1
|
Zhong D, Li X, Yin Z, Chen P, Li Y, Tian J, Wang L, Liu H, Yin K, Zhu L, Kong L, Chen K, Li Y, Hong C, Wang C. Circ-ITCH promotes the ubiquitination degradation of HOXC10 to facilitate osteogenic differentiation in disuse osteoporosis through stabilizing BRCA1 mRNA via IGF2BP2-mediated m 6A modification. J Transl Med 2025; 23:376. [PMID: 40148953 PMCID: PMC11951756 DOI: 10.1186/s12967-024-06050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/25/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) facilitated by mechanical loading is a promising therapy for disuse osteoporosis (DOP), however, it is difficult to implement mechanical loading for a majority of patients. Our study aims to identify circ-ITCH-mediated novel approach to facilitate osteogenic differentiation in DOP. METHODS A rat DOP model and human BM-MSCs under microgravity condition were generated as in vivo and in vitro models of DOP, respectively. The bone mineral density (BMD) and bone parameters were examined in rats. The histological changes of bones and mineralization were monitored by H&E, Alcian blue and Alizarin red S staining. Co-IP was employed to examine the ubiquitination of HOXC10 and the interaction between HOXC10 and BRCA1. The direct associations among circ-ITCH, IGFBP2 and BRCA1 mRNA were assessed by RIP, FISH and RNA pull-down assays. RESULTS Circ-ITCH was downregulated in rat model of DOP and BM-MSCs under microgravity stimulation. Circ-ITCH overexpression promoted osteogenic differentiation in BM-MSCs under microgravity condition. The altered bone parameters, such as BMD, trabecular number (Tb.N), trabecular separation (Tb.Sp), trabecular thickness (Tb.Th), and bone microstructure in DOP rats were rescued by circ-ITCH overexpression. Mechanistically, circ-ITCH enhanced the ubiquitination degradation of HOXC10 through enhancing BRCA1 mRNA stability. Circ-ITCH directly bound to IGF2BP2 protein to stabilize BRCA1 mRNA via m6A modification, thus facilitating osteogenic differentiation in BM-MSCs under microgravity condition. CONCLUSION Circ-ITCH stabilized BRCA1 mRNA via IGF2BP2-mediated m6A modification, thereby facilitating the ubiquitination degradation of HOXC10 to promote osteogenic differentiation in DOP.
Collapse
Affiliation(s)
- Da Zhong
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Yin
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Peng Chen
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Long Wang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- The School of Medicine, Nankai University, Tianjin, China
| | - Hua Liu
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Ke Yin
- The First Affiliated Hospital, Department of Orthopedics, Hengyang Medical School, University of South China, Hengyang, China
| | - Lemei Zhu
- School of Public Health, Changsha Medical University, Changsha, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Kunli Chen
- Department of Rehabilitation Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yaochun Li
- Department of Rehabilitation Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chungu Hong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chenggong Wang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Orthopaedics, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
2
|
Yamaguchi H, Kitami M, Li M, Swaminathan S, Darabi R, Takemaru KI, Komatsu Y. Disruption of distal appendage protein CEP164 causes skeletal malformation in mice. Biochem Biophys Res Commun 2024; 741:151063. [PMID: 39612644 PMCID: PMC12011135 DOI: 10.1016/j.bbrc.2024.151063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
The primary cilium is a cellular antenna to orchestrate cell growth and differentiation. Deficient or dysfunctional cilia are frequently linked to skeletal abnormalities. Previous research demonstrated that ciliary proteins regulating axoneme elongation are essential for skeletogenesis. However, the role of the ciliary proteins responsible for initiating cilium assembly in skeletal development remains unknown. Here, we investigate the function of centrosomal protein of 164 kDa (CEP164), a key ciliogenesis regulator that localizes at the distal appendages of the mother centriole, during skeletal development in mice. Interestingly, the mesodermal cell-specific Cep164 deletion resulted in severe bone defects and osteoblast-specific deletion of Cep164 affected bone development. In contrast, chondrocyte-specific Cep164 deletion did not cause overt skeletal abnormalities, indicating that CEP164 functions in a cell type-specific manner within skeletal tissues. Importantly, Cep164-mutant osteoblasts not only displayed a lack of cilia but also showed an increased number of γH2AX-positive cells, indicating the involvement of defective DNA damage response in the etiology of skeletal lesions of Cep164-mutant mice. These results demonstrate that CEP164 has both ciliary and non-ciliary functions to control osteoblast growth and survival. Our study therefore reveals a novel understanding of the pathogenesis of skeletal ciliopathies associated with CEP164 dysfunction.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Megumi Kitami
