Leigh syndrome, Parkinson's disease and Barth syndrome.
Collapse
Affiliation(s)
- L Colina-Tenorio
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - P Horten
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - N Pfanner
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - H Rampelt
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Genetic compensation in a stable slc25a46 mutant zebrafish: A case for using F0 CRISPR mutagenesis to study phenotypes caused by inherited disease. PLoS One 2020; 15:e0230566. [PMID: 32208444 PMCID: PMC7092968 DOI: 10.1371/journal.pone.0230566] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
A phenomenon of genetic compensation is commonly observed when an organism with a disease-bearing mutation shows incomplete penetrance of the disease phenotype. Such incomplete phenotypic penetrance, or genetic compensation, is more commonly found in stable knockout models, rather than transient knockdown models. As such, these incidents present a challenge for the disease modeling field, although a deeper understanding of genetic compensation may also hold the key for novel therapeutic interventions. In our study we created a knockout model of slc25a46 gene, which is a recently discovered important player in mitochondrial dynamics, and deleterious mutations in which are known to cause peripheral neuropathy, optic atrophy and cerebellar ataxia. We report a case of genetic compensation in a stable slc25a46 homozygous zebrafish mutant (hereafter referred as “mutant”), in contrast to a penetrant disease phenotype in the first generation (F0) slc25a46 mosaic mutant (hereafter referred as “crispant”), generated with CRISPR/Cas-9 technology. We show that the crispant phenotype is specific and rescuable. By performing mRNA sequencing, we define significant changes in slc25a46 mutant’s gene expression profile, which are largely absent in crispants. We find that among the most significantly altered mRNAs, anxa6 gene stands out as a functionally relevant player in mitochondrial dynamics. We also find that our genetic compensation case does not arise from mechanisms driven by mutant mRNA decay. Our study contributes to the growing evidence of the genetic compensation phenomenon and presents novel insights about Slc25a46 function. Furthermore, our study provides the evidence for the efficiency of F0 CRISPR screens for disease candidate genes, which may be used to advance the field of functional genetics.
Collapse
|
25
|
Eramo MJ, Lisnyak V, Formosa LE, Ryan MT. The ‘mitochondrial contact site and cristae organising system’ (MICOS) in health and human disease. J Biochem 2019; 167:243-255. [DOI: 10.1093/jb/mvz111] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
AbstractThe ‘mitochondrial contact site and cristae organising system’ (MICOS) is an essential protein complex that promotes the formation, maintenance and stability of mitochondrial cristae. As such, loss of core MICOS components disrupts cristae structure and impairs mitochondrial function. Aberrant mitochondrial cristae morphology and diminished mitochondrial function is a pathological hallmark observed across many human diseases such as neurodegenerative conditions, obesity and diabetes mellitus, cardiomyopathy, and in muscular dystrophies and myopathies. While mitochondrial abnormalities are often an associated secondary effect to the pathological disease process, a direct role for the MICOS in health and human disease is emerging. This review describes the role of MICOS in the maintenance of mitochondrial architecture and summarizes both the direct and associated roles of the MICOS in human disease.
