1
|
Jain SS, McLaughlin EC, Perron GG, Uppuladinne M, Kim S, Gindinova K, Lundgren SH, Elmelech L, Sonavane U, Joshi R, Narasimhulu K. Inhibition of xpt Guanine Riboswitch by a synthetic nucleoside analog. PLoS One 2025; 20:e0322308. [PMID: 40323922 PMCID: PMC12052177 DOI: 10.1371/journal.pone.0322308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/18/2025] [Indexed: 05/07/2025] Open
Abstract
Riboswitches are structured elements predominantly found in the 5'-untranslated region of many bacterial mRNA. These noncoding RNA regions play a vital role in bacterial metabolism and overall function. Each riboswitch binds to a specific small molecule and causes conformational changes in the mRNA leading to regulation of transcription or translation. In this work, we have synthesized SK4, a novel nucleoside analog that binds to the guanine riboswitch mRNA of the xanthine phosphoribosyl transferase gene in Bacillus subtilis and terminates transcription of the riboswitch mRNA to a greater extent than the native ligand guanine. Molecular dynamics simulations of SK4 with riboswitch mRNA reveal an overall stable complex with additional bonding interactions in comparison to guanine. Our work with SK4 demonstrates that specific genes in bacteria can be effectively controlled by ligand analogs, providing an alternative mechanism to regulate the function of bacteria.
Collapse
Affiliation(s)
- Swapan S. Jain
- Chemistry and Biochemistry Program, Bard College, New York, United States of America
| | - Emily C. McLaughlin
- Chemistry and Biochemistry Program, Bard College, New York, United States of America
| | - Gabriel G. Perron
- Center for Genomics and Systems Biology, New York University, New York, United States of America
- Biology Program, Bard College, New York, United States of America
| | - Mallikarjunachari Uppuladinne
- High Performance Computing - Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, Maharashtra, India
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Seoyoung Kim
- Chemistry and Biochemistry Program, Bard College, New York, United States of America
| | - Katherina Gindinova
- Chemistry and Biochemistry Program, Bard College, New York, United States of America
| | - Silvie H. Lundgren
- Chemistry and Biochemistry Program, Bard College, New York, United States of America
| | - Liad Elmelech
- Chemistry and Biochemistry Program, Bard College, New York, United States of America
| | - Uddhavesh Sonavane
- High Performance Computing - Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, Maharashtra, India
| | - Rajendra Joshi
- High Performance Computing - Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, Maharashtra, India
| | - Korrapati Narasimhulu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| |
Collapse
|
2
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
3
|
Vargas-Junior V, Guimarães ACR, Caffarena ER, Antunes D. Genome-Wide Exploration of Thiamin Pyrophosphate Riboswitches in Medically Relevant Fungi Reveals Diverse Distribution and Implications for Antimicrobial Drug Targeting. ACS OMEGA 2024; 9:50134-50146. [PMID: 39741832 PMCID: PMC11683625 DOI: 10.1021/acsomega.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
The rising incidence of fungal infections coupled with limited treatment options underscores the urgent need for novel antifungal therapies. Riboswitches, particularly thiamin pyrophosphate (TPP) class, have emerged as promising antimicrobial targets. This study presents a comprehensive genome-wide analysis of TPP riboswitches in 156 medically relevant fungi utilizing advanced covariance models (CMs) tailored for fungal sequences. Our investigation identified 378 conserved TPP riboswitch sequences distributed across 140 distinct species, revealing a broader prevalence than that previously recognized. Notably, we provide evidence for a novel putative group of TPP riboswitches, designated TPPswSUGAR, associated with sugar transporters in Mucoromycota and Basidiomycota. This group exhibits distinctive structural features while maintaining key TPP-binding motifs, potentially expanding our understanding of the riboswitch diversity in fungi. Our analysis highlights the impact of P3 stem variability on riboswitch detection and characterization, demonstrating the superiority of fungal-specific CMs over generic models. We observed multiple TPP riboswitches in over 50% of the examined species, including clinically significant pathogens involved in aspergillosis and mucormycosis. Remarkably, Aspergillus latus, a species associated with COVID-19 coinfections, harbors six distinct TPP riboswitch sequences, whereas the extremophilic black fungus Hortaea werneckii possesses nine. These findings not only elucidate the diverse distribution of TPP riboswitches in pathogenic fungi but also emphasize their potential as multifaceted targets for antifungal drug development. By addressing key limitations of previous detection methods and providing insights into riboswitch structural diversity, this study lays a foundation for future investigations into riboswitch-mediated regulation in fungi and the development of novel antifungal strategies.