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Margaret Li
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Kinesiology, Rice University Wiess School of Natural Science, Houston, TX, USA
| | - Sowmya Swaminathan
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Radbod Darabi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA; Institute of Muscle Biology and Cachexia, University of Houston, Houston, TX, USA
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
3
|
Lee D, Ban HJ, Hong KW, Lee JY, Cha S. High heritability of human facial traits reveals associations with CNTLN, BRCA1, and TMPRSS6 loci in Korean families. Heliyon 2024; 10:e39173. [PMID: 39640822 PMCID: PMC11620094 DOI: 10.1016/j.heliyon.2024.e39173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Facial features are determined by interactions between genetic and environmental factors. However, genes underlying facial similarities in individuals from the same family remain less explored. To identify genetic variants associated with heritable facial features, we investigated familial (parent-offspring) associations and estimated familial correlation and heritability using 39 facial measurements in 408 individuals from 117 Korean families. Facial trait heritability ranged from 0.124 to 0.669. Longitudinal facial growth-related traits were highly heritable, including distances from the nasion to right alare (h 2 = 0.668898), pogonion to midendocanthion (h 2 = 0.661557), subnasale to midendocanthion (h 2 = 0.656882), and morphological facial height (h 2 = 0. 654376). We identified the top three significant genome-wide associated variants in the eye, nose, and lip-jaw regions. CNTLN (rs10511632: beta = -0.02696, p = 1.146 × 10-9) and BRCA1 (rs397509305: beta = 0.02741, p = 7.17 × 10-9) loci were associated with distance from the nasion to the right alare. The TMPRSS6 (rs228913: beta = 0.05101, p = 3.68 × 10-9) locus was associated with the distance from the labiale superius to the pogonion and lower facial height. These associations were maintained in an independent unrelated population. In conclusion, we identified new gene variants associated with longitudinal facial morphology that may affect individual facial differences, which has important implications for clinical and forensic applications.
Collapse
Affiliation(s)
- Donghyun Lee
- Oneomics Co., Ltd., Bucheon-si, Gyeonggi-do, 14585, South Korea
| | - Hyo-Jeong Ban
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Kyung-Won Hong
- Theragen Bio Co., Ltd., Seongnam-si, Gyeonggi-do, 13493, South Korea
| | - Jong Young Lee
- Oneomics Co., Ltd., Bucheon-si, Gyeonggi-do, 14585, South Korea
| | - Seongwon Cha
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| |
Collapse
|
4
|
Smeriglio P, Zalc A. Cranial Neural Crest Cells Contribution to Craniofacial Bone Development and Regeneration. Curr Osteoporos Rep 2023; 21:624-631. [PMID: 37421571 DOI: 10.1007/s11914-023-00804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize (i) the latest evidence on cranial neural crest cells (CNCC) contribution to craniofacial development and ossification; (ii) the recent discoveries on the mechanisms responsible for their plasticity; and (iii) the newest procedures to ameliorate maxillofacial tissue repair. RECENT FINDINGS CNCC display a remarkable differentiation potential that exceeds the capacity of their germ layer of origin. The mechanisms by which they expand their plasticity was recently described. Their ability to participate to craniofacial bone development and regeneration open new perspectives for treatments of traumatic craniofacial injuries or congenital syndromes. These conditions can be life-threatening, require invasive maxillofacial surgery and can leave deep sequels on our health or quality of life. With accumulating evidence showing how CNCC-derived stem cells potential can ameliorate craniofacial reconstruction and tissue repair, we believe a deeper understanding of the mechanisms regulating CNCC plasticity is essential to ameliorate endogenous regeneration and improve tissue repair therapies.