Collapse
Affiliation(s)
- Matthew J Eramo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Valerie Lisnyak
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Violitzi F, Perivolidi VI, Thireou T, Grivas I, Haralambous S, Samiotaki M, Panayotou G, Douni E. Mapping Interactome Networks of DNAJC11, a Novel Mitochondrial Protein Causing Neuromuscular Pathology in Mice. J Proteome Res 2019; 18:3896-3912. [PMID: 31550165 DOI: 10.1021/acs.jproteome.9b00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Foteini Violitzi
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672, Vari, Greece
| | - Vasiliki-Iris Perivolidi
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672, Vari, Greece
| | - Trias Thireou
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Ioannis Grivas
- Transgenic Technology Lab and Inflammation Research Group, Hellenic Pasteur Institute, Vas. Sofias 127, 11521, Athens, Greece
| | - Sylva Haralambous
- Transgenic Technology Lab and Inflammation Research Group, Hellenic Pasteur Institute, Vas. Sofias 127, 11521, Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672, Vari, Greece
| | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672, Vari, Greece
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672, Vari, Greece
| |
Collapse
|
27
|
Drosophila Tau Negatively Regulates Translation and Olfactory Long-Term Memory, But Facilitates Footshock Habituation and Cytoskeletal Homeostasis. J Neurosci 2019; 39:8315-8329. [PMID: 31488613 DOI: 10.1523/jneurosci.0391-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023] Open
Abstract
Although the involvement of pathological tau in neurodegenerative dementias is indisputable, its physiological roles have remained elusive in part because its abrogation has been reported without overt phenotypes in mice and Drosophila This was addressed using the recently described Drosophila tauKO and Mi{MIC} mutants and focused on molecular and behavioral analyses. Initially, we show that Drosophila tau (dTau) loss precipitates dynamic cytoskeletal changes in the adult Drosophila CNS and translation upregulation. Significantly, we demonstrate for the first time distinct roles for dTau in adult mushroom body (MB)-dependent neuroplasticity as its downregulation within α'β'neurons impairs habituation. In accord with its negative regulation of translation, dTau loss specifically enhances protein synthesis-dependent long-term memory (PSD-LTM), but not anesthesia-resistant memory. In contrast, elevation of the protein in the MBs yielded premature habituation and depressed PSD-LTM. Therefore, tau loss in Drosophila dynamically alters brain cytoskeletal dynamics and profoundly affects neuronal proteostasis and plasticity.SIGNIFICANCE STATEMENT We demonstrate that despite modest sequence divergence, the Drosophila tau (dTau) is a true vertebrate tau ortholog as it interacts with the neuronal microtubule and actin cytoskeleton. Novel physiological roles for dTau in regulation of translation, long-term memory, and footshock habituation are also revealed. These emerging insights on tau physiological functions are invaluable for understanding the molecular pathways and processes perturbed in tauopathies.
Collapse
|
28
|
Cai T, Hua B, Luo D, Xu L, Cheng Q, Yuan G, Yan Z, Sun N, Hua L, Lu C. The circadian protein CLOCK regulates cell metabolism via the mitochondrial carrier SLC25A10. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1310-1321. [PMID: 30943427 DOI: 10.1016/j.bbamcr.2019.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/11/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
Physiological function and metabolic regulation are the most important outputs of circadian clock controls in mammals. Mitochondrial respiration and ROS production show rhythmic activity. Mitochondrial carriers, which are responsible for mitochondrial substance transfer, are vital for mitochondrial metabolism. Clock (Circadian Locomotor Output Cycles Kaput) is the first core circadian gene identified in mammalian animals. However, whether CLOCK protein can regulate mitochondrial functions via mitochondrial carriers is unclear. Here, we showed that CLOCK can bind to the mitochondrial carrier SLC25A10. For further analysis, we established a Slc25a10-/--Hepa1-6 cell line using CRISPR/Cas9 gene-editing technology. Slc25a10-/--Hepa1-6 cells showed disordered glucose homeostasis, increased oxidative stress levels, and damaged electron transport chains. Next, using an immunoprecipitation assay, we found that amino acids 43-84 and 169-210 in SLC25A10 are key sites that respond to CLOCK binding. Finally, forced expression of wild-type SLC25A10 in Slc25a10-/--Hepa1-6 cells could compensate for the loss of SLC25A10; the decreased glucose metabolism, severe oxidative stress and damaged electron transport chain were recovered. In addition, a mutant Slc25a10 with changes in two key sites did not show a rescue effect. In conclusion, we identified a new protein-protein interaction mechanism in which CLOCK can directly regulate cell metabolism via the mitochondrial membrane transporter SLC25A10. Our study might provide some new insights into the relationship between circadian clock and mitochondrial metabolism.
Collapse
Affiliation(s)
- Tingting Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Bingxuan Hua
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai First People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Lirong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Qianyun Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Gongsheng Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Zuoqin Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Luchun Hua
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Chao Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| |
Collapse
|
29
|
Ogunbona OB, Claypool SM. Emerging Roles in the Biogenesis of Cytochrome c Oxidase for Members of the Mitochondrial Carrier Family. Front Cell Dev Biol 2019; 7:3. [PMID: 30766870 PMCID: PMC6365663 DOI: 10.3389/fcell.2019.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial carrier family (MCF) is a group of transport proteins that are mostly localized to the inner mitochondrial membrane where they facilitate the movement of various solutes across the membrane. Although these carriers represent potential targets for therapeutic application and are repeatedly associated with human disease, research on the MCF has not progressed commensurate to their physiologic and pathophysiologic importance. Many of the 53 MCF members in humans are orphans and lack known transport substrates. Even for the relatively well-studied members of this family, such as the ADP/ATP carrier and the uncoupling protein, there exist fundamental gaps in our understanding of their biological roles including a clear rationale for the existence of multiple isoforms. Here, we briefly review this important family of mitochondrial carriers, provide a few salient examples of their diverse metabolic roles and disease associations, and then focus on an emerging link between several distinct MCF members, including the ADP/ATP carrier, and cytochrome c oxidase biogenesis. As the ADP/ATP carrier is regarded as the paradigm of the entire MCF, its newly established role in regulating translation of the mitochondrial genome highlights that we still have a lot to learn about these metabolite transporters.
