1
|
Blanco P, Trigo da Roza F, Toribio-Celestino L, García-Pastor L, Caselli N, Morón Á, Ojeda F, Darracq B, Vergara E, Amaro F, San Millán Á, Skovgaard O, Mazel D, Loot C, Escudero J. Chromosomal integrons are genetically and functionally isolated units of genomes. Nucleic Acids Res 2024; 52:12565-12581. [PMID: 39385642 PMCID: PMC11551772 DOI: 10.1093/nar/gkae866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Integrons are genetic elements that increase the evolvability of bacteria by capturing new genes and stockpiling them in arrays. Sedentary chromosomal integrons (SCIs) can be massive and highly stabilized structures encoding hundreds of genes, whose function remains generally unknown. SCIs have co-evolved with the host for aeons and are highly intertwined with their physiology from a mechanistic point of view. But, paradoxically, other aspects, like their variable content and location within the genome, suggest a high genetic and functional independence. In this work, we have explored the connection of SCIs to their host genome using as a model the Superintegron (SI), a 179-cassette long SCI in the genome of Vibrio cholerae N16961. We have relocated and deleted the SI using SeqDelTA, a novel method that allows to counteract the strong stabilization conferred by toxin-antitoxin systems within the array. We have characterized in depth the impact in V. cholerae's physiology, measuring fitness, chromosome replication dynamics, persistence, transcriptomics, phenomics, natural competence, virulence and resistance against protist grazing. The deletion of the SI did not produce detectable effects in any condition, proving that-despite millions of years of co-evolution-SCIs are genetically and functionally isolated units of genomes.
Collapse
Affiliation(s)
- Paula Blanco
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Filipa Trigo da Roza
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Laura Toribio-Celestino
- Departamento de Microbiología Microbiana, Centro Nacional de Biotecnología–CSIC, Madrid 28049, Spain
| | - Lucía García-Pastor
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Niccolò Caselli
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro Morón
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francisco Ojeda
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, ED515, F-75005 Paris, France
| | - Ester Vergara
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francisco Amaro
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro San Millán
- Departamento de Microbiología Microbiana, Centro Nacional de Biotecnología–CSIC, Madrid 28049, Spain
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - José Antonio Escudero
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
2
|
Gonzalez JM, Aranda B. Microbial Growth under Limiting Conditions-Future Perspectives. Microorganisms 2023; 11:1641. [PMID: 37512814 PMCID: PMC10383181 DOI: 10.3390/microorganisms11071641] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms rule the functioning of our planet and each one of the individual macroscopic living creature. Nevertheless, microbial activity and growth status have always been challenging tasks to determine both in situ and in vivo. Microbial activity is generally related to growth, and the growth rate is a result of the availability of nutrients under adequate or adverse conditions faced by microbial cells in a changing environment. Most studies on microorganisms have been carried out under optimum or near-optimum growth conditions, but scarce information is available about microorganisms at slow-growing states (i.e., near-zero growth and maintenance metabolism). This study aims to better understand microorganisms under growth-limiting conditions. This is expected to provide new perspectives on the functions and relevance of the microbial world. This is because (i) microorganisms in nature frequently face conditions of severe growth limitation, (ii) microorganisms activate singular pathways (mostly genes remaining to be functionally annotated), resulting in a broad range of secondary metabolites, and (iii) the response of microorganisms to slow-growth conditions remains to be understood, including persistence strategies, gene expression, and cell differentiation both within clonal populations and due to the complexity of the environment.