Collapse
Affiliation(s)
- Piera Smeriglio
- Centre de Recherche en Myologie, Institut de Myologie, INSERM, Sorbonne Université, 75013, Paris, France.
| | - Antoine Zalc
- Institut Cochin, CNRS, INSERM, Université Paris Cité, 75014, Paris, France.
| |
Collapse
|
5
|
Ueharu H, Mishina Y. BMP signaling during craniofacial development: new insights into pathological mechanisms leading to craniofacial anomalies. Front Physiol 2023; 14:1170511. [PMID: 37275223 PMCID: PMC10232782 DOI: 10.3389/fphys.2023.1170511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Cranial neural crest cells (NCCs) are the origin of the anterior part of the face and the head. Cranial NCCs are multipotent cells giving rise to bones, cartilage, adipose-tissues in the face, and neural cells, melanocytes, and others. The behavior of cranial NCCs (proliferation, cell death, migration, differentiation, and cell fate specification) are well regulated by several signaling pathways; abnormalities in their behavior are often reported as causative reasons for craniofacial anomalies (CFAs), which occur in 1 in 100 newborns in the United States. Understanding the pathological mechanisms of CFAs would facilitate strategies for identifying, preventing, and treating CFAs. Bone morphogenetic protein (BMP) signaling plays a pleiotropic role in many cellular processes during embryonic development. We and others have reported that abnormalities in BMP signaling in cranial NCCs develop CFAs in mice. Abnormal levels of BMP signaling cause miscorrelation with other signaling pathways such as Wnt signaling and FGF signaling, which mutations in the signaling pathways are known to develop CFAs in mice and humans. Recent Genome-Wide Association Studies and exome sequencing demonstrated that some patients with CFAs presented single nucleotide polymorphisms (SNPs), missense mutations, and duplication of genes related to BMP signaling activities, suggesting that defects in abnormal BMP signaling in human embryos develop CFAs. There are still a few cases of BMP-related patients with CFAs. One speculation is that human embryos with mutations in coding regions of BMP-related genes undergo embryonic lethality before developing the craniofacial region as well as mice development; however, no reports are available that show embryonic lethality caused by BMP mutations in humans. In this review, we will summarize the recent advances in the understanding of BMP signaling during craniofacial development in mice and describe how we can translate the knowledge from the transgenic mice to CFAs in humans.
Collapse
|
6
|
Tian Y, Lin J, Li X, Zhu G, Fan L, Lou S, Li D, Pan Y. Mechanical dissection and culture of mouse cranial neural crest cells. Birth Defects Res 2023; 115:417-429. [PMID: 36621938 DOI: 10.1002/bdr2.2148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023]
Abstract
Owing to the contribution of cranial neural crest cells (CNCCs) to the majority of craniofacial structures, they have been studied extensively for the pathogenesis of craniofacial diseases. To investigate and summarize how to isolate and culture the CNCCs from wild-type mice, a literature search was performed in online databases (PubMed and Web of Science) using optimized keywords "mouse," "cranial neural crest cell" and "culture." The literature was checked by two investigators according to the screening and exclusion criteria. Initially, 197 studies were retrieved from PubMed and 169 from Web of Science, and after excluding replicate studies, 293 articles were considered. Finally, 17 studies met all the criteria and were included in this review. The results showed that obtaining purified stem cells and balancing the need to promote cell growth and prevent unwanted early cell differentiation were the two key points in the isolation and culture of CNCCs. However, no standard criteria are available for answering these questions. Thus, it is important to emphasize the necessity for standardization of CNCC isolation, culture, and identification in research on craniofacial diseases.
