1
|
Kieler IN, Persson SM, Hagman R, Marinescu VD, Hedhammar Å, Strandberg E, Lindblad-Toh K, Arendt ML. Genome wide association study in Swedish Labrador retrievers identifies genetic loci associated with hip dysplasia and body weight. Sci Rep 2024; 14:6090. [PMID: 38480780 PMCID: PMC10937653 DOI: 10.1038/s41598-024-56060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Genome wide association studies (GWAS) have been utilized to identify genetic risk loci associated with both simple and complex inherited disorders. Here, we performed a GWAS in Labrador retrievers to identify genetic loci associated with hip dysplasia and body weight. Hip dysplasia scores were available for 209 genotyped dogs. We identified a significantly associated locus for hip dysplasia on chromosome 24, with three equally associated SNPs (p = 4.3 × 10-7) in complete linkage disequilibrium located within NDRG3, a gene which in humans has been shown to be differentially expressed in osteoarthritic joint cartilage. Body weight, available for 85 female dogs, was used as phenotype for a second analysis. We identified two significantly associated loci on chromosome 10 (p = 4.5 × 10-7) and chromosome 31 (p = 2.5 × 10-6). The most associated SNPs within these loci were located within the introns of the PRKCE and CADM2 genes, respectively. PRKCE has been shown to play a role in regulation of adipogenesis whilst CADM2 has been associated with body weight in multiple human GWAS. In summary, we identified credible candidate loci explaining part of the genetic inheritance for hip dysplasia and body weight in Labrador retrievers with strong candidate genes in each locus previously implicated in the phenotypes investigated.
Collapse
Affiliation(s)
- Ida Nordang Kieler
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofia Malm Persson
- Department for Breeding and Health, Swedish Kennel Club, Stockholm, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Voichita D Marinescu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala, Sweden
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erling Strandberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maja Louise Arendt
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- SciLifeLab, Uppsala, Sweden.
| |
Collapse
|
2
|
Wang S, Strandberg E, Arvelius P, Clements DN, Wiener P, Friedrich J. Genome-wide association studies for canine hip dysplasia in single and multiple populations - implications and potential novel risk loci. BMC Genomics 2021; 22:636. [PMID: 34474664 PMCID: PMC8414704 DOI: 10.1186/s12864-021-07945-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Association mapping studies of quantitative trait loci (QTL) for canine hip dysplasia (CHD) can contribute to the understanding of the genetic background of this common and debilitating disease and might contribute to its genetic improvement. The power of association studies for CHD is limited by relatively small sample numbers for CHD records within countries, suggesting potential benefits of joining data across countries. However, this is complicated due to the use of different scoring systems across countries. In this study, we incorporated routinely assessed CHD records and genotype data of German Shepherd dogs from two countries (UK and Sweden) to perform genome-wide association studies (GWAS) within populations using different variations of CHD phenotypes. As phenotypes, dogs were either classified into cases and controls based on the Fédération Cynologique Internationale (FCI) five-level grading of the worst hip or the FCI grade was treated as an ordinal trait. In a subsequent meta-analysis, we added publicly available data from a Finnish population and performed the GWAS across all populations. Genetic associations for the CHD phenotypes were evaluated in a linear mixed model using 62,089 SNPs. RESULTS Multiple SNPs with genome-wide significant and suggestive associations were detected in single-population GWAS and the meta-analysis. Few of these SNPs overlapped between populations or between single-population GWAS and the meta-analysis, suggesting that many CHD-related QTL are population-specific. More significant or suggestive SNPs were identified when FCI grades were used as phenotypes in comparison to the case-control approach. MED13 (Chr 9) and PLEKHA7 (Chr 21) emerged as novel positional candidate genes associated with hip dysplasia. CONCLUSIONS Our findings confirm the complex genetic nature of hip dysplasia in dogs, with multiple loci associated with the trait, most of which are population-specific. Routinely assessed CHD information collected across countries provide an opportunity to increase sample sizes and statistical power for association studies. While the lack of standardisation of CHD assessment schemes across countries poses a challenge, we showed that conversion of traits can be utilised to overcome this obstacle.
