1
|
Viswanathan PK, Chessel A, Molina MD, Haillot E, Lepage T. Maternal TGF-β ligand Panda breaks the radial symmetry of the sea urchin embryo by antagonizing the Nodal type II receptor ACVRII. PLoS Biol 2024; 22:e3002701. [PMID: 38913712 PMCID: PMC11239237 DOI: 10.1371/journal.pbio.3002701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 07/11/2024] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
In the highly regulative embryo of the sea urchin Paracentrotus lividus, establishment of the dorsal-ventral (D/V) axis critically depends on the zygotic expression of the TGF-β nodal in the ventral ectoderm. nodal expression is first induced ubiquitously in the 32-cell embryo and becomes progressively restricted to the presumptive ventral ectoderm by the early blastula stage. This early spatial restriction of nodal expression is independent of Lefty, and instead relies on the activity of Panda, a maternally expressed TGF-β ligand related to Lefty and Inhibins, which is required maternally for D/V axis specification. However, the mechanism by which Panda restricts the early nodal expression has remained enigmatic and it is not known if Panda works like a BMP ligand by opposing Nodal and antagonizing Smad2/3 signaling, or if it works like Lefty by sequestering an essential component of the Nodal signaling pathway. In this study, we report that Panda functions as an antagonist of the TGF-β type II receptor ACVRII (Activin receptor type II), which is the only type II receptor for Nodal signaling in the sea urchin and is also a type II receptor for BMP ligands. Inhibiting translation of acvrII mRNA disrupted D/V patterning across all 3 germ layers and caused acvrII morphants to develop with a typical Nodal loss-of-function phenotype. In contrast, embryos overexpressing acvrII displayed strong ectopic Smad1/5/8 signaling at blastula stages and developed as dorsalized larvae, a phenotype very similar to that caused by over activation of BMP signaling. Remarkably, embryos co-injected with acvrII mRNA and panda mRNA did not show ectopic Smad1/5/8 signaling and developed with a largely normal dorsal-ventral polarity. Furthermore, using an axis induction assay, we found that Panda blocks the ability of ACVRII to orient the D/V axis when overexpressed locally. Using co-immunoprecipitation, we showed that Panda physically interacts with ACVRII, as well as with the Nodal co-receptor Cripto, and with TBR3 (Betaglycan), which is a non-signaling receptor for Inhibins in mammals. At the molecular level, we have traced back the antagonistic activity of Panda to the presence of a single proline residue, conserved with all the Lefty factors, in the ACVRII binding motif of Panda, instead of a serine as in most of TGF-β ligands. Conversion of this proline to a serine converted Panda from an antagonist that opposed Nodal signaling and promoted dorsalization to an agonist that promoted Nodal signaling and triggered ventralization when overexpressed. Finally, using phylogenomics, we analyzed the emergence of the agonist and antagonist form of Panda in the course of evolution. Our data are consistent with the idea that the presence of a serine at that position, like in most TGF-β, was the ancestral condition and that the initial function of Panda was possibly in promoting and not in antagonizing Nodal signaling. These results highlight the existence of key functional and structural elements conserved between Panda and Lefty, allow to draw an intriguing parallel between sea urchin Panda and mammalian Inhibin α and raise the unexpected possibility that the original function of Panda may have been in activation of the Nodal pathway rather than in its inhibition.
Collapse
Affiliation(s)
| | - Aline Chessel
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | | | | | | |
Collapse
|
2
|
Gautam S, Fenner JL, Wang B, Range RC. Evolutionarily conserved Wnt/Sp5 signaling is critical for anterior-posterior axis patterning in sea urchin embryos. iScience 2024; 27:108616. [PMID: 38179064 PMCID: PMC10765061 DOI: 10.1016/j.isci.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/30/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Studies across a diverse group of metazoan embryos indicate that Wnt signaling often activates the transcription factor Sp5, forming a signaling 'cassette' that plays critical roles in many developmental processes. This study explores the role of Wnt/Sp5 signaling during the specification and patterning of the primary germ layers during early anterior-posterior axis formation in the deuterostome sea urchin embryo. Our functional analyses show that Sp5 is critical for endomesoderm specification downstream of Wnt/β-catenin in posterior cells as well as anterior neuroectoderm patterning downstream of non-canonical Wnt/JNK signaling in anterior cells. Interestingly, expression and functional data comparisons show that Wnt/Sp5 signaling often plays similar roles in posterior endomesoderm as well as neuroectoderm patterning along the AP axis of several deuterostome embryos, including vertebrates. Thus, our findings provide strong support for the idea that Wnt-Sp5 signaling cassettes were critical for the establishment of early germ layers in the common deuterostome ancestor.