Collapse
Affiliation(s)
- Yu Tian
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junyan Lin
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaofeng Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guirong Zhu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liwen Fan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Shu Lou
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Dandan Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
7
|
Ueharu H, Pan H, Hayano S, Zapien-Guerra K, Yang J, Mishina Y. Augmentation of bone morphogenetic protein signaling in cranial neural crest cells in mice deforms skull base due to premature fusion of intersphenoidal synchondrosis. Genesis 2023; 61:e23509. [PMID: 36622051 PMCID: PMC10757424 DOI: 10.1002/dvg.23509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023]
Abstract
Craniofacial anomalies (CFAs) are a diverse group of disorders affecting the shapes of the face and the head. Malformation of the cranial base in humans leads CFAs, such as midfacial hypoplasia and craniosynostosis. These patients have significant burdens associated with breathing, speaking, and chewing. Invasive surgical intervention is the current primary option to correct these structural deficiencies. Understanding molecular cellular mechanism for craniofacial development would provide novel therapeutic options for CFAs. In this study, we found that enhanced bone morphogenetic protein (BMP) signaling in cranial neural crest cells (NCCs) (P0-Cre;caBmpr1a mice) causes premature fusion of intersphenoid synchondrosis (ISS) resulting in leading to short snouts and hypertelorism. Histological analyses revealed reduction of proliferation and higher cell death in ISS at postnatal day 3. We demonstrated to prevent the premature fusion of ISS in P0-Cre;caBmpr1a mice by injecting a p53 inhibitor Pifithrin-α to the pregnant mother from E15.5 to E18.5, resulting in rescue from short snouts and hypertelorism. We further demonstrated to prevent premature fusion of cranial sutures in P0-Cre;caBmpr1a mice by injecting Pifithrin-α through E8.5 to E18.5. These results suggested that enhanced BMP-p53-induced cell death in cranial NCCs causes premature fusion of ISS and sutures in time-dependent manner.
Collapse
Affiliation(s)
- Hiroki Ueharu
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Satoru Hayano
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Karen Zapien-Guerra
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Jingwen Yang
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Otálora-Otálora BA, González Prieto C, Guerrero L, Bernal-Forigua C, Montecino M, Cañas A, López-Kleine L, Rojas A. Identification of the Transcriptional Regulatory Role of RUNX2 by Network Analysis in Lung Cancer Cells. Biomedicines 2022; 10:3122. [PMID: 36551878 PMCID: PMC9775089 DOI: 10.3390/biomedicines10123122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
The use of a new bioinformatics pipeline allowed the identification of deregulated transcription factors (TFs) coexpressed in lung cancer that could become biomarkers of tumor establishment and progression. A gene regulatory network (GRN) of lung cancer was created with the normalized gene expression levels of differentially expressed genes (DEGs) from the microarray dataset GSE19804. Moreover, coregulatory and transcriptional regulatory network (TRN) analyses were performed for the main regulators identified in the GRN analysis. The gene targets and binding motifs of all potentially implicated regulators were identified in the TRN and with multiple alignments of the TFs' target gene sequences. Six transcription factors (E2F3, FHL2, ETS1, KAT6B, TWIST1, and RUNX2) were identified in the GRN as essential regulators of gene expression in non-small-cell lung cancer (NSCLC) and related to the lung tumoral process. Our findings indicate that RUNX2 could be an important regulator of the lung cancer GRN through the formation of coregulatory complexes with other TFs related to the establishment and progression of lung cancer. Therefore, RUNX2 could become an essential biomarker for developing diagnostic tools and specific treatments against tumoral diseases in the lung after the experimental validation of its regulatory function.