Collapse
Affiliation(s)
- Valdemir Vargas-Junior
- Laboratory
for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute (IOC - FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Ana Carolina Ramos Guimarães
- Laboratory
for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute (IOC - FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Ernesto Raul Caffarena
- Computational
Biophysics and Molecular Modeling Group, Scientific Computing Program (PROCC - FIOCRUZ), Rio de Janeiro 21040-360, Brazil
| | - Deborah Antunes
- Laboratory
for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute (IOC - FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
4
|
Brennan E, Noell S, Davis EW, Giovannoni SJ, Suffridge CP. Whole cell affinity for 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) in the marine bacterium Candidatus Pelagibacter st. HTCC7211 explains marine dissolved HMP concentrations. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70023. [PMID: 39367564 PMCID: PMC11452348 DOI: 10.1111/1758-2229.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
Vitamin B1 is a universally required coenzyme in carbon metabolism. However, most marine microorganisms lack the complete biosynthetic pathway for this compound and must acquire thiamin, or precursor molecules, from the dissolved pool. The most common version of Vitamin B1 auxotrophy is for thiamin's pyrimidine precursor moiety, 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP). Frequent HMP auxotrophy in plankton and vanishingly low dissolved concentrations (approximately 0.1-50 pM) suggest that high-affinity HMP uptake systems are responsible for maintaining low ambient HMP concentrations. We used tritium-labelled HMP to investigate HMP uptake mechanisms and kinetics in cell cultures of Candidatus Pelagibacter st. HTCC7211, a representative of the globally distributed and highly abundant SAR11 clade. A single protein, the sodium solute symporter ThiV, which is conserved across SAR11 genomes, is the likely candidate for HMP transport. Experimental evidence indicated transport specificity for HMP and mechanistically complex, high-affinity HMP uptake kinetics. Km values ranged from 9.5 pM to 1.2 nM and were dramatically lower when cells were supplied with a carbon source. These results suggest that HMP uptake in HTCC7211 is subject to complex regulation and point to a strategy for high-affinity uptake of this essential growth factor that can explain natural HMP levels in seawater.
Collapse
Affiliation(s)
| | - Stephen Noell
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o WaikatoUniversity of WaikatoHamiltonNew Zealand
| | - Edward W. Davis
- Center for Quantitative Life SciencesOregon State UniversityCorvallisOregonUSA
| | | | | |
Collapse
|
5
|
Evers MS, Ramousse L, Morge C, Sparrow C, Gobert A, Roullier-Gall C, Alexandre H. To each their own: Delving into the vitaminic preferences of non-Saccharomyces wine yeasts. Food Microbiol 2023; 115:104332. [PMID: 37567637 DOI: 10.1016/j.fm.2023.104332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 08/13/2023]
Abstract
Considering the growing interest in non-Saccharomyces wine yeasts, and notably in the context of mixed fermentations with S. cerevisiae, understanding their nutritional behaviors is essential to ensure better management of these fermentations. The vitaminic consumption of three non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima and Torulaspora delbrueckii) was investigated during their growth in wine-like conditions, providing initial evidence that they consume different vitamers. The vitamin consumption profiles during their growth highlighted releases of certain vitamers by the yeasts before re-assimilation, strongly suggesting the existence of synthesis pathways. Not only did the essential character of vitamin B1, in particular, appear to be a trait common to these yeasts, since all its vitamers are consumed, this investigation also provided evidence of the existence of species-dependent preferences for their vitaminic sources. These different behaviors were quite striking in certain vitamers, as was observed in nicotinamide: while it was consumed by T. delbrueckii, it was left untouched by S. bacillaris and produced by M. pulcherrima during growth. Furthermore, this offers grounds for further investigation into these yeasts' requirements, and provides the first tool for managing vitamin resources during mixed fermentations with S. cerevisiae, and for preventing nutritive deficiencies from occurring.