Collapse
Affiliation(s)
- Juan M Gonzalez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, E-41012 Sevilla, Spain
| | - Beatriz Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, E-41012 Sevilla, Spain
| |
Collapse
|
3
|
Fernández-Fernández R, López-Igual R, Casadesús J, Sánchez-Romero MA. Analysis of Salmonella lineage-specific traits upon cell sorting. Front Cell Infect Microbiol 2023; 13:1146070. [PMID: 37065195 PMCID: PMC10090396 DOI: 10.3389/fcimb.2023.1146070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Microbial cell individuality is receiving increasing interest in the scientific community. Individual cells within clonal populations exhibit noticeable phenotypic heterogeneity. The advent of fluorescent protein technology and advances in single-cell analysis has revealed phenotypic cell variant in bacterial populations. This heterogeneity is evident in a wide range of phenotypes, for example, individual cells display variable degrees of gene expression and survival under selective conditions and stresses, and can exhibit differing propensities to host interactions. Last few years, numerous cell sorting approaches have been employed for resolving the properties of bacterial subpopulations. This review provides an overview of applications of cell sorting to analyze Salmonella lineage-specific traits, including bacterial evolution studies, gene expression analysis, response to diverse cellular stresses and characterization of diverse bacterial phenotypic variants.
Collapse
Affiliation(s)
- Rocío Fernández-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and C.S.I.C., Seville, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María Antonia Sánchez-Romero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- *Correspondence: María Antonia Sánchez-Romero,
| |
Collapse
|
4
|
Gao Q, Lu S, Wang Y, He L, Wang M, Jia R, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Sun D, Tian B, Cheng A. Bacterial DNA methyltransferase: A key to the epigenetic world with lessons learned from proteobacteria. Front Microbiol 2023; 14:1129437. [PMID: 37032876 PMCID: PMC10073500 DOI: 10.3389/fmicb.2023.1129437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Epigenetics modulates expression levels of various important genes in both prokaryotes and eukaryotes. These epigenetic traits are heritable without any change in genetic DNA sequences. DNA methylation is a universal mechanism of epigenetic regulation in all kingdoms of life. In bacteria, DNA methylation is the main form of epigenetic regulation and plays important roles in affecting clinically relevant phenotypes, such as virulence, host colonization, sporulation, biofilm formation et al. In this review, we survey bacterial epigenomic studies and focus on the recent developments in the structure, function, and mechanism of several highly conserved bacterial DNA methylases. These methyltransferases are relatively common in bacteria and participate in the regulation of gene expression and chromosomal DNA replication and repair control. Recent advances in sequencing techniques capable of detecting methylation signals have enabled the characterization of genome-wide epigenetic regulation. With their involvement in critical cellular processes, these highly conserved DNA methyltransferases may emerge as promising targets for developing novel epigenetic inhibitors for biomedical applications.
Collapse
Affiliation(s)
- Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shuwei Lu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuwei Wang
- Key Laboratory of Livestock and Poultry Provenance Disease Research in Mianyang, Sichuan, China
| | - Longgui He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Fernández-Fernández R, Olivenza DR, Sánchez-Romero MA. Identifying Bacterial Lineages in Salmonella by Flow Cytometry. EcoSal Plus 2022; 10:eESP00182021. [PMID: 35148202 PMCID: PMC10729938 DOI: 10.1128/ecosalplus.esp-0018-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022]
Abstract
Advances in technologies that permit high-resolution analysis of events in single cells have revealed that phenotypic heterogeneity is a widespread phenomenon in bacteria. Flow cytometry has the potential to describe the distribution of cellular properties within a population of bacterial cells and has yielded invaluable information about the ability of isogenic cells to diversify into phenotypic subpopulations. This review will discuss several single-cell approaches that have recently been applied to define phenotypic heterogeneity in populations of Salmonella enterica.
Collapse
Affiliation(s)
| | - David R. Olivenza
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
6
|
DNA Methylation in Prokaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:21-43. [DOI: 10.1007/978-3-031-11454-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Sánchez-Romero MA, Casadesús J. Waddington's Landscapes in the Bacterial World. Front Microbiol 2021; 12:685080. [PMID: 34149674 PMCID: PMC8212987 DOI: 10.3389/fmicb.2021.685080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Conrad Waddington’s epigenetic landscape, a visual metaphor for the development of multicellular organisms, is appropriate to depict the formation of phenotypic variants of bacterial cells. Examples of bacterial differentiation that result in morphological change have been known for decades. In addition, bacterial populations contain phenotypic cell variants that lack morphological change, and the advent of fluorescent protein technology and single-cell analysis has unveiled scores of examples. Cell-specific gene expression patterns can have a random origin or arise as a programmed event. When phenotypic cell-to-cell differences are heritable, bacterial lineages are formed. The mechanisms that transmit epigenetic states to daughter cells can have strikingly different levels of complexity, from the propagation of simple feedback loops to the formation of complex DNA methylation patterns. Game theory predicts that phenotypic heterogeneity can facilitate bacterial adaptation to hostile or unpredictable environments, serving either as a division of labor or as a bet hedging that anticipates future challenges. Experimental observation confirms the existence of both types of strategies in the bacterial world.