Collapse
Affiliation(s)
- Shizhi Wang
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Erling Strandberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-750 07, Uppsala, Sweden
| | - Per Arvelius
- Swedish Armed Forces Dog Training Centre, Box 194, SE-195 24, Märsta, Sweden
| | - Dylan N Clements
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Pamela Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Juliane Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
3
|
Mikkola L, Kyöstilä K, Donner J, Lappalainen AK, Hytönen MK, Lohi H, Iivanainen A. An across-breed validation study of 46 genetic markers in canine hip dysplasia. BMC Genomics 2021; 22:68. [PMID: 33478395 PMCID: PMC7818755 DOI: 10.1186/s12864-021-07375-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Background Canine hip dysplasia (CHD) is a common disease, with a complex genetic background. Dogs with severe CHD sometimes also suffer from osteoarthritis (OA), an inflammatory, often painful and incurable condition. Previous studies have reported breed-specific genetic loci associated with different hip dysplasia and OA phenotypes. However, the independent replication of the known associations within or across breeds has been difficult due to variable phenotype measures, inadequate sample sizes and the existence of population specific variants. Results We execute a validation study of 46 genetic markers in a cohort of nearly 1600 dogs from ten different breeds. We categorize the dogs into cases and controls according to the hip scoring system defined by the Fédération Cynologique Internationale (FCI). We validate 21 different loci associated on fourteen chromosomes. Twenty of these associated with CHD in specific breeds, whereas one locus is unique to the across-breed study. We show that genes involved in the neddylation pathway are enriched among the genes in the validated loci. Neddylation contributes to many cellular functions including inflammation. Conclusions Our study successfully replicates many loci and highlights the complex genetic architecture of CHD. Further characterisation of the associated loci could reveal CHD-relevant genes and pathways for improved understanding of the disease pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07375-x.
Collapse
Affiliation(s)
- Lea Mikkola
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - Kaisa Kyöstilä
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | | | - Anu K Lappalainen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Marjo K Hytönen
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - Antti Iivanainen
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.
| |
Collapse
|
4
|
Santana A, Alves-Pimenta S, Martins J, Colaço B, Ginja M. Hands-Free Conventional Radiographic Ventrodorsal Hip Extended View. Front Vet Sci 2020; 7:286. [PMID: 32587864 PMCID: PMC7297906 DOI: 10.3389/fvets.2020.00286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
Hip dysplasia (HD) is an important hereditary orthopedic disease in the dog associated with osteoarthritis and inadequate welfare for affected animals. The radiographic ventrodorsal hip extended (VDHE) view is used worldwide to select the better animals for breeding. This view normally is performed with manual restraining of the dog to obtain radiographs with acceptable technical quality. The veterinarian exposition to ionizing radiation is inevitable. In this study, the technical quality of VDHE radiographs and hip measurements was compared in 65 dogs radiographed twice, one with the common veterinarian manual restraining and the other obtained using a hind limb holder device, without the veterinarian within the X-ray room. The variables studied were pelvic tilting, patella displacement index, Norberg angle (NA), and subluxation hip category. The results showed a random distribution of right and left pelvic tilting, patella lateral or medial displacement, and hip subluxation categories in both samples (P > 0.05). The holder device positioning showed a better pelvic symmetry (P < 0.05) and a similar patellar displacement (P > 0.05). The mean ± standard deviation of NA was 101.1° ± 6.2° and 100.9° ± 6.1° in the manual and holder device hind limb restraining, respectively (P > 0.05), and the lower limit of 95% confidence interval of intraclass correlation coefficient was >0.75. These results showed statistical reproducibility of NA measurements by the hind limb holder device, and the examiner was protected from exposure to ionizing radiation within the X-ray room.
Collapse
Affiliation(s)
- Ana Santana
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal.,CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Sofia Alves-Pimenta
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Animal Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - João Martins
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal.,CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Bruno Colaço
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Animal Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Mário Ginja
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Veterinary Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
5
|
Sarviaho R, Hakosalo O, Tiira K, Sulkama S, Niskanen JE, Hytönen MK, Sillanpää MJ, Lohi H. A novel genomic region on chromosome 11 associated with fearfulness in dogs. Transl Psychiatry 2020; 10:169. [PMID: 32467585 PMCID: PMC7256038 DOI: 10.1038/s41398-020-0849-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
The complex phenotypic and genetic nature of anxieties hampers progress in unravelling their molecular etiologies. Dogs present extensive natural variation in fear and anxiety behaviour and could advance the understanding of the molecular background of behaviour due to their unique breeding history and genetic architecture. As dogs live as part of human families under constant care and monitoring, information from their behaviour and experiences are easily available. Here we have studied the genetic background of fearfulness in the Great Dane breed. Dogs were scored and categorised into cases and controls based on the results of the validated owner-completed behavioural survey. A genome-wide association study in a cohort of 124 dogs with and without socialisation as a covariate revealed a genome-wide significant locus on chromosome 11. Whole exome sequencing and whole genome sequencing revealed extensive regions of opposite homozygosity in the same locus on chromosome 11 between the cases and controls with interesting neuronal candidate genes such as MAPK9/JNK2, a known hippocampal regulator of anxiety. Further characterisation of the identified locus will pave the way for molecular understanding of fear in dogs and may provide a natural animal model for human anxieties.