Collapse
Affiliation(s)
- Oluwaseun B. Ogunbona
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Steven M. Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
30
|
Segklia K, Stamatakis A, Stylianopoulou F, Lavdas AA, Matsas R. Increased Anxiety-Related Behavior, Impaired Cognitive Function and Cellular Alterations in the Brain of Cend1-deficient Mice. Front Cell Neurosci 2019; 12:497. [PMID: 30760981 PMCID: PMC6361865 DOI: 10.3389/fncel.2018.00497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/03/2018] [Indexed: 01/09/2023] Open
Abstract
Cend1 is a neuronal-lineage specific modulator involved in coordination of cell cycle exit and differentiation of neuronal precursors. We have previously shown that Cend1-/- mice show altered cerebellar layering caused by increased proliferation of granule cell precursors, delayed radial granule cell migration and compromised Purkinje cell differentiation, leading to ataxic gait and deficits in motor coordination. To further characterize the effects of Cend1 genetic ablation we determined herein a range of behaviors, including anxiety and exploratory behavior in the elevated plus maze (EPM), associative learning in fear conditioning, and spatial learning and memory in the Morris water maze (MWM). We observed significant deficits in all tests, suggesting structural and/or functional alterations in brain regions such as the cortex, amygdala and the hippocampus. In agreement with these findings, immunohistochemistry revealed reduced numbers of γ amino butyric acid (GABA) GABAergic interneurons, but not of glutamatergic projection neurons, in the adult cerebral cortex. Reduced GABAergic interneurons were also observed in the amygdala, most notably in the basolateral nucleus. The paucity in GABAergic interneurons in adult Cend1-/- mice correlated with increased proliferation and apoptosis as well as reduced migration of neuronal progenitors from the embryonic medial ganglionic eminence (MGE), the origin of these cells. Further we noted reduced GABAergic neurons and aberrant neurogenesis in the adult dentate gyrus (DG) of the hippocampus, which has been previously shown to confer spatial learning and memory deficits. Our data highlight the necessity of Cend1 expression in the formation of a structurally and functionally normal brain phenotype.
Collapse
Affiliation(s)
- Katerina Segklia
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Antonios Stamatakis
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotini Stylianopoulou
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros A Lavdas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
31
|
Abstract
OBJECTIVES Because the central nervous system (CNS) is the second most frequently affected organ in mitochondrial disorders (MIDs) and since paediatric MIDs are increasingly recognised, it is important to know about the morphological CNS abnormalities on imaging in these patients. This review aims at summarising and discussing current knowledge and recent advances concerning CNS imaging abnormalities in paediatric MIDs. METHODS A systematic literature review was conducted. RESULTS The most relevant CNS abnormalities in paediatric MIDs on imaging include white and grey matter lesions, stroke-like lesions as the morphological equivalent of stroke-like episodes, cerebral atrophy, calcifications, optic atrophy, and lactacidosis. Because these CNS lesions may be seen with or without clinical manifestations, it is important to screen all MID patients for cerebral involvement. Some of these lesions may remain unchanged for years whereas others may be dynamic, either in the sense of progression or regression. Typical dynamic lesions are stroke-like lesions and grey matter lesions. Clinically relevant imaging techniques for visualisation of CNS abnormalities in paediatric MIDs are computed tomography, magnetic resonance (MR) imaging, MR spectroscopy, single-photon emission computed tomography, positron-emission tomography, and angiography. CONCLUSIONS CNS imaging in paediatric MIDs is important for diagnosing and monitoring CNS involvement. It also contributes to the understanding of the underlying pathomechanisms that lead to CNS involvement in MIDs.
