1
|
Uoti A, Järvinen E, Sjöstedt N, Koenderink J, Finel M, Kidron H. Efflux and uptake of androgen sulfates using transporter-overexpressing HEK293 cells and membrane vesicles. J Pharm Sci 2025:103705. [PMID: 39993711 DOI: 10.1016/j.xphs.2025.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Hydrophilic steroid conjugates require active and facilitated transport mechanisms for their distribution into tissues and excretion from the body. The ATP-binding cassette (ABC) and solute carrier organic anion (SLCO) transporters involved in androgen sulfate (-S) disposition have been poorly characterized. In this study, we investigated the in vitro transport of testosterone-S, epitestosterone-S, dehydroepiandrosterone-S (DHEA-S), androsterone-S, and etiocholanolone-S by the multidrug resistance-associated proteins 2-4 (MRP2-4, ABCC2-4), breast cancer resistance protein (BCRP, ABCG2), and organic anion-transporting polypeptides (OATP) 1B1, 1B3, and 2B1 (SLCO1B1, SLCO1B3, and SLCO2B1) using human transporter-overexpressing HEK293 cells and membrane vesicles. We found testosterone-S, epitestosterone-S, and DHEA-S to be selectively transported by BCRP and/or MRP4, whereas all studied androgen sulfates were substrates of MRP3, OATP1B1, OATP1B3, and OATP2B1. MRP2 did not transport any of the studied compounds. Evaluation of transport kinetics revealed MRP4 to interact with its substrates at high to moderate affinity, whereas the observed affinities towards MRP3, BCRP, and OATPs were mostly moderate. These results help to build a better mechanistic understanding of the disposition of androgen sulfates in the human body. Additionally, this data may be used to assess the feasibility of androgen sulfates as additional biomarkers in doping detection.
Collapse
Affiliation(s)
- Arttu Uoti
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Erkka Järvinen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jan Koenderink
- Department of Pharmacy - Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Moshe Finel
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Khan A, Liu Y, Gad M, Kenny TC, Birsoy K. Solute carriers: The gatekeepers of metabolism. Cell 2025; 188:869-884. [PMID: 39983672 PMCID: PMC11875512 DOI: 10.1016/j.cell.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025]
Abstract
Solute carrier (SLC) proteins play critical roles in maintaining cellular and organismal homeostasis by transporting small molecules and ions. Despite a growing body of research over the past decade, physiological substrates and functions of many SLCs remain elusive. This perspective outlines key challenges in studying SLC biology and proposes an evidence-based framework for defining SLC substrates. To accelerate the deorphanization process, we explore systematic technologies, including human genetics, biochemistry, and computational and structural approaches. Finally, we suggest directions to better understand SLC functions beyond substrate identification in physiology and disease.
Collapse
Affiliation(s)
- Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mark Gad
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
3
|
Zhang Y, Newstead S, Sarkies P. Predicting substrates for orphan solute carrier proteins using multi-omics datasets. BMC Genomics 2025; 26:130. [PMID: 39930358 PMCID: PMC11812203 DOI: 10.1186/s12864-025-11330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Solute carriers (SLC) are integral membrane proteins responsible for transporting a wide variety of metabolites, signaling molecules and drugs across cellular membranes. Despite key roles in metabolism, signaling and pharmacology, around one third of SLC proteins are 'orphans' whose substrates are unknown. Experimental determination of SLC substrates is technically challenging, given the wide range of possible physiological candidates. Here, we develop a predictive algorithm to identify correlations between SLC expression levels and intracellular metabolite concentrations by leveraging existing cancer multi-omics datasets. Our predictions recovered known SLC-substrate pairs with high sensitivity and specificity compared to simulated random pairs. CRISPR-Cas9 dependency screen data and metabolic pathway adjacency data further improved the performance of our algorithm. In parallel, we combined drug sensitivity data with SLC expression profiles to predict new SLC-drug interactions. Together, we provide a novel bioinformatic pipeline to predict new substrate predictions for SLCs, offering new opportunities to de-orphanise SLCs with important implications for understanding their roles in health and disease.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, University of Oxford, Oxford, OX13QU, UK
| | - S Newstead
- Department of Biochemistry, University of Oxford, Oxford, OX13QU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - P Sarkies
- Department of Biochemistry, University of Oxford, Oxford, OX13QU, UK.