Collapse
Affiliation(s)
- Marie Sarah Evers
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 2 Rue Claude Ladrey, 21000, Dijon, France; Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thévenet, 51530, Magenta, France
| | - Louise Ramousse
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 2 Rue Claude Ladrey, 21000, Dijon, France
| | - Christophe Morge
- Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thévenet, 51530, Magenta, France
| | - Celine Sparrow
- Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thévenet, 51530, Magenta, France
| | - Antoine Gobert
- Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thévenet, 51530, Magenta, France
| | - Chloé Roullier-Gall
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 2 Rue Claude Ladrey, 21000, Dijon, France
| | - Hervé Alexandre
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 2 Rue Claude Ladrey, 21000, Dijon, France.
| |
Collapse
|
6
|
Wakchaure PD, Ganguly B. Exploring the structure, function of thiamine pyrophosphate riboswitch, and designing small molecules for antibacterial activity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1774. [PMID: 36594112 DOI: 10.1002/wrna.1774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
During the last decade, riboswitches emerged as new small-molecule sensing RNA in bacteria. Thiamine pyrophosphate (TPP) riboswitch is widely distributed and occurs in plants, bacteria, fungi, and archaea. Extensive biochemical, structural, and genetic studies have been carried out to elucidate the recognition mechanism of TPP riboswitches. However, a comprehensive report summarizing all information on recognition principles and newly designed ligands for TPP riboswitch is scarce in the literature. This review gives a comprehensive understanding of the TPP riboswitch's structure, mechanism, and methods applied to design ligands for the TPP riboswitch. The ligand-bound TPP riboswitch was studied with various experimental and theoretical techniques to elucidate the conformational dynamics. The mutation studies shed light on the significance of pyrimidine sensing helix for the binding of ligands. Further, the structure-activity relationship study and fragment-based approach lead to the development of ligands with Kd values at the sub-micromolar level. However, there is a need to design more potent inhibitors for TPP riboswitch for therapeutic applications. The recent advancements in ligand design highlight the TPP riboswitch as a promising target for developing new antibiotics. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Riboswitches Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Padmaja D Wakchaure
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
7
|
Kavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends Biochem Sci 2023; 48:119-141. [PMID: 36150954 PMCID: PMC10043782 DOI: 10.1016/j.tibs.2022.08.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
Riboswitches are structured noncoding RNA domains used by many bacteria to monitor the concentrations of target ligands and regulate gene expression accordingly. In the past 20 years over 55 distinct classes of natural riboswitches have been discovered that selectively sense small molecules or elemental ions, and thousands more are predicted to exist. Evidence suggests that some riboswitches might be direct descendants of the RNA-based sensors and switches that were likely present in ancient organisms before the evolutionary emergence of proteins. We provide an overview of the current state of riboswitch research, focusing primarily on the discovery of riboswitches, and speculate on the major challenges facing researchers in the field.
Collapse
Affiliation(s)
- Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
8
|
Llavero‐Pasquina M, Geisler K, Holzer A, Mehrshahi P, Mendoza‐Ochoa GI, Newsad SA, Davey MP, Smith AG. Thiamine metabolism genes in diatoms are not regulated by thiamine despite the presence of predicted riboswitches. THE NEW PHYTOLOGIST 2022; 235:1853-1867. [PMID: 35653609 PMCID: PMC9544697 DOI: 10.1111/nph.18296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/20/2022] [Indexed: 05/17/2023]
Abstract
Thiamine pyrophosphate (TPP), an essential co-factor for all species, is biosynthesised through a metabolically expensive pathway regulated by TPP riboswitches in bacteria, fungi, plants and green algae. Diatoms are microalgae responsible for c. 20% of global primary production. They have been predicted to contain TPP aptamers in the 3'UTR of some thiamine metabolism-related genes, but little information is known about their function and regulation. We used bioinformatics, antimetabolite growth assays, RT-qPCR, targeted mutagenesis and reporter constructs to test whether the predicted TPP riboswitches respond to thiamine supplementation in diatoms. Gene editing was used to investigate the functions of the genes with associated TPP riboswitches in Phaeodactylum tricornutum. We found that thiamine-related genes with putative TPP aptamers are not responsive to supplementation with thiamine or its precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), and targeted mutation of the TPP aptamer in the THIC gene encoding HMP-P synthase does not deregulate thiamine biosynthesis in P. tricornutum. Through genome editing we established that PtTHIC is essential for thiamine biosynthesis and another gene, PtSSSP, is necessary for thiamine uptake. Our results highlight the importance of experimentally testing bioinformatic aptamer predictions and provide new insights into the thiamine metabolism shaping the structure of marine microbial communities with global biogeochemical importance.