Collapse
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- University of Tunis, El Manar and Genomics Platform, Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
32
|
Abrams AJ, Fontanesi F, Tan NBL, Buglo E, Campeanu IJ, Rebelo AP, Kornberg AJ, Phelan DG, Stark Z, Zuchner S. Insights into the genotype-phenotype correlation and molecular function of SLC25A46. Hum Mutat 2018; 39:1995-2007. [PMID: 30178502 DOI: 10.1002/humu.23639] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Recessive SLC25A46 mutations cause a spectrum of neurodegenerative disorders with optic atrophy as a core feature. We report a patient with optic atrophy, peripheral neuropathy, ataxia, but not cerebellar atrophy, who is on the mildest end of the phenotypic spectrum. By studying seven different nontruncating mutations, we found that the stability of the SLC25A46 protein inversely correlates with the severity of the disease and the patient's variant does not markedly destabilize the protein. SLC25A46 belongs to the mitochondrial transporter family, but it is not known to have transport function. Apart from this possible function, SLC25A46 forms molecular complexes with proteins involved in mitochondrial dynamics and cristae remodeling. We demonstrate that the patient's mutation directly affects the SLC25A46 interaction with MIC60. Furthermore, we mapped all of the reported substitutions in the protein onto a 3D model and found that half of them fall outside of the signature carrier motifs associated with transport function. We thus suggest that there are two distinct molecular mechanisms in SLC25A46-associated pathogenesis, one that destabilizes the protein while the other alters the molecular interactions of the protein. These results have the potential to inform clinical prognosis of such patients and indicate a pathway to drug target development.
Collapse
Affiliation(s)
- Alexander J Abrams
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, Florida, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida, USA
| | - Natalie B L Tan
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Elena Buglo
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, Florida, USA
| | - Ion J Campeanu
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adriana P Rebelo
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, Florida, USA
| | - Andrew J Kornberg
- Department of Neurology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Dean G Phelan
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Stephan Zuchner
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, Florida, USA
| |
Collapse
|
33
|
Ivanov I, Atkinson D, Litvinenko I, Angelova L, Andonova S, Mumdjiev H, Pacheva I, Panova M, Yordanova R, Belovejdov V, Petrova A, Bosheva M, Shmilev T, Savov A, Jordanova A. Pontocerebellar hypoplasia type 1 for the neuropediatrician: Genotype-phenotype correlations and diagnostic guidelines based on new cases and overview of the literature. Eur J Paediatr Neurol 2018; 22:674-681. [PMID: 29656927 DOI: 10.1016/j.ejpn.2018.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Pontocerebellar hypoplasia type 1 (PCH1) is a major cause of non-5q spinal muscular atrophy (SMA). We screened 128 SMN1-negative SMA patients from Bulgaria for a frequent mutation -p.G31A in EXOSC3, and performed a literature review of all genetically verified PCH1 cases. Homozygous p.G31A/EXOSC3 mutation was identified in 14 Roma patients, representing three fourths of all our SMN1-negative Roma SMA cases. The phenotype of the p.G31A/EXOSC3 homozygotes was compared to the clinical presentation of all reported to date genetically verified PCH1 cases. Signs of antenatal onset of disease present at birth were common in all PCH1 sub-types except in the homozygous p.D132A/EXOSC3 patients. The PCH1sub-types with early death (between ages 1 day and 17 months), seen in patients with p.G31A/EXOSC3 or SLC25A46 mutations have a SMA type 1-like clinical presentation but with global developmental delay, visual and hearing impairment, with or without microcephaly, nystagmus and optic atrophy. Mutations with milder presentation (homozygous p.D132A/EXOSC3 or VRK1) may display additionally signs of upper motor neuron impairment, dystonia or ataxia and die at age between 5 and 18 years. Other EXOSC3 mutations and EXOSC8 cases are intermediate - SMA type 1-like presentation, spasticity (mostly in EXOSC8) and death between 3 months and 5 years. There is no correlation between neurological onset and duration of life. We add marble-like skin and congenital laryngeal stridor as features of PCH1. We show that imaging signs of cerebellar and pontine hypoplasia may be missing early in infancy. EMG signs of anterior horn neuronopathy may be missing in PCH1 patients with SLC25A46 mutations. Thus, there is considerable phenotypic variability in PCH1, with some cases being more SMA-like, than PCH-like. Detailed clinical evaluation and ethnicity background may guide genetic testing and subsequent genetic counseling.
