1
|
Mei X, Qiao P, Ma H, Qin S, Song X, Zhao Q, Shen D. Bombyx mori Tetraspanin A (BmTsp.A) is a facilitator in BmNPV invasion by regulating apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104736. [PMID: 37207976 DOI: 10.1016/j.dci.2023.104736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
BmTsp.A (Bombyx mori Tetraspanin A) is one of the four transmembrane proteins which are capable to regulate multiple aspects of the immune response and are involved in various stages of viral invasion of the hosts. This study focused on the sequence features, analysis of expression pattern, as well as the effect of BmTsp.A on BmNPV (Bombyx mori nucleopolyhedrovirus) infection in the apoptotic pathway. BmTsp.A features the typical tetraspanins family, including four transmembrane domains and a major large extracellular loop domain. It is highly expressed specifically in the malpighian tubes, and its expression is increased by BmNPV induction for 48 h and 72 h. Overexpression and RNAi (RNA interference) mediated by siRNA reveal that BmTsp.A can promote the infection and replication of the virus. In addition, the overexpression of BmTsp.A regulates BmNPV-induced apoptosis, leading to changes in the expression of apoptosis-related genes and thus affecting viral proliferation. When subjected to stimulation by BmNPV infection, on the one hand, BmTsp.A inhibits Bmp53 through a Caspase-dependent pathway, which consequently promotes the expression of Bmbuffy, thereby activating BmICE to inhibit apoptosis and causing the promotion of viral proliferation. On the other hand, BmTsp.A inhibits the expression of BmPTEN and BmPkc through the phosphatidylinositol 3 kinase (PI3K)/protein kinaseB(AKT) signaling pathway, thus affecting the regulation of apoptosis. To summarize, our results demonstrate that BmTsp.A promotes viral infection and replication by inhibiting apoptosis, which is fundamental for understanding the pathogenesis of BmNPV and the immune defense mechanism of silkworm.
Collapse
Affiliation(s)
- Xianghan Mei
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Peitong Qiao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Hengheng Ma
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Siyu Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Xia Song
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
2
|
TSPAN6 is a suppressor of Ras-driven cancer. Oncogene 2022; 41:2095-2105. [PMID: 35184157 PMCID: PMC8975741 DOI: 10.1038/s41388-022-02223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
Abstract
Oncogenic mutations in the small GTPase RAS contribute to ~30% of human cancers. In a Drosophila genetic screen, we identified novel and evolutionary conserved cancer genes that affect Ras-driven tumorigenesis and metastasis in Drosophila including confirmation of the tetraspanin Tsp29Fb. However, it was not known whether the mammalian Tsp29Fb orthologue, TSPAN6, has any role in RAS-driven human epithelial tumors. Here we show that TSPAN6 suppressed tumor growth and metastatic dissemination of human RAS activating mutant pancreatic cancer xenografts. Whole-body knockout as well as tumor cell autonomous inactivation using floxed alleles of Tspan6 in mice enhanced KrasG12D-driven lung tumor initiation and malignant progression. Mechanistically, TSPAN6 binds to the EGFR and blocks EGFR-induced RAS activation. Moreover, we show that inactivation of TSPAN6 induces an epithelial-to-mesenchymal transition and inhibits cell migration in vitro and in vivo. Finally, low TSPAN6 expression correlates with poor prognosis of patients with lung and pancreatic cancers with mesenchymal morphology. Our results uncover TSPAN6 as a novel tumor suppressor receptor that controls epithelial cell identify and restrains RAS-driven epithelial cancer.
Collapse
|
3
|
Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling. Genes (Basel) 2021; 12:genes12040553. [PMID: 33920182 PMCID: PMC8070103 DOI: 10.3390/genes12040553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharmacological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration.
Collapse
|
4
|
Genome-Wide Screen for Context-Dependent Tumor Suppressors Identified Using in Vivo Models for Neoplasia in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:2999-3008. [PMID: 32737065 PMCID: PMC7467006 DOI: 10.1534/g3.120.401545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic approaches in Drosophila have successfully identified many genes involved in regulation of growth control as well as genetic interactions relevant to the initiation and progression of cancer in vivo. Here, we report on large-scale RNAi-based screens to identify potential tumor suppressor genes that interact with known cancer-drivers: the Epidermal Growth Factor Receptor and the Hippo pathway transcriptional cofactor Yorkie. These screens were designed to identify genes whose depletion drove tissue expressing EGFR or Yki from a state of benign overgrowth into neoplastic transformation in vivo. We also report on an independent screen aimed to identify genes whose depletion suppressed formation of neoplastic tumors in an existing EGFR-dependent neoplasia model. Many of the positives identified here are known to be functional in growth control pathways. We also find a number of novel connections to Yki and EGFR driven tissue growth, mostly unique to one of the two. Thus, resources provided here would be useful to all researchers who study negative regulators of growth during development and cancer in the context of activated EGFR and/or Yki and positive regulators of growth in the context of activated EGFR. Resources reported here are available freely for anyone to use.
