1
|
Structural features discriminating hybrid histidine kinase Rec domains from response regulator homologs. Nat Commun 2023; 14:1002. [PMID: 36864019 PMCID: PMC9981736 DOI: 10.1038/s41467-023-36597-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
In two-component systems, the information gathered by histidine kinases (HKs) are relayed to cognate response regulators (RRs). Thereby, the phosphoryl group of the auto-phosphorylated HK is transferred to the receiver (Rec) domain of the RR to allosterically activate its effector domain. In contrast, multi-step phosphorelays comprise at least one additional Rec (Recinter) domain that is typically part of the HK and acts as an intermediary for phosphoryl-shuttling. While RR Rec domains have been studied extensively, little is known about discriminating features of Recinter domains. Here we study the Recinter domain of the hybrid HK CckA by X-ray crystallography and NMR spectroscopy. Strikingly, all active site residues of the canonical Rec-fold are pre-arranged for phosphoryl-binding and BeF3- binding does not alter secondary or quaternary structure, indicating the absence of allosteric changes, the hallmark of RRs. Based on sequence-covariation and modeling, we analyze the intra-molecular DHp/Rec association in hybrid HKs.
Collapse
|
2
|
Wülser J, Ernst C, Vetsch D, Emmenegger B, Michel A, Lutz S, Ahrens CH, Vorholt JA, Ledermann R, Fischer HM. Salt- and Osmo-Responsive Sensor Histidine Kinases Activate the Bradyrhizobium diazoefficiens General Stress Response to Initiate Functional Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:604-615. [PMID: 35322688 DOI: 10.1094/mpmi-02-22-0051-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The general stress response (GSR) enables bacteria to sense and overcome a variety of environmental stresses. In alphaproteobacteria, stress-perceiving histidine kinases of the HWE and HisKA_2 families trigger a signaling cascade that leads to phosphorylation of the response regulator PhyR and, consequently, to activation of the GSR σ factor σEcfG. In the nitrogen-fixing bacterium Bradyrhizobium diazoefficiens, PhyR and σEcfG are crucial for tolerance against a variety of stresses under free-living conditions and also for efficient infection of its symbiotic host soybean. However, the molecular players involved in stress perception and activation of the GSR remained largely unknown. In this work, we first showed that a mutant variant of PhyR where the conserved phosphorylatable aspartate residue D194 was replaced by alanine (PhyRD194A) failed to complement the ΔphyR mutant in symbiosis, confirming that PhyR acts as a response regulator. To identify the PhyR-activating kinases in the nitrogen-fixing symbiont, we constructed in-frame deletion mutants lacking single, distinct combinations, or all of the 11 predicted HWE and HisKA_2 kinases, which we named HRXXN histidine kinases HhkA through HhkK. Phenotypic analysis of the mutants and complemented derivatives identified two functionally redundant kinases, HhkA and HhkE, that are required for nodulation competitiveness and during initiation of symbiosis. Using σEcfG-activity reporter strains, we further showed that both HhkA and HhkE activate the GSR in free-living cells exposed to salt and hyperosmotic stress. In conclusion, our data suggest that HhkA and HhkE trigger GSR activation in response to osmotically stressful conditions which B. diazoefficiens encounters during soybean host infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Janine Wülser
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Chantal Ernst
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Dominik Vetsch
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | | | - Anja Michel
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Stefanie Lutz
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
3
|
de Dios R, Santero E, Reyes-Ramírez F. The functional differences between paralogous regulators define the control of the General Stress Response in Sphingopyxis granuli TFA. Environ Microbiol 2022; 24:1918-1931. [PMID: 35049124 PMCID: PMC9303464 DOI: 10.1111/1462-2920.15907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
Sphingopyxis granuli TFA is a contaminant degrading alphaproteobacterium that responds to adverse conditions by inducing the general stress response (GSR), an adaptive response that controls the transcription of a variety of genes to overcome adverse conditions. The core GSR regulators (the response regulator PhyR, the anti‐σ factor NepR and the σ factor EcfG) are duplicated in TFA, being PhyR1 and PhyR2, NepR1 and NepR2 and EcfG1 and EcfG2. Based on multiple genetic, phenotypical and biochemical evidences including in vitro transcription assays, we have assigned distinct functional features to each paralogue and assessed their contribution to the GSR regulation, dictating its timing and the intensity. We show that different stress signals are differentially integrated into the GSR by PhyR1 and PhyR2, therefore producing different levels of GSR activation. We demonstrate in vitro that both NepR1 and NepR2 bind EcfG1 and EcfG2, although NepR1 produces a more stable interaction than NepR2. Conversely, NepR2 interacts with phosphorylated PhyR1 and PhyR2 more efficiently than NepR1. We propose an integrative model where NepR2 would play a dual negative role: it would directly inhibit the σ factors upon activation of the GSR and it would modulate the GSR activity indirectly by titrating the PhyR regulators.