Collapse
Affiliation(s)
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
8
|
Dufresne K, Daigle F. Identification of Crp as a novel regulator of the Std fimbrial expression in Salmonella. MICROBIOLOGY-SGM 2021; 167. [PMID: 33475482 DOI: 10.1099/mic.0.001022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Salmonella enterica serovar Typhi genome contains 14 putative fimbrial systems. The Std fimbriae belong to the chaperone-usher family and its regulation has not been investigated in S. Typhi. Several regulators of Std were previously identified in the closely related serovar Typhimurium. We hypothesize that regulators of S. Typhimurium may be shared with S. Typhi, but that several other regulators remain to be discovered. Here, we describe the role of more than 50 different candidate regulators on std expression. Three types of regulators were investigated: known regulators in S. Typhimurium, in silico predicted regulators and virulence/metabolic regulators. Expression of std was determined in the regulator mutants and compared with the wild-type strain. Overall, 21 regulator mutations affect std promoter expression. The role of Crp, a newly identified factor for std expression, was further investigated. Crp acted as an activator of std expression on a distal region of the std promoter region. Together, our results demonstrate the major influence of Crp as a novel transcriptional factor on std promoter expression and later production of Std fimbriae in Salmonella.
Collapse
Affiliation(s)
- Karine Dufresne
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal (QC), H3T 1J4, Canada
| | - France Daigle
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal (QC), H3T 1J4, Canada
| |
Collapse
|
9
|
Single Cell Analysis of Bistable Expression of Pathogenicity Island 1 and the Flagellar Regulon in Salmonella enterica. Microorganisms 2021; 9:microorganisms9020210. [PMID: 33498391 PMCID: PMC7909444 DOI: 10.3390/microorganisms9020210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Bistable expression of the Salmonella enterica pathogenicity island 1 (SPI-1) and the flagellar network (Flag) has been described previously. In this study, simultaneous monitoring of OFF and ON states in SPI-1 and in the flagellar regulon reveals independent switching, with concomitant formation of four subpopulations: SPI-1OFF FlagOFF, SPI-1OFF FlagON, SPI-1ON FlagOFF, and SPI-1ON FlagON. Invasion assays upon cell sorting show that none of the four subpopulations is highly invasive, thus raising the possibility that FlagOFF cells might contribute to optimal invasion as previously proposed for SPI-1OFF cells. Time lapse microscopy observation indicates that expression of the flagellar regulon contributes to the growth impairment previously described in SPI-1ON cells. As a consequence, growth resumption in SPI-1ON FlagON cells requires switching to both SPI-1OFF and FlagOFF states.
Collapse
|
10
|
Sánchez-Romero MA, Olivenza DR, Gutiérrez G, Casadesús J. Contribution of DNA adenine methylation to gene expression heterogeneity in Salmonella enterica. Nucleic Acids Res 2020; 48:11857-11867. [PMID: 32954419 PMCID: PMC7708049 DOI: 10.1093/nar/gkaa730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Expression of Salmonella enterica loci harboring undermethylated GATC sites at promoters or regulatory regions was monitored by single cell analysis. Cell-to-cell differences in expression were detected in ten such loci (carA, dgoR, holA, nanA, ssaN, STM1290, STM3276, STM5308, gtr and opvAB), with concomitant formation of ON and OFF subpopulations. The ON and OFF subpopulation sizes varied depending on the growth conditions, suggesting that the population structure can be modulated by environmental control. All the loci under study except STM5308 displayed altered patterns of expression in strains lacking or overproducing Dam methylase, thereby confirming control by Dam methylation. Bioinformatic analysis identified potential binding sites for transcription factors OxyR, CRP and Fur, and analysis of expression in mutant backgrounds confirmed transcriptional control by one or more of such factors. Surveys of gene expression in pairwise combinations of Dam methylation-dependent loci revealed independent switching, thus predicting the formation of a high number of cell variants. This study expands the list of S. enterica loci under transcriptional control by Dam methylation, and underscores the relevance of the DNA adenine methylome as a source of phenotypic heterogeneity.