Collapse
Affiliation(s)
- R. Sarviaho
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland
| | - O. Hakosalo
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland
| | - K. Tiira
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - S. Sulkama
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland
| | - J. E. Niskanen
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland
| | - M. K. Hytönen
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland
| | - M. J. Sillanpää
- grid.10858.340000 0001 0941 4873Department of Mathematical Sciences, Biocenter Oulu and Infotech Oulu, University of Oulu, Oulu, Finland
| | - H. Lohi
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland
| |
Collapse
|
6
|
Bruun CS, Bank A, Ström A, Proschowsky HF, Fredholm M. Validation of DNA test for hip dysplasia failed in Danish Labrador Retrievers. Anim Genet 2020; 51:617-619. [PMID: 32432791 DOI: 10.1111/age.12951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Canine hip dysplasia is characterized by poor hip joint conformation and laxity. The disease is a complex trait influenced by both genetics and environment. Diagnosis and quantification of hip dysplasia are performed by radiographic examination of the hip joint and the diagnosis is used for making breeding decisions in many breeds. A prognostic genetic test (the Dysgen test) based on seven associated SNPs has been developed in a study based on Spanish Labrador Retrievers. In our study this test has been evaluated in 39 Danish Labrador Retrievers with known radiographic hip score: 14 with hip dysplasia (grade D or E) and 25 without hip dysplasia (grade A or B). There was no significant correlation between the Dysgen test results and the radiographic hip status (P = 0.3203) in these dogs, indicating that Dysgen test results obtained for Danish Labrador Retrievers have no prognostic value.
Collapse
Affiliation(s)
- C S Bruun
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, 1870, Denmark
| | - A Bank
- Evidensia Specialistdjursjukhuset, Helsingborg, 254 66, Sweden
| | - A Ström
- Evidensia Specialistdjursjukhuset, Helsingborg, 254 66, Sweden
| | | | - M Fredholm
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, 1870, Denmark
| |
Collapse
|
7
|
Field MA, Rosen BD, Dudchenko O, Chan EKF, Minoche AE, Edwards RJ, Barton K, Lyons RJ, Tuipulotu DE, Hayes VM, D. Omer A, Colaric Z, Keilwagen J, Skvortsova K, Bogdanovic O, Smith MA, Aiden EL, Smith TPL, Zammit RA, Ballard JWO. Canfam_GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus familiaris) using a combination of long reads, optical mapping, and Hi-C. Gigascience 2020; 9:giaa027. [PMID: 32236524 PMCID: PMC7111595 DOI: 10.1093/gigascience/giaa027] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/29/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The German Shepherd Dog (GSD) is one of the most common breeds on earth and has been bred for its utility and intelligence. It is often first choice for police and military work, as well as protection, disability assistance, and search-and-rescue. Yet, GSDs are well known to be susceptible to a range of genetic diseases that can interfere with their training. Such diseases are of particular concern when they occur later in life, and fully trained animals are not able to continue their duties. FINDINGS Here, we provide the draft genome sequence of a healthy German Shepherd female as a reference for future disease and evolutionary studies. We generated this improved canid reference genome (CanFam_GSD) utilizing a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. The GSD assembly is ∼80 times as contiguous as the current canid reference genome (20.9 vs 0.267 Mb contig N50), containing far fewer gaps (306 vs 23,876) and fewer scaffolds (429 vs 3,310) than the current canid reference genome CanFamv3.1. Two chromosomes (4 and 35) are assembled into single scaffolds with no gaps. BUSCO analyses of the genome assembly results show that 93.0% of the conserved single-copy genes are complete in the GSD assembly compared with 92.2% for CanFam v3.1. Homology-based gene annotation increases this value to ∼99%. Detailed examination of the evolutionarily important pancreatic amylase region reveals that there are most likely 7 copies of the gene, indicative of a duplication of 4 ancestral copies and the disruption of 1 copy. CONCLUSIONS GSD genome assembly and annotation were produced with major improvement in completeness, continuity, and quality over the existing canid reference. This resource will enable further research related to canine diseases, the evolutionary relationships of canids, and other aspects of canid biology.