| |
Collapse
|
4
|
Yee SW, Ferrández-Peral L, Alentorn-Moron P, Fontsere C, Ceylan M, Koleske ML, Handin N, Artegoitia VM, Lara G, Chien HC, Zhou X, Dainat J, Zalevsky A, Sali A, Brand CM, Wolfreys FD, Yang J, Gestwicki JE, Capra JA, Artursson P, Newman JW, Marquès-Bonet T, Giacomini KM. Illuminating the function of the orphan transporter, SLC22A10, in humans and other primates. Nat Commun 2024; 15:4380. [PMID: 38782905 PMCID: PMC11116522 DOI: 10.1038/s41467-024-48569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
SLC22A10 is an orphan transporter with unknown substrates and function. The goal of this study is to elucidate its substrate specificity and functional characteristics. In contrast to orthologs from great apes, human SLC22A10, tagged with green fluorescent protein, is not expressed on the plasma membrane. Cells expressing great ape SLC22A10 orthologs exhibit significant accumulation of estradiol-17β-glucuronide, unlike those expressing human SLC22A10. Sequence alignments reveal a proline at position 220 in humans, which is a leucine in great apes. Replacing proline with leucine in SLC22A10-P220L restores plasma membrane localization and uptake function. Neanderthal and Denisovan genomes show proline at position 220, akin to modern humans, indicating functional loss during hominin evolution. Human SLC22A10 is a unitary pseudogene due to a fixed missense mutation, P220, while in great apes, its orthologs transport sex steroid conjugates. Characterizing SLC22A10 across species sheds light on its biological role, influencing organism development and steroid homeostasis.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Luis Ferrández-Peral
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Pol Alentorn-Moron
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Claudia Fontsere
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352, Copenhagen, Denmark
| | - Merve Ceylan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Megan L Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Virginia M Artegoitia
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, 95616, USA
| | - Giovanni Lara
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Jacques Dainat
- Joint Research Unit for Infectious Diseases and Vectors Ecology Genetics Evolution and Control (MIVEGEC), University of Montpellier, French National Center for Scientific Research (CNRS 5290), French National Research Institute for Sustainable Development (IRD 224), 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, US
| | - Colin M Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Finn D Wolfreys
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Jia Yang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - John A Capra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, 95616, USA
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG, Centro Nacional de Analisis Genomico, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Yee SW, Ferrández-Peral L, Alentorn P, Fontsere C, Ceylan M, Koleske ML, Handin N, Artegoitia VM, Lara G, Chien HC, Zhou X, Dainat J, Zalevsky A, Sali A, Brand CM, Capra JA, Artursson P, Newman JW, Marques-Bonet T, Giacomini KM. Illuminating the Function of the Orphan Transporter, SLC22A10 in Humans and Other Primates. RESEARCH SQUARE 2023:rs.3.rs-3263845. [PMID: 37790518 PMCID: PMC10543398 DOI: 10.21203/rs.3.rs-3263845/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
SLC22A10 is classified as an orphan transporter with unknown substrates and function. Here we describe the discovery of the substrate specificity and functional characteristics of SLC22A10. The human SLC22A10 tagged with green fluorescent protein was found to be absent from the plasma membrane, in contrast to the SLC22A10 orthologs found in great apes. Estradiol-17β-glucuronide accumulated in cells expressing great ape SLC22A10 orthologs (over 4-fold, p<0.001). In contrast, human SLC22A10 displayed no uptake function. Sequence alignments revealed two amino acid differences including a proline at position 220 of the human SLC22A10 and a leucine at the same position of great ape orthologs. Site-directed mutagenesis yielding the human SLC22A10-P220L produced a protein with excellent plasma membrane localization and associated uptake function. Neanderthal and Denisovan genomes show human-like sequences at proline 220 position, corroborating that SLC22A10 were rendered nonfunctional during hominin evolution after the divergence from the pan lineage (chimpanzees and bonobos). These findings demonstrate that human SLC22A10 is a unitary pseudogene and was inactivated by a missense mutation that is fixed in humans, whereas orthologs in great apes transport sex steroid conjugates.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | | | - Pol Alentorn
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
| | - Claudia Fontsere
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain; Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352 Copenhagen, Denmark