Collapse
Affiliation(s)
| | - Katrin Geisler
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Andre Holzer
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Payam Mehrshahi
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | | | - Shelby A. Newsad
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Matthew P. Davey
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- Scottish Association of Marine SciencesObanPA37 1QAUK
| | - Alison G. Smith
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| |
Collapse
|
9
|
Vargas-Junior V, Antunes D, Guimarães AC, Caffarena E. In silico investigation of riboswitches in fungi: structural and dynamical insights into TPP riboswitches in Aspergillus oryzae. RNA Biol 2022; 19:90-103. [PMID: 34989318 PMCID: PMC8786325 DOI: 10.1080/15476286.2021.2015174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Riboswitches are RNA sensors affecting post-transcriptional processes through their ability to bind to small molecules. Thiamine pyrophosphate (TPP) riboswitch plays a crucial role in regulating genes involved in synthesizing or transporting thiamine and phosphorylated derivatives in bacteria, archaea, plants, and fungi. Although TPP riboswitch is reasonably well known in bacteria, there is a gap in the knowledge of the fungal TPP riboswitches structure and dynamics, involving mainly sequence variation and TPP interaction with the aptamers. On the other hand, the increase of fungal infections and antifungal resistance raises the need for new antifungal therapies. In this work, we used computational approaches to build three-dimensional models for the three TPP riboswitches identified in Aspergillus oryzae, in which we studied their structure, dynamics, and binding free energy change (ΔGbind) with TPP. Interaction patterns between the TPP and the surrounding nucleotides were conserved among the three models, evidencing high structural conservation. Furthermore, we show that the TPP riboswitch from the A. oryzae NMT1 gene behaves similarly to the E. coli thiA gene concerning the ΔGbind. In contrast, mutations in the fungal TPP riboswitches from THI4 and the nucleoside transporter genes led to structural differences, affecting the binding-site volume, hydrogen bond occupancy, and ΔGbind. Besides, the number of water molecules surrounding TPP influenced the ΔGbind considerably. Notably, our ΔGbind estimation agreed with previous experimental data, reinforcing the relationship between sequence conservation and TPP interaction.
Collapse
Affiliation(s)
- Valdemir Vargas-Junior
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Programme (Procc - Fiocruz), Rio de Janeiro, Brazil
| | - Deborah Antunes
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (Ioc - Fiocruz), Rio de Janeiro, Brazil
| | - Ana Carolina Guimarães
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (Ioc - Fiocruz), Rio de Janeiro, Brazil
| | - Ernesto Caffarena
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Programme (Procc - Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Riboswitch RS thiT as a molecular tool in Lactococcus lactis. Appl Environ Microbiol 2021; 88:e0176421. [PMID: 34936833 PMCID: PMC8862789 DOI: 10.1128/aem.01764-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Previous RNA sequencing has allowed the identification of 129 long 5′ untranslated regions (UTRs) in the Lactococcus lactis MG1363 transcriptome. These sequences potentially harbor cis-acting riboswitches. One of the identified extended 5′ UTRs is a putative thiamine pyrophosphate (TPP) riboswitch. It is located immediately upstream of the thiamine transporter gene thiT (llmg_0334). To confirm this assumption, the 5′-UTR sequence was placed upstream of the gene encoding the superfolder green fluorescent protein (sfGFP), sfgfp, allowing the examination of the expression of sfGFP in the presence or absence of thiamine in the medium. The results show that this sequence indeed represents a thiamine-responsive TPP riboswitch. This RNA-based genetic control device was used to successfully restore the mutant phenotype of an L. lactis strain lacking the major autolysin gene, acmA. The L. lactisthiT TPP riboswitch (RSthiT) is a useful molecular genetic tool enabling the gradual downregulation of the expression of genes under its control by adjusting the thiamine concentration. IMPORTANCE The capacity of microbes with biotechnological importance to adapt to and survive under quickly changing industrial conditions depends on their ability to adequately control gene expression. Riboswitches are important RNA-based elements involved in rapid and precise gene regulation. Here, we present the identification of a natural thiamine-responsive riboswitch of Lactococcus lactis, a bacterium used worldwide in the production of dairy products. We used it to restore a genetic defect in an L. lactis mutant and show that it is a valuable addition to the ever-expanding L. lactis genetic toolbox.