Collapse
|
5
|
Bröer S. Amino Acid Transporters as Targets for Cancer Therapy: Why, Where, When, and How. Int J Mol Sci 2020; 21:ijms21176156. [PMID: 32859034 PMCID: PMC7503255 DOI: 10.3390/ijms21176156] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Amino acids are indispensable for the growth of cancer cells. This includes essential amino acids, the carbon skeleton of which cannot be synthesized, and conditionally essential amino acids, for which the metabolic demands exceed the capacity to synthesize them. Moreover, amino acids are important signaling molecules regulating metabolic pathways, protein translation, autophagy, defense against reactive oxygen species, and many other functions. Blocking uptake of amino acids into cancer cells is therefore a viable strategy to reduce growth. A number of studies have used genome-wide silencing or knock-out approaches, which cover all known amino acid transporters in a large variety of cancer cell lines. In this review, these studies are interrogated together with other databases to identify vulnerabilities with regard to amino acid transport. Several themes emerge, such as synthetic lethality, reduced redundancy, and selective vulnerability, which can be exploited to stop cancer cell growth.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra ACT 2600, Australia
| |
Collapse
|
6
|
Canales Coutiño B, Cornhill ZE, Couto A, Mack NA, Rusu AD, Nagarajan U, Fan YN, Hadjicharalambous MR, Castellanos Uribe M, Burrows A, Lourdusamy A, Rahman R, May ST, Georgiou M. A Genetic Analysis of Tumor Progression in Drosophila Identifies the Cohesin Complex as a Suppressor of Individual and Collective Cell Invasion. iScience 2020; 23:101237. [PMID: 32629605 PMCID: PMC7317029 DOI: 10.1016/j.isci.2020.101237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/30/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023] Open
Abstract
Metastasis is the leading cause of death for patients with cancer. Consequently it is imperative that we improve our understanding of the molecular mechanisms that underlie progression of tumor growth toward malignancy. Advances in genome characterization technologies have been very successful in identifying commonly mutated or misregulated genes in a variety of human cancers. However, the difficulty in evaluating whether these candidates drive tumor progression remains a major challenge. Using the genetic amenability of Drosophila melanogaster we generated tumors with specific genotypes in the living animal and carried out a detailed systematic loss-of-function analysis to identify conserved genes that enhance or suppress epithelial tumor progression. This enabled the discovery of functional cooperative regulators of invasion and the establishment of a network of conserved invasion suppressors. This includes constituents of the cohesin complex, whose loss of function either promotes individual or collective cell invasion, depending on the severity of effect on cohesin complex function. Screen identifies genes that affect tumor behavior in a wide variety of ways A functionally validated network of invasion-suppressor genes was generated Loss of cohesin complex function can promote individual or collective cell invasion The fly pupal notum is an excellent in vivo system to study tumor progression
Collapse
Affiliation(s)
| | - Zoe E Cornhill
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Africa Couto
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Natalie A Mack
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Alexandra D Rusu
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Usha Nagarajan
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123029, India
| | - Yuen Ngan Fan
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, UK
| | - Marina R Hadjicharalambous
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | | | - Amy Burrows
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | | | - Ruman Rahman
- School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sean T May
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Marios Georgiou
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
7
|
Villegas SN, Ferres-Marco D, Domínguez M. Using Drosophila Models and Tools to Understand the Mechanisms of Novel Human Cancer Driver Gene Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:15-35. [PMID: 31520347 DOI: 10.1007/978-3-030-23629-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The formation, overgrowth and metastasis of tumors comprise a complex series of cellular and molecular events resulting from the combined effects of a variety of aberrant signaling pathways, mutations, and epigenetic alterations. Modeling this complexity in vivo requires multiple genes to be manipulated simultaneously, which is technically challenging. Here, we analyze how Drosophila research can further contribute to identifying pathways and elucidating mechanisms underlying novel cancer driver (risk) genes associated with tumor growth and metastasis in humans.
Collapse
Affiliation(s)
- Santiago Nahuel Villegas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), Alicante, Spain.
| | - Dolors Ferres-Marco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), Alicante, Spain.
| | - María Domínguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), Alicante, Spain
| |
Collapse
|