| | - Merve Ceylan
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - Megan L. Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Niklas Handin
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - Virginia M. Artegoitia
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Giovanni Lara
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Jacques Dainat
- Joint Research Unit for Infectious Diseases and Vectors Ecology Genetics Evolution and Control (MIVEGEC), University of Montpellier, French National Center for Scientific Research (CNRS 5290), French National Research Institute for Sustainable Development (IRD 224), 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, UCSF Box 0775 1700 4th St, University of California, San Francisco, San Francisco, CA 94158, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF Box 2880 600 16th St, San Francisco, CA 94143, United States; Quantitative Biosciences Institute (QBI), University of California, San Francisco, 1700 4th St, San Francisco, CA, United States
| | - Colin M. Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - John W. Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA; Department of Nutrition, University of California, Davis, Davis, CA 95616, USA; UC Davis West Coast Metabolomics Center, Davis, CA 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain; Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain; CNAG, Centro Nacional de Analisis Genomico, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Yee SW, Ferrández-Peral L, Alentorn P, Fontsere C, Ceylan M, Koleske ML, Handin N, Artegoitia VM, Lara G, Chien HC, Zhou X, Dainat J, Zalevsky A, Sali A, Brand CM, Capra JA, Artursson P, Newman JW, Marques-Bonet T, Giacomini KM. Illuminating the Function of the Orphan Transporter, SLC22A10 in Humans and Other Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552553. [PMID: 37609337 PMCID: PMC10441401 DOI: 10.1101/2023.08.08.552553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
SLC22A10 is classified as an orphan transporter with unknown substrates and function. Here we describe the discovery of the substrate specificity and functional characteristics of SLC22A10. The human SLC22A10 tagged with green fluorescent protein was found to be absent from the plasma membrane, in contrast to the SLC22A10 orthologs found in great apes. Estradiol-17β-glucuronide accumulated in cells expressing great ape SLC22A10 orthologs (over 4-fold, p<0.001). In contrast, human SLC22A10 displayed no uptake function. Sequence alignments revealed two amino acid differences including a proline at position 220 of the human SLC22A10 and a leucine at the same position of great ape orthologs. Site-directed mutagenesis yielding the human SLC22A10-P220L produced a protein with excellent plasma membrane localization and associated uptake function. Neanderthal and Denisovan genomes show human-like sequences at proline 220 position, corroborating that SLC22A10 were rendered nonfunctional during hominin evolution after the divergence from the pan lineage (chimpanzees and bonobos). These findings demonstrate that human SLC22A10 is a unitary pseudogene and was inactivated by a missense mutation that is fixed in humans, whereas orthologs in great apes transport sex steroid conjugates.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | | | - Pol Alentorn
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
| | - Claudia Fontsere
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain; Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352 Copenhagen, Denmark
| | - Merve Ceylan
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - Megan L. Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Niklas Handin
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - Virginia M. Artegoitia
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Giovanni Lara
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Jacques Dainat
- Joint Research Unit for Infectious Diseases and Vectors Ecology Genetics Evolution and Control (MIVEGEC), University of Montpellier, French National Center for Scientific Research (CNRS 5290), French National Research Institute for Sustainable Development (IRD 224), 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, UCSF Box 0775 1700 4th St, University of California, San Francisco, San Francisco, CA 94158, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF Box 2880 600 16th St, San Francisco, CA 94143, United States; Quantitative Biosciences Institute (QBI), University of California, San Francisco, 1700 4th St, San Francisco, CA, United States