Collapse
Affiliation(s)
- María A Sánchez-Romero
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Seville 41080, Spain
| | - David R Olivenza
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Seville 41080, Spain
| | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Seville 41080, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Seville 41080, Spain
| |
Collapse
|
11
|
O'Boyle N, Turner NCA, Roe AJ, Connolly JPR. Plastic Circuits: Regulatory Flexibility in Fine Tuning Pathogen Success. Trends Microbiol 2020; 28:360-371. [PMID: 32298614 DOI: 10.1016/j.tim.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/30/2022]
Abstract
Bacterial pathogens employ diverse fitness and virulence mechanisms to gain an advantage in competitive niches. These lifestyle-specific traits require integration into the regulatory network of the cell and are often controlled by pre-existing transcription factors. In this review, we highlight recent advances that have been made in characterizing this regulatory flexibility in prominent members of the Enterobacteriaceae. We focus on the direct global interactions between transcription factors and their target genes in pathogenic Escherichia coli and Salmonella revealed using chromatin immunoprecipitation coupled with next-generation sequencing. Furthermore, the implications and advantages of such regulatory adaptations in benefiting distinct pathogenic lifestyles are discussed.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Natasha C A Turner
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Andrew J Roe
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.
| | - James P R Connolly
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
| |
Collapse
|
12
|
Abstract
In all domains of life, genomes contain epigenetic information superimposed over the nucleotide sequence. Epigenetic signals control DNA-protein interactions and can cause phenotypic change in the absence of mutation. A nearly universal mechanism of epigenetic signalling is DNA methylation. In bacteria, DNA methylation has roles in genome defence, chromosome replication and segregation, nucleoid organization, cell cycle control, DNA repair and regulation of transcription. In many bacterial species, DNA methylation controls reversible switching (phase variation) of gene expression, a phenomenon that generates phenotypic cell variants. The formation of epigenetic lineages enables the adaptation of bacterial populations to harsh or changing environments and modulates the interaction of pathogens with their eukaryotic hosts.
Collapse
|
13
|
Staes I, Passaris I, Cambré A, Aertsen A. Population heterogeneity tactics as driving force in Salmonella virulence and survival. Food Res Int 2019; 125:108560. [DOI: 10.1016/j.foodres.2019.108560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/28/2023]
|
14
|
Farizano JV, García-Pastor L, Casadesús J, Delgado MA. Transcriptional regulation of the Salmonella enterica std fimbrial operon by the RcsCDB system. MICROBIOLOGY-SGM 2019; 165:1245-1250. [PMID: 31486760 DOI: 10.1099/mic.0.000854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Salmonella enterica serovar Typhimurium, the RcsCDB regulatory system controls the expression of genes involved in synthesis of colanic acid, formation of flagella and virulence. Here, we show that activation of the RcsCDB system downregulates expression of std, an operon that encodes fimbriae involved in Salmonella attachment to the mucus layer in the large intestine. Bioinformatic analysis predicts the existence of an RcsB-binding site located 180 bp upstream to the +1 transcription start site of the std promoter, and electrophoretic mobility shift assays confirm that RcsB binds the std promoter region in vitro. This study adds RcsB to the list of regulators of std transcription and provides an example of modulation of fimbriae synthesis by a signal transduction system.