Collapse
|
11
|
Nakashima Y, Shiiyama N, Urabe T, Yamashita H, Yasuda S, Igoshi K, Kinoshita H. Functions of small RNAs in Lactobacillus casei-Pediococcus group of lactic acid bacteria using fragment analysis. FEMS Microbiol Lett 2021; 367:5928547. [PMID: 33068404 DOI: 10.1093/femsle/fnaa154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Small RNAs (sRNA) are non-cording RNAs composed of 50∼400 nt responsible for coordinating the adaption of Escherichia coli and other bacteria to changing environmental conditions, including pH and temperature. However, the role of sRNAs in lactic acid bacteria (LAB) has not yet been clarified. In this study, we used the Lactobacillus casei-Pediococcus group to evaluate the function of sRNAs in LAB, using RNA sequencing in the exponential growth phase and stationary phase to map and analyze sRNA fragments, which were categorized as Pediococcus pentosaceus and Lactobacillus paracasei. We evaluated the role of sRNAs in nutrient synthesis for cell growth in exponential growth phase and in protein and biofilm biosynthesis for cell body durability. During exponential growth, the sRNA fragments were found to be involved in the stress response in Pediococcus pentosaceus and in environmental adaption in Lactobacillus paracasei. The results suggest that the function of sRNA can be characterized from sRNA fragments using RNA sequencing during the exponential growth and stationary phases in Lactobacillus casei-Pediococcus group.
Collapse
Affiliation(s)
- Yuki Nakashima
- Graduate School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Narumi Shiiyama
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Taihei Urabe
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Hideji Yamashita
- Graduate School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan.,Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Shin Yasuda
- Graduate School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan.,Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Keiji Igoshi
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Hideki Kinoshita
- Graduate School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan.,Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| |
Collapse
|
12
|
Aptamers, Riboswitches, and Ribozymes in S. cerevisiae Synthetic Biology. Life (Basel) 2021; 11:life11030248. [PMID: 33802772 PMCID: PMC8002509 DOI: 10.3390/life11030248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
Among noncoding RNA sequences, riboswitches and ribozymes have attracted the attention of the synthetic biology community as circuit components for translation regulation. When fused to aptamer sequences, ribozymes and riboswitches are enabled to interact with chemicals. Therefore, protein synthesis can be controlled at the mRNA level without the need for transcription factors. Potentially, the use of chemical-responsive ribozymes/riboswitches would drastically simplify the design of genetic circuits. In this review, we describe synthetic RNA structures that have been used so far in the yeast Saccharomyces cerevisiae. We present their interaction mode with different chemicals (e.g., theophylline and antibiotics) or proteins (such as the RNase III) and their recent employment into clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR-Cas) systems. Particular attention is paid, throughout the whole paper, to their usage and performance into synthetic gene circuits.
Collapse
|
13
|
Panchal V, Brenk R. Riboswitches as Drug Targets for Antibiotics. Antibiotics (Basel) 2021; 10:45. [PMID: 33466288 PMCID: PMC7824784 DOI: 10.3390/antibiotics10010045] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Riboswitches reside in the untranslated region of RNA and regulate genes involved in the biosynthesis of essential metabolites through binding of small molecules. Since their discovery at the beginning of this century, riboswitches have been regarded as potential antibacterial targets. Using fragment screening, high-throughput screening and rational ligand design guided by X-ray crystallography, lead compounds against various riboswitches have been identified. Here, we review the current status and suitability of the thiamine pyrophosphate (TPP), flavin mononucleotide (FMN), glmS, guanine, and other riboswitches as antibacterial targets and discuss them in a biological context. Further, we highlight challenges in riboswitch drug discovery and emphasis the need to develop riboswitch specific high-throughput screening methods.