| | - Colin M. Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - John W. Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA; Department of Nutrition, University of California, Davis, Davis, CA 95616, USA; UC Davis West Coast Metabolomics Center, Davis, CA 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain; Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain; CNAG, Centro Nacional de Analisis Genomico, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Chen Z, Peeters RP, Flach W, de Rooij LJ, Yildiz S, Teumer A, Nauck M, Sterenborg RBTM, Rutten JHW, Medici M, Edward Visser W, Meima ME. Novel (sulfated) thyroid hormone transporters in the solute carrier 22 family. Eur Thyroid J 2023; 12:e230023. [PMID: 37074673 PMCID: PMC10305468 DOI: 10.1530/etj-23-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023] Open
Abstract
Objective Thyroid hormone (TH) transport represents a critical first step in governing intracellular TH regulation. It is still unknown whether the full repertoire of TH transporters has been identified. Members of the solute carrier (SLC) 22 family have substrates in common with the known TH transporters of the organic anion-transporting peptide family. Therefore, we screened the SLC22 family for TH transporters. Methods Uptake of 1 nM of iodothyronines or sulfated iodothyronines in COS1 cells expressing SLC22 proteins was performed. Results We first tested 25 mouse (m) SLC22 proteins for TH uptake and found that the majority of the organic anion transporter (OAT) clade were capable of 3,3',5-triiodothyronine and/or thyroxine (T4) transport. Based on phylogenetic tree analysis of the mouse and human (h) SLC22 family, we selected eight hSLC22s that grouped with the newly identified mouse TH transporters. Of these, four tested positive for uptake of one or more substrates, particularly hSLC22A11 showed robust (3-fold over control) uptake of T4. Uptake of sulfated iodothyronines was strongly (up to 17-fold) induced by some SLC22s, most notably SLC22A8, hSLC22A9, mSLC22A27 and mSLC22A29. Finally, the zebrafish orthologues of SLC22A6/8 drOatx and drSlc22a6l also transported almost all (sulfated) iodothyronines tested. The OAT inhibitors lesinurad and probenecid inhibited most SLC22 proteins. Conclusions Our results demonstrated that members of the OAT clade of the SLC22 family constitute a novel, evolutionary conserved group of transporters for (sulfated) iodothyronines. Future studies should reveal the relevance of these transporters in TH homeostasis and physiology.
Collapse
Affiliation(s)
- Zhongli Chen
- Department of Internal Medicine, Academic Centre for Thyroid Diseases, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Academic Centre for Thyroid Diseases, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Wesley Flach
- Department of Internal Medicine, Academic Centre for Thyroid Diseases, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Linda J de Rooij
- Department of Internal Medicine, Academic Centre for Thyroid Diseases, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Sena Yildiz
- Department of Internal Medicine, Academic Centre for Thyroid Diseases, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Rosalie B T M Sterenborg
- Department of Internal Medicine, Academic Centre for Thyroid Diseases, Erasmus University Medical Center Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marco Medici
- Department of Internal Medicine, Academic Centre for Thyroid Diseases, Erasmus University Medical Center Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W Edward Visser
- Department of Internal Medicine, Academic Centre for Thyroid Diseases, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Marcel E Meima
- Department of Internal Medicine, Academic Centre for Thyroid Diseases, Erasmus University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
8
|
Dvorak V, Superti-Furga G. Structural and functional annotation of solute carrier transporters: implication for drug discovery. Expert Opin Drug Discov 2023; 18:1099-1115. [PMID: 37563933 DOI: 10.1080/17460441.2023.2244760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Solute carriers (SLCs) represent the largest group of membrane transporters in the human genome. They play a central role in controlling the compartmentalization of metabolism and most of this superfamily is linked to human disease. Despite being in general considered druggable and attractive therapeutic targets, many SLCs remain poorly annotated, both functionally and structurally. AREAS COVERED The aim of this review is to provide an overview of functional and structural parameters of SLCs that play important roles in their druggability. To do this, the authors provide an overview of experimentally solved structures of human SLCs, with emphasis on structures solved in complex with chemical modulators. From the functional annotations, the authors focus on SLC localization and SLC substrate annotations. EXPERT OPINION Recent progress in the structural and functional annotations allows to refine the SLC druggability index. Particularly the increasing number of experimentally solved structures of SLCs provides insights into mode-of-action of a significant number of chemical modulators of SLCs.
