1
|
Alsaedi S, Ogasawara M, Alarawi M, Gao X, Gojobori T. AI-powered precision medicine: utilizing genetic risk factor optimization to revolutionize healthcare. NAR Genom Bioinform 2025; 7:lqaf038. [PMID: 40330081 PMCID: PMC12051108 DOI: 10.1093/nargab/lqaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/11/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
The convergence of artificial intelligence (AI) and biomedical data is transforming precision medicine by enabling the use of genetic risk factors (GRFs) for customized healthcare services based on individual needs. Although GRFs play an essential role in disease susceptibility, progression, and therapeutic outcomes, a gap exists in exploring their contribution to AI-powered precision medicine. This paper addresses this need by investigating the significance and potential of utilizing GRFs with AI in the medical field. We examine their applications, particularly emphasizing their impact on disease prediction, treatment personalization, and overall healthcare improvement. This review explores the application of AI algorithms to optimize the use of GRFs, aiming to advance precision medicine in disease screening, patient stratification, drug discovery, and understanding disease mechanisms. Through a variety of case studies and examples, we demonstrate the potential of incorporating GRFs facilitated by AI into medical practice, resulting in more precise diagnoses, targeted therapies, and improved patient outcomes. This review underscores the potential of GRFs, empowered by AI, to enhance precision medicine by improving diagnostic accuracy, treatment precision, and individualized healthcare solutions.
Collapse
Affiliation(s)
- Sakhaa Alsaedi
- Computer Science, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Center of Excellence for Generative AI, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- College of Computer Science and Engineering (CCSE), Taibah University, 42353 Madinah, Kingdom of Saudi Arabia
| | - Michihiro Ogasawara
- Department of Internal Medicine and Rheumatology, Juntendo University, 113-8431 Tokyo, Japan
| | - Mohammed Alarawi
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Center of Excellence for Generative AI, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Xin Gao
- Computer Science, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Center of Excellence for Generative AI, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Center of Excellence for Generative AI, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Marine Open Innovation Institute (MaOI), 113-8431 Shizuoka, Japan
| |
Collapse
|
2
|
Lin YJ, Menon AS, Hu Z, Brenner SE. Variant Impact Predictor database (VIPdb), version 2: trends from three decades of genetic variant impact predictors. Hum Genomics 2024; 18:90. [PMID: 39198917 PMCID: PMC11360829 DOI: 10.1186/s40246-024-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Variant interpretation is essential for identifying patients' disease-causing genetic variants amongst the millions detected in their genomes. Hundreds of Variant Impact Predictors (VIPs), also known as Variant Effect Predictors (VEPs), have been developed for this purpose, with a variety of methodologies and goals. To facilitate the exploration of available VIP options, we have created the Variant Impact Predictor database (VIPdb). RESULTS The Variant Impact Predictor database (VIPdb) version 2 presents a collection of VIPs developed over the past three decades, summarizing their characteristics, ClinGen calibrated scores, CAGI assessment results, publication details, access information, and citation patterns. We previously summarized 217 VIPs and their features in VIPdb in 2019. Building upon this foundation, we identified and categorized an additional 190 VIPs, resulting in a total of 407 VIPs in VIPdb version 2. The majority of the VIPs have the capacity to predict the impacts of single nucleotide variants and nonsynonymous variants. More VIPs tailored to predict the impacts of insertions and deletions have been developed since the 2010s. In contrast, relatively few VIPs are dedicated to the prediction of splicing, structural, synonymous, and regulatory variants. The increasing rate of citations to VIPs reflects the ongoing growth in their use, and the evolving trends in citations reveal development in the field and individual methods. CONCLUSIONS VIPdb version 2 summarizes 407 VIPs and their features, potentially facilitating VIP exploration for various variant interpretation applications. VIPdb is available at https://genomeinterpretation.org/vipdb.
Collapse
Affiliation(s)
- Yu-Jen Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Center for Computational Biology, University of California, Berkeley, CA, 94720, USA
| | - Arul S Menon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, CA, 94720, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall #3102, Berkeley, CA, 94720-3102, USA
- Illumina, Foster City, CA, 94404, USA
| | - Steven E Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Center for Computational Biology, University of California, Berkeley, CA, 94720, USA.