Collapse
Affiliation(s)
- Sujan Gautam
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jennifer L. Fenner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Boyuan Wang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ryan C. Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Kinjo S, Kiyomoto M, Suzuki H, Yamamoto T, Ikeo K, Yaguchi S. TrBase: A genome and transcriptome database of Temnopleurus reevesii. Dev Growth Differ 2022; 64:210-218. [PMID: 35451498 DOI: 10.1111/dgd.12780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Sea urchins have a long history as model organisms in biology, but their use in genetics is limited because of their long breeding cycle. In sea urchin genetics, genome editing technology was first established in Hemicentrotus pulcherrimus, whose genome has already been published. However, because this species also has a long breeding cycle, new model sea urchins that are more suitable for genetics have been sought. Here, we report a draft genome of another Western Pacific species, Temnopleurus reevesii, which we established as a new model sea urchin recently since this species has a comparable developmental process to other model sea urchins but a short breeding cycle of approximately half a year. The genome of T. reevesii was assembled into 28,742 scaffold sequences with an N50 length of 67.6 kb and an estimated genome size of 905.9 Mb. In the assembled genome, 27,064 genes were identified, 23,624 of which were expressed in at least one of the seven developmental stages. To provide genetic information, we constructed the genome database TrBase (https://cell-innovation.nig.ac.jp/Tree/). We also constructed the Western Pacific Sea Urchin Genome Database (WestPac-SUGDB) (https://cell-innovation.nig.ac.jp/WPAC/) with the aim of establishing a portal site for genetic information on sea urchins in the West Pacific. This site contains genomic information on two species, T. reevesii and H. pulcherrimus, and is equipped with homology search programs for comparing the two datasets. Therefore, TrBase and WestPac-SUGDB are expected to contribute not only to genetic research using sea urchins but also to comparative genomics and evolutionary research.
Collapse
Affiliation(s)
- Sonoko Kinjo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Masato Kiyomoto
- Institute for Marine and Coastal Research, Ochanomizu University, Tateyama, Japan
| | - Haruka Suzuki
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan.,PRESTO, JST, Kawaguchi, Japan
| |
Collapse
|
4
|
Su YH. Dorsal-ventral axis formation in sea urchin embryos. Curr Top Dev Biol 2022; 146:183-210. [PMID: 35152983 DOI: 10.1016/bs.ctdb.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most sea urchin species produce planktonic feeding larvae with distinct dorsal-ventral polarity. Such morphological indicators of polarity arise after gastrulation, when several morphogenesis and cell differentiation events occur differentially along the dorsal-ventral axis. For instance, the gut bends toward the ventral side where the mouth will form, skeletogenesis occurs initially near the ventral side with the forming skeleton extending dorsally, and pigment cells differentiate and embed in the dorsal ectoderm. The patterning mechanisms and gene regulatory networks underlying these events have been extensively studied. Two opposing TGF-β signaling pathways, Nodal and BMP, play key roles in all three germ layers to respectively pattern the sea urchin ventral and dorsal sides. In this chapter, I describe our current understanding of sea urchin dorsal-ventral patterning mechanisms. Additionally, differences in the patterning mechanisms observed in lecithotrophic sea urchins (nonfeeding larvae) and in cidaroid sea urchins are also discussed, along with evolutionary insights gained from comparative analyses.
Collapse
Affiliation(s)
- Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
Ducker C, Shaw PE. Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development. Int J Mol Sci 2021; 22:5119. [PMID: 34066106 PMCID: PMC8151852 DOI: 10.3390/ijms22105119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers.