Collapse
Affiliation(s)
- Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Prognostic 7-SLC-Gene Signature Identified via Weighted Gene Co-Expression Network Analysis for Patients with Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:4364654. [PMID: 36844876 PMCID: PMC9957622 DOI: 10.1155/2023/4364654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 02/19/2023]
Abstract
Background Solute carrier (SLC) proteins play an important role in tumor metabolism. But SLC-associated genes' prognostic significance in hepatocellular carcinoma (HCC) remained elusive. We identified SLC-related factors and developed an SLC-related classifier to predict and improve HCC prognosis and treatment. Methods From the TCGA database, corresponding clinical data and mRNA expression profiles of 371 HCC patients were acquired, and those of 231 tumor samples were derived from the ICGC database. Genes associated with clinical features were filtered using weighted gene correlation network analysis (WGCNA). Next, univariate LASSO Cox regression studies developed SLC risk profiles, with the ICGC cohort data being used in validation. Result Univariate Cox regression analysis revealed that 31 SLC genes (P < 0.05) were related to HCC prognosis. 7 (SLC22A25, SLC2A2, SLC41A3, SLC44A1, SLC48A1, SLC4A2, and SLC9A3R1) of these genes were applied in developing a SLC gene prognosis model. Samples were classified into the low-andhigh-risk groups by the prognostic signature, with those in the high-risk group showing a significantly worse prognosis (P < 0.001 in the TCGA cohort and P=0.0068 in the ICGC cohort). ROC analysis validated the signature's prediction power. In addition, functional analyses showed enrichment of immune-related pathways and different immune status between the two risk groups. Conclusion The 7-SLC-gene prognostic signature established in this study helped predict the prognosis, and was also correlated with the tumor immune status and infiltration of different immune cells in the tumor microenvironment. The current findings may provide important clinical indications for proposing a novel combination therapy consists of targeted anti-SLC therapy and immunotherapy for HCC patients.
Collapse
|
10
|
Nigam SK, Granados JC. OAT, OATP, and MRP Drug Transporters and the Remote Sensing and Signaling Theory. Annu Rev Pharmacol Toxicol 2023; 63:637-660. [PMID: 36206988 DOI: 10.1146/annurev-pharmtox-030322-084058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Pediatrics and Medicine (Nephrology), University of California San Diego, La Jolla, California, USA;
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Tomabechi R, Miyasato M, Sato T, Takada T, Higuchi K, Kishimoto H, Shirasaka Y, Inoue K. Identification of 5-Carboxyfluorescein as a Probe Substrate of SLC46A3 and Its Application in a Fluorescence-Based In Vitro Assay Evaluating the Interaction with SLC46A3. Mol Pharm 2023; 20:491-499. [PMID: 36458938 DOI: 10.1021/acs.molpharmaceut.2c00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The therapeutic modalities that involve the endocytosis pathway, including antibody-drug conjugates (ADCs), have recently been developed. Since the drug escape from endosomes/lysosomes is a determinant of their efficacy, it is important to optimize the escape, and the cellular evaluation system is needed. SLC46A3, a lysosomal membrane protein, has been implicated in the pharmacological efficacy of trastuzumab emtansine (T-DM1), a noncleavable ADC used for the treatment of breast cancer, and the cellular uptake efficacy of lipid-based nanoparticles. Recently, we identified the SLC46A3 function as a proton-coupled steroid conjugate and bile acid transporter, which can directly transport active catabolites of T-DM1. Thus, the rapid and convenient assay systems for evaluating the SLC46A3 function may help to facilitate ADC development and to clarify the physiological roles in endocytosis. Here, we show that SLC46A3 dC, which localizes to the plasma membrane owing to lacking a lysosomal-sorting motif, has a great ability to transport 5-carboxyfluorescein (5-CF), a fluorescent probe, in a pH-dependent manner. 5-CF uptake mediated by SLC46A3 was significantly inhibited by compounds reported to be SLC46A3 substrates/inhibitors and competitively inhibited by estrone 3-sulfate, a typical SLC46A3 substrate. The inhibition assays followed by uptake studies revealed that SG3199, a pyrrolobenzodiazepine dimer, which has been used as an ADC payload, is a substrate of SLC46A3. Accordingly, the fluorescence-based assay system for the SLC46A3 function using 5-CF can provide a valuable tool to evaluate the interaction of drugs/drug candidates with SLC46A3.