Collapse
Affiliation(s)
- Beatriz Andrea Otálora-Otálora
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | | | - Lucia Guerrero
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Camila Bernal-Forigua
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
| | - Martin Montecino
- Institute of Biomedical Sciences, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370134, Chile
| | - Alejandra Cañas
- Departamento de Medicina Interna, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
- Unidad de Neumología, Hospital Universitario San Ignacio, Bogotá 110211, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Adriana Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
| |
Collapse
|
9
|
Yang J, Qi L, Chiang HC, Yuan B, Li R, Hu Y. BRCA1 Antibodies Matter. Int J Biol Sci 2021; 17:3239-3254. [PMID: 34421362 PMCID: PMC8375228 DOI: 10.7150/ijbs.63115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/11/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) encodes a tumor suppressor that is frequently mutated in familial breast and ovarian cancer patients. BRCA1 functions in multiple important cellular processes including DNA damage repair, cell cycle checkpoint activation, protein ubiquitination, chromatin remodeling, transcriptional regulation, as well as R-loop formation and apoptosis. A large number of BRCA1 antibodies have been generated and become commercially available over the past three decades, however, many commercial antibodies are poorly characterized and, when widely used, led to unreliable data. In search of reliable and specific BRCA1 antibodies (Abs), particularly antibodies recognizing mouse BRCA1, we performed a rigorous validation of a number of commercially available anti-BRCA1 antibodies, using proper controls in a panel of validation applications, including Western blot (WB), immunoprecipitation (IP), immunoprecipitation-mass spectrometry (IP-MS), chromatin immunoprecipitation (ChIP) and immunofluorescence (IF). Furthermore, we assessed the specificity of these antibodies to detect mouse BRCA1 protein through the use of testis tissue and mouse embryonic fibroblasts (MEFs) from Brca1+/+ and Brca1Δ11/Δ11 mice. We find that Ab1, D-9, 07-434 (for recognizing human BRCA1) and 287.17, 440621, BR-64 (for recognizing mouse BRCA1) are specific with high quality performance in the indicated assays. We share these results here with the goal of helping the community combat the common challenges associated with anti-BRCA1 antibody specificity and reproducibility and, hopefully, better understanding BRCA1 functions at cellular and tissue levels.
Collapse
Affiliation(s)
- Jing Yang
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Leilei Qi
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Huai-Chin Chiang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Bin Yuan
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
10
|
Fitriasari S, Trainor PA. Diabetes, Oxidative Stress, and DNA Damage Modulate Cranial Neural Crest Cell Development and the Phenotype Variability of Craniofacial Disorders. Front Cell Dev Biol 2021; 9:644410. [PMID: 34095113 PMCID: PMC8174788 DOI: 10.3389/fcell.2021.644410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Craniofacial malformations are among the most common birth defects in humans and they often have significant detrimental functional, aesthetic, and social consequences. To date, more than 700 distinct craniofacial disorders have been described. However, the genetic, environmental, and developmental origins of most of these conditions remain to be determined. This gap in our knowledge is hampered in part by the tremendous phenotypic diversity evident in craniofacial syndromes but is also due to our limited understanding of the signals and mechanisms governing normal craniofacial development and variation. The principles of Mendelian inheritance have uncovered the etiology of relatively few complex craniofacial traits and consequently, the variability of craniofacial syndromes and phenotypes both within families and between families is often attributed to variable gene expression and incomplete penetrance. However, it is becoming increasingly apparent that phenotypic variation is often the result of combinatorial genetic and non-genetic factors. Major non-genetic factors include environmental effectors such as pregestational maternal diabetes, which is well-known to increase the risk of craniofacial birth defects. The hyperglycemia characteristic of diabetes causes oxidative stress which in turn can result in genotoxic stress, DNA damage, metabolic alterations, and subsequently perturbed embryogenesis. In this review we explore the importance of gene-environment associations involving diabetes, oxidative stress, and DNA damage during cranial neural crest cell development, which may underpin the phenotypic variability observed in specific craniofacial syndromes.