Collapse
Affiliation(s)
- Charles Ducker
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Peter E. Shaw
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
6
|
Floc'hlay S, Molina MD, Hernandez C, Haillot E, Thomas-Chollier M, Lepage T, Thieffry D. Deciphering and modelling the TGF-β signalling interplays specifying the dorsal-ventral axis of the sea urchin embryo. Development 2021; 148:dev.189944. [PMID: 33298464 DOI: 10.1242/dev.189944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
During sea urchin development, secretion of Nodal and BMP2/4 ligands and their antagonists Lefty and Chordin from a ventral organiser region specifies the ventral and dorsal territories. This process relies on a complex interplay between the Nodal and BMP pathways through numerous regulatory circuits. To decipher the interplay between these pathways, we used a combination of treatments with recombinant Nodal and BMP2/4 proteins and a computational modelling approach. We assembled a logical model focusing on cell responses to signalling inputs along the dorsal-ventral axis, which was extended to cover ligand diffusion and enable multicellular simulations. Our model simulations accurately recapitulate gene expression in wild-type embryos, accounting for the specification of ventral ectoderm, ciliary band and dorsal ectoderm. Our model simulations further recapitulate various morphant phenotypes, reveal a dominance of the BMP pathway over the Nodal pathway and stress the crucial impact of the rate of Smad activation in dorsal-ventral patterning. These results emphasise the key role of the mutual antagonism between the Nodal and BMP2/4 pathways in driving early dorsal-ventral patterning of the sea urchin embryo.
Collapse
Affiliation(s)
- Swann Floc'hlay
- Department of Biology, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | - Céline Hernandez
- Department of Biology, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emmanuel Haillot
- Institut Biologie Valrose, Université Côte d'Azur, 06108 Nice, France
| | - Morgane Thomas-Chollier
- Department of Biology, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005 Paris, France
| | - Thierry Lepage
- Institut Biologie Valrose, Université Côte d'Azur, 06108 Nice, France
| | - Denis Thieffry
- Department of Biology, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
7
|
Bi Y, Cui D, Xiong X, Zhao Y. The characteristics and roles of β-TrCP1/2 in carcinogenesis. FEBS J 2020; 288:3351-3374. [PMID: 33021036 DOI: 10.1111/febs.15585] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
β-transducin repeat-containing protein (β-TrCP), one of the well-characterized F-box proteins, acts as a substrate receptor and constitutes an active SCFβ-TrCP E3 ligase with a scaffold protein CUL1, a RING protein RBX1, and an adaptor protein SKP1. β-TrCP plays a critical role in the regulation of various physiological and pathological processes, including signal transduction, cell cycle progression, cell migration, DNA damage response, and tumorigenesis, by governing burgeoning amounts of key regulators for ubiquitination and proteasomal degradation. Given that a variety of β-TrCP substrates are well-known oncoproteins and tumor suppressors, and dysregulation of β-TrCP is frequently identified in human cancers, β-TrCP plays a vital role in carcinogenesis. In this review, we first briefly introduce the characteristics of β-TrCP1, β-TrCP2, and SCFβ-TrCP ubiquitin ligase, and then discuss SCFβ-TrCP ubiquitin ligase regulated biological processes by targeting its substrates for degradation. Moreover, we summarize the regulation of β-TrCP1 and β-TrCP2 at multiple layers and further discuss the various roles of β-TrCP1 and β-TrCP2 in human cancer, functioning as either an oncoprotein or a tumor suppressor in a manner dependent of cellular context. Finally, we provide novel insights for future perspectives on the potential of targeting β-TrCP1 and β-TrCP2 for cancer therapy.