Collapse
Affiliation(s)
- Ryuto Tomabechi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Miki Miyasato
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Taeka Sato
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8655, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa920-1192, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| |
Collapse
|
12
|
Golovchenko I, Aizikovich B, Golovchenko O, Reshetnikov E, Churnosova M, Aristova I, Ponomarenko I, Churnosov M. Sex Hormone Candidate Gene Polymorphisms Are Associated with Endometriosis. Int J Mol Sci 2022; 23:13691. [PMID: 36430184 PMCID: PMC9697627 DOI: 10.3390/ijms232213691] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The present study was designed to examine whether sex hormone polymorphisms proven by GWAS are associated with endometriosis risk. Unrelated female participants totaling 1376 in number (395 endometriosis patients and 981 controls) were recruited into the study. Nine single-nucleotide polymorphisms (SNPs) which GWAS correlated with circulating levels of sex hormones were genotyped using a TaqMan allelic discrimination assay. FSH-lowering, and LH- and testosterone-heightening polymorphisms of the FSHB promoter (allelic variants A rs11031002 and C rs11031005) exhibit a protective effect for endometriosis (OR = 0.60-0.68). By contrast, the TT haplotype loci that were GWAS correlated with higher FSH levels and lower LH and testosterone concentrations determined an increased risk for endometriosis (OR = 2.03). Endometriosis-involved epistatic interactions were found between eight loci of sex hormone genes (without rs148982377 ZNF789) within twelve genetic simulation models. In silico examination established that 8 disorder-related loci and 80 proxy SNPs are genome variants affecting the expression, splicing, epigenetic and amino acid conformation of the 34 genes which enrich the organic anion transport and secondary carrier transporter pathways. In conclusion, the present study showed that sex hormone polymorphisms proven by GWAS are associated with endometriosis risk and involved in the molecular pathophysiology of the disease due to their functionality.
Collapse
Affiliation(s)
- Ilya Golovchenko
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Boris Aizikovich
- Department of Fundamental Medicine, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Oleg Golovchenko
- Department of Obstetrics and Gynecology, Belgorod State University, 308015 Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| |
Collapse
|
13
|
Lai Y, Zhong XB. Special Section on New Era of Transporter Science: Unraveling the Functional Role of Orphan Transporters–Editorial. Drug Metab Dispos 2022. [DOI: 10.1124/dmd.122.001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Giacomini KM, Yee SW, Koleske ML, Zou L, Matsson P, Chen EC, Kroetz DL, Miller MA, Gozalpour E, Chu X. New and Emerging Research on Solute Carrier and ATP Binding Cassette Transporters in Drug Discovery and Development: Outlook From the International Transporter Consortium. Clin Pharmacol Ther 2022; 112:540-561. [PMID: 35488474 PMCID: PMC9398938 DOI: 10.1002/cpt.2627] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
Enabled by a plethora of new technologies, research in membrane transporters has exploded in the past decade. The goal of this state-of-the-art article is to describe recent advances in research on membrane transporters that are particularly relevant to drug discovery and development. This review covers advances in basic, translational, and clinical research that has led to an increased understanding of membrane transporters at all levels. At the basic level, we describe the available crystal structures of membrane transporters in both the solute carrier (SLC) and ATP binding cassette superfamilies, which has been enabled by the development of cryogenic electron microscopy methods. Next, we describe new research on lysosomal and mitochondrial transporters as well as recently deorphaned transporters in the SLC superfamily. The translational section includes a summary of proteomic research, which has led to a quantitative understanding of transporter levels in various cell types and tissues and new methods to modulate transporter function, such as allosteric modulators and targeted protein degraders of transporters. The section ends with a review of the effect of the gut microbiome on modulation of transporter function followed by a presentation of 3D cell cultures, which may enable in vivo predictions of transporter function. In the clinical section, we describe new genomic and pharmacogenomic research, highlighting important polymorphisms in transporters that are clinically relevant to many drugs. Finally, we describe new clinical tools, which are becoming increasingly available to enable precision medicine, with the application of tissue-derived small extracellular vesicles and real-world biomarkers.