Collapse
Affiliation(s)
- I Ivanov
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - D Atkinson
- VIB Center for Molecular Neurology, University of Antwerp, Belgium.
| | - I Litvinenko
- Department of Pediatrics, SBALDB "Prof. D-r Ivan Mitev", Medical University-Sofia, Sofia, Bulgaria.
| | - L Angelova
- Department of Medical Genetics, University Hospital "St. Marina", Medical University of Varna, Varna, Bulgaria.
| | - S Andonova
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria.
| | - H Mumdjiev
- Department of Neonatology, Prof. Stoyan Kirkovich University Hospital, Medical Faculty of Tracian University, Stara Zagora, Bulgaria.
| | - I Pacheva
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - M Panova
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - R Yordanova
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - V Belovejdov
- Department of Pathology, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - A Petrova
- Department of Radiology, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - M Bosheva
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - T Shmilev
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - A Savov
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria.
| | - A Jordanova
- VIB Center for Molecular Neurology, University of Antwerp, Belgium; Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria.
| |
Collapse
|
34
|
Zou Z, Huang L, Lin S, He Z, Zhu H, Zhang Y, Fang Q, Luo Y. Prenatal diagnosis of posterior fossa anomalies: Additional value of chromosomal microarray analysis in fetuses with cerebellar hypoplasia. Prenat Diagn 2018; 38:91-98. [PMID: 29171036 DOI: 10.1002/pd.5190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To elucidate the relationship between copy number variations (CNVs) detected by high-resolution chromosomal microarray analysis (CMA) and the type of prenatal posterior fossa anomalies (PFAs), especially cerebellar hypoplasia (CH). METHODS This study involved 77 pregnancies with PFAs who underwent CMA. RESULTS Chromosomal aberrations including pathogenic CNVs and variants of unknown significance were detected in 31.2% (24/77) of all cases by CMA and in 18.5% (12/65) in fetuses with normal karyotypes. The high detection rate of clinically significant CNVs was evident in fetuses with cerebellar hypoplasia (54.6%, 6/11), vermis hypoplasia (33.3%, 1/3), and Dandy-Walker malformation (25.0%, 3/12). Compare with fetuses without other anomalies, cases with CH and additional malformations had the higher CMA detection rate (33.3% vs 88.9%). Three cases of isolated unilateral CH with intact vermis and normal CMA result had normal outcomes. The deletion of 5p15, 6q terminal deletion, and X chromosome aberrations were the most frequent genetic defects associated with cerebellar hypoplasia. CONCLUSION Among fetuses with PFA, those with cerebellar hypoplasia, vermis hypoplasia, or Dandy-Walker malformation are at the highest risk of clinically significant CNVs. Chromosomal microarray analysis revealed the most frequent chromosomal aberrations associated with CH.
Collapse
Affiliation(s)
- Zhiyong Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Linhuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhiming He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hui Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qun Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yanmin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
35
|
Schorr S, van der Laan M. Integrative functions of the mitochondrial contact site and cristae organizing system. Semin Cell Dev Biol 2017; 76:191-200. [PMID: 28923515 DOI: 10.1016/j.semcdb.2017.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022]
Abstract
Mitochondria are complex double-membrane-bound organelles of eukaryotic cells that function as energy-converting powerhouses, metabolic factories and signaling centers. The outer membrane controls the exchange of material and information with other cellular compartments. The inner membrane provides an extended, highly folded surface for selective transport and energy-coupling reactions. It can be divided into an inner boundary membrane and tubular or lamellar cristae membranes that accommodate the oxidative phosphorylation units. Outer membrane, inner boundary membrane and cristae come together at crista junctions, where the mitochondrial contact site and cristae organizing system (MICOS) acts as a membrane-shaping and -connecting scaffold. This peculiar architecture is of pivotal importance for multiple mitochondrial functions. Many elaborate studies in the past years have shed light on the subunit composition and organization of MICOS. In this review article, we summarize these insights and then move on to discuss exciting recent discoveries on the integrative functions of MICOS. Multi-faceted connections to other major players of mitochondrial biogenesis and physiology, like the protein import machineries, the oxidative phosphorylation system, carrier proteins and phospholipid biosynthesis enzymes, are currently emerging. Therefore, we propose that MICOS acts as a central hub in mitochondrial membrane architecture and functionality.
Collapse
Affiliation(s)
- Stefan Schorr
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Saarland University, School of Medicine, 66421, Homburg, Germany
| | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Saarland University, School of Medicine, 66421, Homburg, Germany.
| |
Collapse
|