Collapse
Affiliation(s)
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
11
|
Yamaguchi H, Kitami K, Wu X, He L, Wang J, Wang B, Komatsu Y. Alteration of DNA Damage Response Causes Cleft Palate. Front Physiol 2021; 12:649492. [PMID: 33854442 PMCID: PMC8039291 DOI: 10.3389/fphys.2021.649492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cleft palate is one of the most common craniofacial birth defects, however, little is known about how changes in the DNA damage response (DDR) cause cleft palate. To determine the role of DDR during palatogenesis, the DDR process was altered using a pharmacological intervention approach. A compromised DDR caused by a poly (ADP-ribose) polymerase (PARP) enzyme inhibitor resulted in cleft palate in wild-type mouse embryos, with increased DNA damage and apoptosis. In addition, a mouse genetic approach was employed to disrupt breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2), known as key players in DDR. An ectomesenchymal-specific deletion of Brca1 or Brca2 resulted in cleft palate due to attenuation of cell survival. This was supported by the phenotypes of the ectomesenchymal-specific Brca1/Brca2 double-knockout mice. The cleft palate phenotype was rescued by superimposing p53 null alleles, demonstrating that the BRCA1/2-p53 DDR pathway is critical for palatogenesis. Our study highlights the importance of DDR in palatogenesis.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Kohei Kitami
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Xiao Wu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Li He
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Jianbo Wang
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Bin Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States.,Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
12
|
Wyatt BH, Raymond TO, Lansdon LA, Darbro BW, Murray JC, Manak JR, Dickinson AJG. Using an aquatic model, Xenopus laevis, to uncover the role of chromodomain 1 in craniofacial disorders. Genesis 2021; 59:e23394. [PMID: 32918369 PMCID: PMC10701884 DOI: 10.1002/dvg.23394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
The chromodomain family member chromodomain 1 (CHD1) has been shown to have numerous critical molecular functions including transcriptional regulation, splicing, and DNA repair. Complete loss of function of this gene is not compatible with life. On the other hand, missense and copy number variants of CHD1 can result in intellectual disabilities and craniofacial malformations in human patients including cleft palate and Pilarowski-Bjornsson Syndrome. We have used the aquatic developmental model organism Xenopus laevis, to determine a specific role for Chd1 in such cranioafcial disorders. Protein and gene knockdown techniques in Xenopus, including antisense oligos and mosaic Crispr/Cas9-mediated mutagenesis, recapitulated the craniofacial defects observed in humans. Further analysis indicated that embryos deficient in Chd1 had defects in cranial neural crest development and jaw cartilage morphology. Additionally, flow cytometry and immunohistochemistry revealed that decreased Chd1 resulted in increased in apoptosis in the developing head. Together, these experiments demonstrate that Chd1 is critical for fundamental processes and cell survival in craniofacial development. We also presented evidence that Chd1 is regulated by retinoic acid signaling during craniofacial development. Expression levels of chd1 mRNA, specifically in the head, were increased by RAR agonist exposure and decreased upon antagonist treatment. Subphenotypic levels of an RAR antagonist and Chd1 morpholinos synergized to result in orofacial defects. Further, RAR DNA binding sequences (RAREs) were detected in chd1 regulatory regions by bioinformatic analysis. In summary, by combining human genetics and experiments in an aquatic model we now have a better understanding of the role of CHD1 in craniofacial disorders.