Collapse
Affiliation(s)
- Rubén de Dios
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| |
Collapse
|
4
|
de Dios R, Santero E, Reyes-Ramírez F. Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses. Int J Mol Sci 2021; 22:ijms22083900. [PMID: 33918849 PMCID: PMC8103513 DOI: 10.3390/ijms22083900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023] Open
Abstract
The ability of bacterial core RNA polymerase (RNAP) to interact with different σ factors, thereby forming a variety of holoenzymes with different specificities, represents a powerful tool to coordinately reprogram gene expression. Extracytoplasmic function σ factors (ECFs), which are the largest and most diverse family of alternative σ factors, frequently participate in stress responses. The classification of ECFs in 157 different groups according to their phylogenetic relationships and genomic context has revealed their diversity. Here, we have clustered 55 ECF groups with experimentally studied representatives into two broad classes of stress responses. The remaining 102 groups still lack any mechanistic or functional insight, representing a myriad of systems yet to explore. In this work, we review the main features of ECFs and discuss the different mechanisms controlling their production and activity, and how they lead to a functional stress response. Finally, we focus in more detail on two well-characterized ECFs, for which the mechanisms to detect and respond to stress are complex and completely different: Escherichia coli RpoE, which is the best characterized ECF and whose structural and functional studies have provided key insights into the transcription initiation by ECF-RNAP holoenzymes, and the ECF15-type EcfG, the master regulator of the general stress response in Alphaproteobacteria.
Collapse
|
5
|
Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases. J Bacteriol 2020; 202:JB.00345-20. [PMID: 32571969 DOI: 10.1128/jb.00345-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
In the model organism Caulobacter crescentus, a network of two-component systems involving the response regulators CtrA, DivK, and PleD coordinates cell cycle progression with differentiation. Active phosphorylated CtrA prevents chromosome replication in G1 cells while simultaneously regulating expression of genes required for morphogenesis and development. At the G1-S transition, phosphorylated DivK (DivK∼P) and PleD (PleD∼P) accumulate to indirectly inactivate CtrA, which triggers DNA replication initiation and concomitant cellular differentiation. The phosphatase PleC plays a pivotal role in this developmental program by keeping DivK and PleD phosphorylation levels low during G1, thereby preventing premature CtrA inactivation. Here, we describe CckN as a second phosphatase akin to PleC that dephosphorylates DivK∼P and PleD∼P in G1 cells. However, in contrast to PleC, no kinase activity was detected with CckN. The effects of CckN inactivation are largely masked by PleC but become evident when PleC and DivJ, the major kinase for DivK and PleD, are absent. Accordingly, mild overexpression of cckN restores most phenotypic defects of a pleC null mutant. We also show that CckN and PleC are proteolytically degraded in a ClpXP-dependent way before the onset of the S phase. Surprisingly, known ClpX adaptors are dispensable for PleC and CckN proteolysis, raising the possibility that as yet unidentified proteolytic adaptors are required for the degradation of both phosphatases. Since cckN expression is induced in stationary phase, depending on the stress alarmone (p)ppGpp, we propose that CckN acts as an auxiliary factor responding to environmental stimuli to modulate CtrA activity under suboptimal conditions.IMPORTANCE Two-component signal transduction systems are widely used by bacteria to adequately respond to environmental changes by adjusting cellular parameters, including the cell cycle. In Caulobacter crescentus, PleC acts as a phosphatase that indirectly protects the response regulator CtrA from premature inactivation during the G1 phase of the cell cycle. Here, we provide genetic and biochemical evidence that PleC is seconded by another phosphatase, CckN. The activity of PleC and CckN phosphatases is restricted to the G1 phase since both proteins are degraded by ClpXP protease before the G1-S transition. Degradation is independent of any known proteolytic adaptors and relies, in the case of CckN, on an unsuspected N-terminal degron. Our work illustrates a typical example of redundant functions between two-component proteins.