Collapse
Affiliation(s)
- Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| |
Collapse
|
14
|
Dikkala PK, Usmani Z, Kumar S, Gupta VK, Bhargava A, Sharma M. Fungal Production of Vitamins and Their Food Industrial Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Fang S, Hou X, Qiu K, He R, Feng X, Liang X. The occurrence and function of alternative splicing in fungi. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Hurtig JE, Kim M, Orlando-Coronel LJ, Ewan J, Foreman M, Notice LA, Steiger MA, van Hoof A. Origin, conservation, and loss of alternative splicing events that diversify the proteome in Saccharomycotina budding yeasts. RNA (NEW YORK, N.Y.) 2020; 26:1464-1480. [PMID: 32631843 PMCID: PMC7491326 DOI: 10.1261/rna.075655.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 05/03/2023]
Abstract
Many eukaryotes use RNA processing, including alternative splicing, to express multiple gene products from the same gene. The budding yeast Saccharomyces cerevisiae has been successfully used to study the mechanism of splicing and the splicing machinery, but alternative splicing in yeast is relatively rare and has not been extensively studied. Alternative splicing of SKI7/HBS1 is widely conserved, but yeast and a few other eukaryotes have replaced this one alternatively spliced gene with a pair of duplicated, unspliced genes as part of a whole genome doubling (WGD). We show that other examples of alternative splicing known to have functional consequences are widely conserved within Saccharomycotina. A common mechanism by which alternative splicing has disappeared is by replacement of an alternatively spliced gene with duplicate unspliced genes. This loss of alternative splicing does not always take place soon after duplication, but can take place after sufficient time has elapsed for speciation. Saccharomycetaceae that diverged before WGD use alternative splicing more frequently than S. cerevisiae, suggesting that WGD is a major reason for infrequent alternative splicing in yeast. We anticipate that WGDs in other lineages may have had the same effect. Having observed that two functionally distinct splice-isoforms are often replaced by duplicated genes allowed us to reverse the reasoning. We thereby identify several splice isoforms that are likely to produce two functionally distinct proteins because we find them replaced by duplicated genes in related species. We also identify some alternative splicing events that are not conserved in closely related species and unlikely to produce functionally distinct proteins.
Collapse
Affiliation(s)
- Jennifer E Hurtig
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Minseon Kim
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Luisa J Orlando-Coronel
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Jellisa Ewan
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Michelle Foreman
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Lee-Ann Notice
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Michelle A Steiger
- Department of Chemistry and Biochemistry, University of St. Thomas, Houston, Texas 77006, USA
| | - Ambro van Hoof
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| |
Collapse
|
17
|
Taylor K, Sobczak K. Intrinsic Regulatory Role of RNA Structural Arrangement in Alternative Splicing Control. Int J Mol Sci 2020; 21:ijms21145161. [PMID: 32708277 PMCID: PMC7404189 DOI: 10.3390/ijms21145161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a highly sophisticated process, playing a significant role in posttranscriptional gene expression and underlying the diversity and complexity of organisms. Its regulation is multilayered, including an intrinsic role of RNA structural arrangement which undergoes time- and tissue-specific alterations. In this review, we describe the principles of RNA structural arrangement and briefly decipher its cis- and trans-acting cellular modulators which serve as crucial determinants of biological functionality of the RNA structure. Subsequently, we engage in a discussion about the RNA structure-mediated mechanisms of alternative splicing regulation. On one hand, the impairment of formation of optimal RNA structures may have critical consequences for the splicing outcome and further contribute to understanding the pathomechanism of severe disorders. On the other hand, the structural aspects of RNA became significant features taken into consideration in the endeavor of finding potential therapeutic treatments. Both aspects have been addressed by us emphasizing the importance of ongoing studies in both fields.
Collapse
|
18
|
Wells CA, Choi J. Transcriptional Profiling of Stem Cells: Moving from Descriptive to Predictive Paradigms. Stem Cell Reports 2020; 13:237-246. [PMID: 31412285 PMCID: PMC6700522 DOI: 10.1016/j.stemcr.2019.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
Transcriptional profiling is a powerful tool commonly used to benchmark stem cells and their differentiated progeny. As the wealth of stem cell data builds in public repositories, we highlight common data traps, and review approaches to combine and mine this data for new cell classification and cell prediction tools. We touch on future trends for stem cell profiling, such as single-cell profiling, long-read sequencing, and improved methods for measuring molecular modifications on chromatin and RNA that bring new challenges and opportunities for stem cell analysis.