Collapse
Affiliation(s)
- Brent H. Wyatt
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Thomas O. Raymond
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Lisa A. Lansdon
- Department of Biology, University of Iowa, Iowa City, Iowa
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri
| | | | | | - John Robert Manak
- Department of Biology, University of Iowa, Iowa City, Iowa
- Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
13
|
Wang Y, Ping L, Luan X, Chen Y, Fan X, Li L, Liu Y, Wang P, Zhang S, Zhang B, Chen X. A Mutation in VWA1, Encoding von Willebrand Factor A Domain-Containing Protein 1, Is Associated With Hemifacial Microsomia. Front Cell Dev Biol 2020; 8:571004. [PMID: 33015062 PMCID: PMC7509151 DOI: 10.3389/fcell.2020.571004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Background Hemifacial microsomia (HFM) is a type of rare congenital syndrome caused by developmental disorders of the first and second pharyngeal arches that occurs in one out of 5,600 live births. There are significant gaps in our knowledge of the pathogenic genes underlying this syndrome. Methods Whole exome sequencing (WES) was performed on five patients, one asymptomatic carrier, and two marry-in members of a five-generation pedigree. Structure of WARP (product of VWA1) was predicted using the Phyre2 web portal. In situ hybridization and vwa1-knockdown/knockout studies in zebrafish using morpholino and CRISPR/Cas9 techniques were performed. Cartilage staining and immunofluorescence were carried out. Results Through WES and a set of filtration, we identified a c.G905A:p.R302Q point mutation in a novel candidate pathogenic gene, VWA1. The Phyre2 web portal predicted alterations in secondary and tertiary structures of WARP, indicating changes in its function as well. Predictions of protein-to-protein interactions in five pathways related to craniofacial development revealed possible interactions with four proteins in the FGF pathway. Knockdown/knockout studies of the zebrafish revealed deformities of pharyngeal cartilage. A decrease of the proliferation of cranial neural crest cells (CNCCs) and alteration of the structure of pharyngeal chondrocytes were observed in the morphants as well. Conclusion Our data suggest that a mutation in VWA1 is functionally linked to HFM through suppression of CNCC proliferation and disruption of the organization of pharyngeal chondrocytes.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Otolaryngology, China-Japan Friendship Hospital, Beijing, China
| | - Lu Ping
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaodong Luan
- School of Medicine, Tsinghua University, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yushan Chen
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
| | - Xinmiao Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianyan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yaping Liu
- Department of Medical Genetics and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pu Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuyang Zhang
- School of Medicine, Tsinghua University, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Bowen ME, Attardi LD. The role of p53 in developmental syndromes. J Mol Cell Biol 2019; 11:200-211. [PMID: 30624728 PMCID: PMC6478128 DOI: 10.1093/jmcb/mjy087] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/22/2018] [Accepted: 01/06/2019] [Indexed: 12/17/2022] Open
Abstract
While it is well appreciated that loss of the p53 tumor suppressor protein promotes cancer, growing evidence indicates that increased p53 activity underlies the developmental defects in a wide range of genetic syndromes. The inherited or de novo mutations that cause these syndromes affect diverse cellular processes, such as ribosome biogenesis, DNA repair, and centriole duplication, and analysis of human patient samples and mouse models demonstrates that disrupting these cellular processes can activate the p53 pathway. Importantly, many of the developmental defects in mouse models of these syndromes can be rescued by loss of p53, indicating that inappropriate p53 activation directly contributes to their pathogenesis. A role for p53 in driving developmental defects is further supported by the observation that mouse strains with broad p53 hyperactivation, due to mutations affecting p53 pathway components, display a host of tissue-specific developmental defects, including hematopoietic, neuronal, craniofacial, cardiovascular, and pigmentation defects. Furthermore, germline activating mutations in TP53 were recently identified in two human patients exhibiting bone marrow failure and other developmental defects. Studies in mice suggest that p53 drives developmental defects by inducing apoptosis, restraining proliferation, or modulating other developmental programs in a cell type-dependent manner. Here, we review the growing body of evidence from mouse models that implicates p53 as a driver of tissue-specific developmental defects in diverse genetic syndromes.
Collapse
Affiliation(s)
- Margot E Bowen
- Division of Radiation and Cancer Biology in the Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology in the Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|