Collapse
|
6
|
de Dios R, Rivas-Marin E, Santero E, Reyes-Ramírez F. Two paralogous EcfG σ factors hierarchically orchestrate the activation of the General Stress Response in Sphingopyxis granuli TFA. Sci Rep 2020; 10:5177. [PMID: 32198475 PMCID: PMC7083833 DOI: 10.1038/s41598-020-62101-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Under ever-changing environmental conditions, the General Stress Response (GSR) represents a lifesaver for bacteria in order to withstand hostile situations. In α-proteobacteria, the EcfG-type extracytoplasmic function (ECF) σ factors are the key activators of this response at the transcriptional level. In this work, we address the hierarchical function of the ECF σ factor paralogs EcfG1 and EcfG2 in triggering the GSR in Sphingopyxis granuli TFA and describe the role of EcfG2 as global switch of this response. In addition, we define a GSR regulon for TFA and use in vitro transcription analysis to study the relative contribution of each EcfG paralog to the expression of selected genes. We show that the features of each promoter ultimately dictate this contribution, though EcfG2 always produced more transcripts than EcfG1 regardless of the promoter. These first steps in the characterisation of the GSR in TFA suggest a tight regulation to orchestrate an adequate protective response in order to survive in conditions otherwise lethal.
Collapse
Affiliation(s)
- Rubén de Dios
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain.
| |
Collapse
|
7
|
Stein BJ, Fiebig A, Crosson S. Feedback Control of a Two-Component Signaling System by an Fe-S-Binding Receiver Domain. mBio 2020; 11:e03383-19. [PMID: 32184258 PMCID: PMC7078487 DOI: 10.1128/mbio.03383-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/05/2020] [Indexed: 01/19/2023] Open
Abstract
Two-component signaling systems (TCSs) function to detect environmental cues and transduce this information into a change in transcription. In its simplest form, TCS-dependent regulation of transcription entails phosphoryl-transfer from a sensory histidine kinase to its cognate DNA-binding receiver protein. However, in certain cases, auxiliary proteins may modulate TCSs in response to secondary environmental cues. Caulobacter crescentus FixT is one such auxiliary regulator. FixT is composed of a single receiver domain and functions as a feedback inhibitor of the FixL-FixJ (FixLJ) TCS, which regulates the transcription of genes involved in adaptation to microaerobiosis. We sought to define the impact of fixT on Caulobacter cell physiology and to understand the molecular mechanism by which FixT represses FixLJ signaling. fixT deletion results in excess production of porphyrins and premature entry into stationary phase, demonstrating the importance of feedback inhibition of the FixLJ signaling system. Although FixT is a receiver domain, it does not affect dephosphorylation of the oxygen sensor kinase FixL or phosphoryl-transfer from FixL to its cognate receiver FixJ. Rather, FixT represses FixLJ signaling by inhibiting the FixL autophosphorylation reaction. We have further identified a 4-cysteine motif in Caulobacter FixT that binds an Fe-S cluster and protects the protein from degradation by the Lon protease. Our data support a model in which the oxidation of this Fe-S cluster promotes the degradation of FixT in vivo This proteolytic mechanism facilitates clearance of the FixT feedback inhibitor from the cell under normoxia and resets the FixLJ system for a future microaerobic signaling event.IMPORTANCE Two-component signal transduction systems (TCSs) are broadly conserved in the bacterial kingdom and generally contain two molecular components, a sensor histidine kinase and a receiver protein. Sensor histidine kinases alter their phosphorylation state in direct response to a physical or chemical cue, whereas receiver proteins "receive" the phosphoryl group from the kinase to regulate a change in cell physiology. We have discovered that a single-domain receiver protein, FixT, binds an Fe-S cluster and controls Caulobacter heme homeostasis though its function as a negative-feedback regulator of the oxygen sensor kinase FixL. We provide evidence that the Fe-S cluster protects FixT from Lon-dependent proteolysis in the cell and endows FixT with the ability to function as a second, autonomous oxygen/redox sensor in the FixL-FixJ signaling pathway. This study introduces a novel mechanism of regulated TCS feedback control by an Fe-S-binding receiver domain.
Collapse
Affiliation(s)
- Benjamin J Stein
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Gottschlich L, Geiser P, Bortfeld-Miller M, Field CM, Vorholt JA. Complex general stress response regulation in Sphingomonas melonis Fr1 revealed by transcriptional analyses. Sci Rep 2019; 9:9404. [PMID: 31253827 PMCID: PMC6599016 DOI: 10.1038/s41598-019-45788-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/12/2019] [Indexed: 01/31/2023] Open
Abstract
The general stress response (GSR) represents an important trait to survive in the environment by leading to multiple stress resistance. In alphaproteobacteria, the GSR is under the transcriptional control of the alternative sigma factor EcfG. Here we performed transcriptome analyses to investigate the genes controlled by EcfG of Sphingomonas melonis Fr1 and the plasticity of this regulation under stress conditions. We found that EcfG regulates genes for proteins that are typically associated with stress responses. Moreover, EcfG controls regulatory proteins, which likely fine-tune the GSR. Among these, we identified a novel negative GSR feedback regulator, termed NepR2, on the basis of gene reporter assays, phenotypic analyses, and biochemical assays. Transcriptional profiling of signaling components upstream of EcfG under complex stress conditions showed an overall congruence with EcfG-regulated genes. Interestingly however, we found that the GSR is transcriptionally linked to the regulation of motility and biofilm formation via the single domain response regulator SdrG and GSR-activating histidine kinases. Altogether, our findings indicate that the GSR in S. melonis Fr1 underlies a complex regulation to optimize resource allocation and resilience in stressful and changing environments.