Collapse
Affiliation(s)
- Juan V Farizano
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San, Miguel de Tucumán, Argentina
| | - Lucia García-Pastor
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| | - Monica A Delgado
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San, Miguel de Tucumán, Argentina
| |
Collapse
|
15
|
García-Pastor L, Sánchez-Romero MA, Jakomin M, Puerta-Fernández E, Casadesús J. Regulation of bistability in the std fimbrial operon of Salmonella enterica by DNA adenine methylation and transcription factors HdfR, StdE and StdF. Nucleic Acids Res 2019; 47:7929-7941. [PMID: 31216025 PMCID: PMC6735912 DOI: 10.1093/nar/gkz530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/16/2023] Open
Abstract
Bistable expression of the Salmonella enterica std operon is controlled by an AND logic gate involving three transcriptional activators: the LysR-type factor HdfR and the StdE and StdF regulators encoded by the std operon itself. StdE activates transcription of the hdfR gene, and StdF activates std transcription together with HdfR. Binding of HdfR upstream of the std promoter is hindered by methylation of GATC sites located within the upstream activating sequence (UAS). Epigenetic control by Dam methylation thus antagonizes formation of the StdE-StdF-HdfR loop and tilts the std switch toward the StdOFF state. In turn, HdfR binding hinders methylation of the UAS, permitting activation of the StdE-StdF-HdfR loop and concomitant formation of StdON cells. Bistability is thus the outcome of competition between DNA adenine methylation and the StdE-StdF-HdfR activator loop.
Collapse
Affiliation(s)
- Lucía García-Pastor
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| | - María A Sánchez-Romero
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| | - Marcello Jakomin
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| | - Elena Puerta-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avda. Reina Mercedes, 10, 41012 Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| |
Collapse
|
16
|
Suwandi A, Galeev A, Riedel R, Sharma S, Seeger K, Sterzenbach T, García Pastor L, Boyle EC, Gal-Mor O, Hensel M, Casadesús J, Baines JF, Grassl GA. Std fimbriae-fucose interaction increases Salmonella-induced intestinal inflammation and prolongs colonization. PLoS Pathog 2019; 15:e1007915. [PMID: 31329635 PMCID: PMC6675130 DOI: 10.1371/journal.ppat.1007915] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/01/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Expression of ABO and Lewis histo-blood group antigens by the gastrointestinal epithelium is governed by an α-1,2-fucosyltransferase enzyme encoded by the Fut2 gene. Alterations in mucin glycosylation have been associated with susceptibility to various bacterial and viral infections. Salmonella enterica serovar Typhimurium is a food-borne pathogen and a major cause of gastroenteritis. In order to determine the role of Fut2-dependent glycans in Salmonella-triggered intestinal inflammation, Fut2+/+ and Fut2-/- mice were orally infected with S. Typhimurium and bacterial colonization and intestinal inflammation were analyzed. Bacterial load in the intestine of Fut2-/- mice was significantly lower compared to Fut2+/+ mice. Analysis of histopathological changes revealed significantly lower levels of intestinal inflammation in Fut2-/- mice compared to Fut2+/+ mice and measurement of lipocalin-2 level in feces corroborated histopathological findings. Salmonella express fimbriae that assist in adherence of bacteria to host cells thereby facilitating their invasion. The std fimbrial operon of S. Typhimurium encodes the π-class Std fimbriae which bind terminal α(1,2)-fucose residues. An isogenic mutant of S. Typhimurium lacking Std fimbriae colonized Fut2+/+ and Fut2-/- mice to similar levels and resulted in similar intestinal inflammation. In vitro adhesion assays revealed that bacteria possessing Std fimbriae adhered significantly more to fucosylated cell lines or primary epithelial cells in comparison to cells lacking α(1,2)-fucose. Overall, these results indicate that Salmonella-triggered intestinal inflammation and colonization are dependent on Std-fucose interaction.
Collapse
Affiliation(s)
- Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Alibek Galeev
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - René Riedel
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany and Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Samriti Sharma
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Katrin Seeger
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Torsten Sterzenbach
- Division of Microbiology and CellNanOs–Center for Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Lucía García Pastor
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Erin C. Boyle
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Hensel
- Division of Microbiology and CellNanOs–Center for Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - John F. Baines
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany and Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| |
Collapse
|