Collapse
Affiliation(s)
- Christine A Wells
- Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville 3010, Australia.
| | - Jarny Choi
- Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
19
|
Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts. Proc Natl Acad Sci U S A 2019; 116:22219-22228. [PMID: 31611373 DOI: 10.1073/pnas.1909844116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Horizontal acquisition of bacterial genes is presently recognized as an important contribution to the adaptation and evolution of eukaryotic genomes. However, the mechanisms underlying expression and consequent selection and fixation of the prokaryotic genes in the new eukaryotic setting are largely unknown. Here we show that genes composing the pathway for the synthesis of the essential vitamin B1 (thiamine) were lost in an ancestor of a yeast lineage, the Wickerhamiella/Starmerella (W/S) clade, known to harbor an unusually large number of genes of alien origin. The thiamine pathway was subsequently reassembled, at least twice, by multiple HGT events from different bacterial donors involving both single genes and entire operons. In the W/S-clade species Starmerella bombicola we obtained direct genetic evidence that all bacterial genes of the thiamine pathway are functional. The reconstructed pathway is composed by yeast and bacterial genes operating coordinately to scavenge thiamine derivatives from the environment. The adaptation of the newly acquired operons to the eukaryotic setting involved a repertoire of mechanisms until now only sparsely documented, namely longer intergenic regions, post-horizontal gene transfer (HGT) gene fusions fostering coordinated expression, gene relocation, and possibly recombination generating mosaic genes. The results provide additional evidence that HGT occurred recurrently in this yeast lineage and was crucial for the reestablishment of lost functions and that similar mechanisms are used across a broad range of eukaryotic microbes to promote adaptation of prokaryotic genes to their new environment.
Collapse
|
20
|
Galizi R, Jaramillo A. Engineering CRISPR guide RNA riboswitches for in vivo applications. Curr Opin Biotechnol 2019; 55:103-113. [PMID: 30265865 DOI: 10.1016/j.copbio.2018.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
CRISPR-based genome editing provides a simple and scalable toolbox for a variety of therapeutic and biotechnology applications. Whilst the fundamental properties of CRISPR proved easily transferable from the native prokaryotic hosts to eukaryotic and multicellular organisms, the tight control of the CRISPR-editing activity remains a major challenge. Here we summarise recent developments of CRISPR and riboswitch technologies and recommend novel functionalised synthetic-gRNA (sgRNA) designs to achieve inducible and spatiotemporal regulation of CRISPR-based genetic editors in response to cellular or extracellular stimuli. We believe that future advances of these tools will have major implications for both basic and applied research, spanning from fundamental genetic studies and synthetic biology to genetic editing and gene therapy.
Collapse
Affiliation(s)
- Roberto Galizi
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom; ISSB, CNRS, Univ Evry, CEA, Université Paris-Saclay, 91025 Evry, France; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, 46980 Paterna, Spain.
| |
Collapse
|
21
|
Brejová B, Lichancová H, Brázdovič F, Hegedűsová E, Forgáčová Jakúbková M, Hodorová V, Džugasová V, Baláž A, Zeiselová L, Cillingová A, Neboháčová M, Raclavský V, Tomáška Ľ, Lang BF, Vinař T, Nosek J. Genome sequence of the opportunistic human pathogen Magnusiomyces capitatus. Curr Genet 2018; 65:539-560. [PMID: 30456648 DOI: 10.1007/s00294-018-0904-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/12/2023]
Abstract
The yeast Magnusiomyces capitatus is an opportunistic human pathogen causing rare yet severe infections, especially in patients with hematological malignancies. Here, we report the 20.2 megabase genome sequence of an environmental strain of this species as well as the genome sequences of eight additional isolates from human and animal sources providing an insight into intraspecies variation. The distribution of single-nucleotide variants is indicative of genetic recombination events, supporting evidence for sexual reproduction in this heterothallic yeast. Using RNAseq-aided annotation, we identified genes for 6518 proteins including several expanded families such as kexin proteases and Hsp70 molecular chaperones. Several of these families are potentially associated with the ability of M. capitatus to infect and colonize humans. For the purpose of comparative analysis, we also determined the genome sequence of a closely related yeast, Magnusiomyces ingens. The genome sequences of M. capitatus and M. ingens exhibit many distinct features and represent a basis for further comparative and functional studies.
Collapse
Affiliation(s)
- Bronislava Brejová
- Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Bratislava, Slovakia.
| | - Hana Lichancová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Filip Brázdovič
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Eva Hegedűsová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Viktória Hodorová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladimíra Džugasová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrej Baláž
- Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lucia Zeiselová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrea Cillingová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martina Neboháčová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladislav Raclavský
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Ľubomír Tomáška
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - B Franz Lang
- Robert Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Tomáš Vinař
- Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jozef Nosek
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|