Collapse
Affiliation(s)
- Yanli Bi
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrui Cui
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Mazzotta C, Marden G, Farina A, Bujor A, Trojanowski MA, Trojanowska M. FLI1 and ERG protein degradation is regulated via Cathepsin B lysosomal pathway in human dermal microvascular endothelial cells. Microcirculation 2020; 28:e12660. [PMID: 32979864 PMCID: PMC7988617 DOI: 10.1111/micc.12660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023]
Abstract
Objectives Friend leukemia integration 1 and erythroblast transformation‐specific, important regulators of endothelial cell homeostasis, are reduced in microvascular endothelial cells in scleroderma patients, and their deficiency has been implicated in disease pathogenesis. The goal of this study was to identify the mechanisms involved in the protein turnover of friend leukemia integration 1 and erythroblast transformation‐specific in microvascular endothelial cells. Methods The effects of lysosome and proteosome inhibitors on friend leukemia integration 1 and erythroblast transformation‐specific levels were assessed by Western blotting and capillary morphogenesis. The effect of scleroderma and control sera on the levels of friend leukemia integration 1 and erythroblast transformation‐specific was examined. Results The reduction in the protein levels of friend leukemia integration 1 and erythroblast transformation‐specific in response to interferon α or Poly:(IC) was reversed by blocking either lysosomal (leupeptin and Cathepsin B inhibitor) or proteosomal degradation (MG132). MG132, leupeptin or CTSB‐(i) also counteracted the anti‐angiogenic effects of Poly:(IC) or interferon α. Scleroderma sera reduced protein levels of friend leukemia integration 1 and erythroblast transformation‐specific in comparison to control sera. Treatment with CTSB(i) increased the levels of friend leukemia integration 1 and erythroblast transformation‐specific in a majority of serum‐treated samples. Conclusions Inhibition of cathepsin B was effective in reversing the reduction of friend leukemia integration 1 and erythroblast transformation‐specific protein levels after treatment with interferon α or scleroderma sera, suggesting that targeting cathepsin B may have a beneficial effect in SSc vascular disease.
Collapse
Affiliation(s)
- Celestina Mazzotta
- Arthritis and Autoimmune Diseases Center, School of Medicine, Boston University, Boston, MA, USA
| | - Grace Marden
- Arthritis and Autoimmune Diseases Center, School of Medicine, Boston University, Boston, MA, USA
| | - Alessandra Farina
- Arthritis and Autoimmune Diseases Center, School of Medicine, Boston University, Boston, MA, USA
| | - Andreea Bujor
- Arthritis and Autoimmune Diseases Center, School of Medicine, Boston University, Boston, MA, USA
| | - Marcin A Trojanowski
- Arthritis and Autoimmune Diseases Center, School of Medicine, Boston University, Boston, MA, USA
| | - Maria Trojanowska
- Arthritis and Autoimmune Diseases Center, School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
9
|
Kipryushina YO, Yakovlev KV. Maternal control of early patterning in sea urchin embryos. Differentiation 2020; 113:28-37. [PMID: 32371341 DOI: 10.1016/j.diff.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Sea urchin development has been studied extensively for more than a century and considered regulative since the first experimental evidence. Further investigations have repeatedly supported this standpoint by revealing the presence of inductive mechanisms that alter cell fate decisions at early cleavage stages and flexibility of development in response to environmental conditions. Some features indicate that sea urchin development is not completely regulative, but actually includes determinative events. In 16-cell embryos, mesomeres and macromeres represent multipotency, while the cell fate of most vegetal micromeres is restricted. It is known that the mature sea urchin eggs are polarized by the asymmetrical distribution of some maternal mRNAs and proteins. Spatially-distributed maternal factors are necessary for the orientation of the primary animal-vegetal axis, which is established by both maternal and zygotic mechanisms later in development. The secondary dorsal-ventral axis is conditionally specified later in development. Dorsal-ventral polarity is very liable during the early cleavages, though more recent data argue that its direction may be oriented by maternal asymmetry. In this review, we focus on the role of maternal factors in initial embryonic patterning during the first cleavages of sea urchin embryos before activation of the embryonic genome.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia; Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
10
|
Maternal factors regulating symmetry breaking and dorsal–ventral axis formation in the sea urchin embryo. Curr Top Dev Biol 2020; 140:283-316. [DOI: 10.1016/bs.ctdb.2019.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|