Collapse
Affiliation(s)
- Lisa Gottschlich
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Petra Geiser
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Miriam Bortfeld-Miller
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Christopher M Field
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| |
Collapse
|
9
|
Fiebig A, Varesio LM, Alejandro Navarreto X, Crosson S. Regulation of the Erythrobacter litoralis DSM 8509 general stress response by visible light. Mol Microbiol 2019; 112:442-460. [PMID: 31125464 DOI: 10.1111/mmi.14310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/23/2023]
Abstract
Extracytoplasmic function (ECF) sigma factors are environmentally responsive transcriptional regulators. In Alphaproteobacteria, σEcfG activates general stress response (GSR) transcription and protects cells from multiple stressors. A phosphorylation-dependent protein partner switching mechanism, involving HWE/HisKA_2-family histidine kinases, underlies σEcfG activation. The identity of these sensor kinases and the signals that regulate them remain largely uncharacterized. We have developed the aerobic anoxygenic photoheterotroph (AAP), Erythrobacter litoralis DSM 8509, as a comparative genetic model to investigate GSR. Using this system, we sought to define the role of visible light and a photosensory HWE kinase, LovK, in regulation of GSR transcription. We identified three HWE kinase genes that collectively control GSR: gsrK and lovK are activators, while gsrP is a repressor. In wild-type cells, GSR transcription is activated in the dark and nearly off in the light, and the opposing activities of gsrK and gsrP are sufficient to modulate GSR transcription in response to illumination. In the absence of gsrK and gsrP, lovK alone is sufficient to activate GSR transcription. lovK is a more robust activator in the dark, and light-dependent regulation by LovK requires that its N-terminal LOV domain be photochemically active. Our studies establish a role for visible light and an ensemble of HWE kinases in light-dependent regulation of GSR transcription in E. litoralis.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Lydia M Varesio
- The Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.,The Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
10
|
Dikiy I, Gardner KH. Shining light on the alphaproteobacterial general stress response: Comment on: Fiebig et al., Mol Microbiol, 2019. Mol Microbiol 2019; 112:438-441. [PMID: 31120626 DOI: 10.1111/mmi.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 11/26/2022]
Abstract
The general stress response (GSR) allows many bacterial species to react to myriad different stressors. In Alphaproteobacteria, this signaling pathway proceeds through the partner-switching PhyR-EcfG sigma-factor mechanism and is involved in multiple life processes, including virulence in Brucella abortus. To date, details of the alphaproteobacterial GSR signaling pathway have been determined using genetic and biochemical work on a diverse set of species distributed throughout the clade. Fiebig and co-workers establish Erythrobacter litoralis DSM 8509 as a genetically tractable lab strain and use it to both directly and indirectly delineate photoresponsive GSR pathways mediated by multiple HWE/HisKA_2 histidine kinases. The existence of a new phototrophic lab strain allows researchers to compare the GSR across different Alphaproteobacteria, as well as study the interplay between the GSR and phototrophy. Additionally, the discovery of new HWE/HisKA_2 kinases regulating the GSR poses new questions about how different stimuli feed into this widespread stress pathway.
Collapse
Affiliation(s)
- Igor Dikiy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, USA
| | - Kevin H Gardner
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, USA.,Programs in Biochemistry, Biology and Chemistry, CUNY Graduate Center, New York, NY, USA
| |
Collapse
|
11
|
Abstract
Response regulators function as the output components of two-component systems, which couple the sensing of environmental stimuli to adaptive responses. Response regulators typically contain conserved receiver (REC) domains that function as phosphorylation-regulated switches to control the activities of effector domains that elicit output responses. This modular design is extremely versatile, enabling different regulatory strategies tuned to the needs of individual signaling systems. This review summarizes structural features that underlie response regulator function. An abundance of atomic resolution structures and complementary biochemical data have defined the mechanisms for response regulator enzymatic activities, revealed trends in regulatory strategies utilized by response regulators of different subfamilies, and provided insights into interactions of response regulators with their cognate histidine kinases. Among the hundreds of thousands of response regulators identified, variations abound. This article provides a framework for understanding structural features that enable function of canonical response regulators and a basis for distinguishing noncanonical configurations.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| | - Sophie Bouillet
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| |
Collapse
|