- College of Computing, Data Science, and Society, University of California, Berkeley, CA, 94720, USA.
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall #3102, Berkeley, CA, 94720-3102, USA.
| |
Collapse
|
3
|
Lin YJ, Menon AS, Hu Z, Brenner SE. Variant Impact Predictor database (VIPdb), version 2: Trends from 25 years of genetic variant impact predictors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600283. [PMID: 38979289 PMCID: PMC11230257 DOI: 10.1101/2024.06.25.600283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Variant interpretation is essential for identifying patients' disease-causing genetic variants amongst the millions detected in their genomes. Hundreds of Variant Impact Predictors (VIPs), also known as Variant Effect Predictors (VEPs), have been developed for this purpose, with a variety of methodologies and goals. To facilitate the exploration of available VIP options, we have created the Variant Impact Predictor database (VIPdb). Results The Variant Impact Predictor database (VIPdb) version 2 presents a collection of VIPs developed over the past 25 years, summarizing their characteristics, ClinGen calibrated scores, CAGI assessment results, publication details, access information, and citation patterns. We previously summarized 217 VIPs and their features in VIPdb in 2019. Building upon this foundation, we identified and categorized an additional 186 VIPs, resulting in a total of 403 VIPs in VIPdb version 2. The majority of the VIPs have the capacity to predict the impacts of single nucleotide variants and nonsynonymous variants. More VIPs tailored to predict the impacts of insertions and deletions have been developed since the 2010s. In contrast, relatively few VIPs are dedicated to the prediction of splicing, structural, synonymous, and regulatory variants. The increasing rate of citations to VIPs reflects the ongoing growth in their use, and the evolving trends in citations reveal development in the field and individual methods. Conclusions VIPdb version 2 summarizes 403 VIPs and their features, potentially facilitating VIP exploration for various variant interpretation applications. Availability VIPdb version 2 is available at https://genomeinterpretation.org/vipdb.
Collapse
Affiliation(s)
- Yu-Jen Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
| | - Arul S. Menon
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Currently at: Illumina, Foster City, California 94404, USA
| | - Steven E. Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Iñiguez-Muñoz S, Llinàs-Arias P, Ensenyat-Mendez M, Bedoya-López AF, Orozco JIJ, Cortés J, Roy A, Forsberg-Nilsson K, DiNome ML, Marzese DM. Hidden secrets of the cancer genome: unlocking the impact of non-coding mutations in gene regulatory elements. Cell Mol Life Sci 2024; 81:274. [PMID: 38902506 PMCID: PMC11335195 DOI: 10.1007/s00018-024-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/07/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.
Collapse
Affiliation(s)
- Sandra Iñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Andrés F Bedoya-López
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, 08017, Barcelona, Spain
- Medica Scientia Innovation Research SL (MEDSIR), 08018, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670, Madrid, Spain
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Maggie L DiNome
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Diego M Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Momozawa Y, Mizukami K. Unique roles of rare variants in the genetics of complex diseases in humans. J Hum Genet 2021; 66:11-23. [PMID: 32948841 PMCID: PMC7728599 DOI: 10.1038/s10038-020-00845-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/06/2020] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have identified >10,000 genetic variants associated with various phenotypes and diseases. Although the majority are common variants, rare variants with >0.1% of minor allele frequency have been investigated by imputation and using disease-specific custom SNP arrays. Rare variants sequencing analysis mainly revealed have played unique roles in the genetics of complex diseases in humans due to their distinctive features, in contrast to common variants. Unique roles are hypothesis-free evidence for gene causality, a precise target of functional analysis for understanding disease mechanisms, a new favorable target for drug development, and a genetic marker with high disease risk for personalized medicine. As whole-genome sequencing continues to identify more rare variants, the roles associated with rare variants will also increase. However, a better estimation of the functional impact of rare variants across whole genome is needed to enhance their contribution to improvements in human health.
Collapse
Affiliation(s)
- Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
- Laboratory for Molecular Science for Drug Discovery, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.
| | - Keijiro Mizukami
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|