Collapse
Affiliation(s)
- Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield Road, Cairns, QLD 4878, Australia
- John Curtin School of Medical Research, Australian National University, Garran Rd, Canberra, ACT 2600, Australia
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA, Baltimore Ave, Beltsville, MD 20705, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Plaza, Houston, TX 77030, USA
- Department of Computer Science, Rice University, Main St, Houston, TX 77005, USA
- Center for Theoretical and Biological Physics, Rice University, Main St, Houston, TX 77005, USA
| | - Eva K F Chan
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Andre E Minoche
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, University of New South Wales Sydney, Victoria Street, Darlinghurst NSW 2010, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Kirston Barton
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Ruth J Lyons
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Vanessa M Hayes
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine, UNSW Sydney, High St, Kensington, NSW 2052, Australia
- Central Clinical School, University of Sydney, Parramatta Road, Camperdown, NSW 2050, Australia
| | - Arina D. Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Plaza, Houston, TX 77030, USA
- Department of Computer Science, Rice University, Main St, Houston, TX 77005, USA
| | - Zane Colaric
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Plaza, Houston, TX 77030, USA
- Department of Computer Science, Rice University, Main St, Houston, TX 77005, USA
| | - Jens Keilwagen
- Julius Kühn-Institut, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Ksenia Skvortsova
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Martin A Smith
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Plaza, Houston, TX 77030, USA
- Department of Computer Science, Rice University, Main St, Houston, TX 77005, USA
- Center for Theoretical and Biological Physics, Rice University, Main St, Houston, TX 77005, USA
- Broad Institute of MIT and Harvard, Main St, Cambridge, MA 02142, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, ShanghaiTech University, Huaxia Middle Rd, Pudong 201210, China
| | - Timothy P L Smith
- US Meat Animal Research Center, Agricultural Research Service USDA, Rd 313, Clay Center, NE 68933, USA
| | - Robert A Zammit
- Vineyard Veterinary Hospital, Windsor Rd, Vineyard, NSW 2765, Australia
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| |
Collapse
|
8
|
Mikkola L, Holopainen S, Pessa-Morikawa T, Lappalainen AK, Hytönen MK, Lohi H, Iivanainen A. Genetic dissection of canine hip dysplasia phenotypes and osteoarthritis reveals three novel loci. BMC Genomics 2019; 20:1027. [PMID: 31881848 PMCID: PMC6935090 DOI: 10.1186/s12864-019-6422-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/22/2019] [Indexed: 12/15/2022] Open
Abstract
Background Hip dysplasia and osteoarthritis continue to be prevalent problems in veterinary and human medicine. Canine hip dysplasia is particularly problematic as it massively affects several large-sized breeds and can cause a severe impairment of the quality of life. In Finland, the complex condition is categorized to five classes from normal to severe dysplasia, but the categorization includes several sub-traits: congruity of the joint, Norberg angle, subluxation degree of the joint, shape and depth of the acetabulum, and osteoarthritis. Hip dysplasia and osteoarthritis have been proposed to have separate genetic etiologies. Results Using Fédération Cynologique Internationale -standardized ventrodorsal radiographs, German shepherds were rigorously phenotyped for osteoarthritis, and for joint incongruity by Norberg angle and femoral head center position in relation to dorsal acetabular edge. The affected dogs were categorized into mild, moderate and severe dysplastic phenotypes using official hip scores. Three different genome-wide significant loci were uncovered. The strongest candidate genes for hip joint incongruity were noggin (NOG), a bone and joint developmental gene on chromosome 9, and nanos C2HC-type zinc finger 1 (NANOS1), a regulator of matrix metalloproteinase 14 (MMP14) on chromosome 28. Osteoarthritis mapped to a long intergenic region on chromosome 1, between genes encoding for NADPH oxidase 3 (NOX3), an intriguing candidate for articular cartilage degradation, and AT-rich interactive domain 1B (ARID1B) that has been previously linked to joint laxity. Conclusions Our findings highlight the complexity of canine hip dysplasia phenotypes. In particular, the results of this study point to the potential involvement of specific and partially distinct loci and genes or pathways in the development of incongruity, mild dysplasia, moderate-to-severe dysplasia and osteoarthritis of canine hip joints. Further studies should unravel the unique and common mechanisms for the various sub-traits.
Collapse
Affiliation(s)
- Lea Mikkola
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66 (Mustialankatu 1), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Saila Holopainen
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66 (Mustialankatu 1), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Pessa-Morikawa
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66 (Mustialankatu 1), FI-00014, Helsinki, Finland
| | - Anu K Lappalainen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Marjo K Hytönen
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66 (Mustialankatu 1), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66 (Mustialankatu 1), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Antti Iivanainen
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66 (Mustialankatu 1), FI-00014, Helsinki, Finland.
| |
Collapse
|