Collapse
Affiliation(s)
- Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Sook W. Yee
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Megan L. Koleske
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ling Zou
- Pharmacokinetics and Drug MetabolismAmgen Inc.South San FranciscoCaliforniaUSA
| | - Pär Matsson
- Department of PharmacologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Eugene C. Chen
- Department of Drug Metabolism and PharmacokineticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Miles A. Miller
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Elnaz Gozalpour
- Drug Safety and MetabolismIMED Biotech UnitSafety and ADME Translational Sciences DepartmentAstraZeneca R&DCambridgeUK
| | - Xiaoyan Chu
- Department of ADME and Discovery ToxicologyMerck & Co. IncKenilworthNew JerseyUSA
| |
Collapse
|
15
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Yee SW, Giacomini KM. Emerging Roles of the Human Solute Carrier 22 Family. Drug Metab Dispos 2021; 50:DMD-MR-2021-000702. [PMID: 34921098 PMCID: PMC9488978 DOI: 10.1124/dmd.121.000702] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Collapse
Affiliation(s)
- Sook Wah Yee
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| | - Kathleen M Giacomini
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| |
Collapse
|
17
|
Padilla-Mejia NE, Makarov AA, Barlow LD, Butterfield ER, Field MC. Evolution and diversification of the nuclear envelope. Nucleus 2021; 12:21-41. [PMID: 33435791 PMCID: PMC7889174 DOI: 10.1080/19491034.2021.1874135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells arose ~1.5 billion years ago, with the endomembrane system a central feature, facilitating evolution of intracellular compartments. Endomembranes include the nuclear envelope (NE) dividing the cytoplasm and nucleoplasm. The NE possesses universal features: a double lipid bilayer membrane, nuclear pore complexes (NPCs), and continuity with the endoplasmic reticulum, indicating common evolutionary origin. However, levels of specialization between lineages remains unclear, despite distinct mechanisms underpinning various nuclear activities. Several distinct modes of molecular evolution facilitate organellar diversification and to understand which apply to the NE, we exploited proteomic datasets of purified nuclear envelopes from model systems for comparative analysis. We find enrichment of core nuclear functions amongst the widely conserved proteins to be less numerous than lineage-specific cohorts, but enriched in core nuclear functions. This, together with consideration of additional evidence, suggests that, despite a common origin, the NE has evolved as a highly diverse organelle with significant lineage-specific functionality.
Collapse
Affiliation(s)
- Norma E. Padilla-Mejia
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alexandr A. Makarov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lael D. Barlow
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Erin R. Butterfield
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České, Czech Republic
| |
Collapse
|
18
|
Dvorak V, Wiedmer T, Ingles-Prieto A, Altermatt P, Batoulis H, Bärenz F, Bender E, Digles D, Dürrenberger F, Heitman LH, IJzerman AP, Kell DB, Kickinger S, Körzö D, Leippe P, Licher T, Manolova V, Rizzetto R, Sassone F, Scarabottolo L, Schlessinger A, Schneider V, Sijben HJ, Steck AL, Sundström H, Tremolada S, Wilhelm M, Wright Muelas M, Zindel D, Steppan CM, Superti-Furga G. An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Front Pharmacol 2021; 12:722889. [PMID: 34447313 PMCID: PMC8383457 DOI: 10.3389/fphar.2021.722889] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily represents the biggest family of transporters with important roles in health and disease. Despite being attractive and druggable targets, the majority of SLCs remains understudied. One major hurdle in research on SLCs is the lack of tools, such as cell-based assays to investigate their biological role and for drug discovery. Another challenge is the disperse and anecdotal information on assay strategies that are suitable for SLCs. This review provides a comprehensive overview of state-of-the-art cellular assay technologies for SLC research and discusses relevant SLC characteristics enabling the choice of an optimal assay technology. The Innovative Medicines Initiative consortium RESOLUTE intends to accelerate research on SLCs by providing the scientific community with high-quality reagents, assay technologies and data sets, and to ultimately unlock SLCs for drug discovery.
Collapse
Affiliation(s)
- Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Helena Batoulis
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Felix Bärenz
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Eckhard Bender
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Daniela Digles
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Laura H. Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stefanie Kickinger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Daniel Körzö
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Philipp Leippe
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Thomas Licher
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | | | | | | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vanessa Schneider
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Hubert J. Sijben
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | | | | | | | | | - Marina Wright Muelas
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Diana Zindel
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Claire M. Steppan
- Pfizer Worldwide Research, Development and Medical, Groton, MA, United States
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Diboun I, Al-Mansoori L, Al-Jaber H, Albagha O, Elrayess MA. Metabolomics of Lean/Overweight Insulin-Resistant Females Reveals Alterations in Steroids and Fatty Acids. J Clin Endocrinol Metab 2021; 106:e638-e649. [PMID: 33053159 DOI: 10.1210/clinem/dgaa732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND The global diabetes epidemic is largely attributed to obesity-triggered metabolic syndrome. However, the impact of insulin resistance (IR) prior to obesity on the high prevalence of diabetes and the molecular mediators remain largely unknown. This study aims to compare the metabolic profiling of apparently healthy lean/overweight participants with IR and insulin sensitivity (IS), and identify the metabolic pathways underlying IR. METHODS In this cross-sectional study, clinical and metabolic data for 200 seemingly healthy young female participants (100 IR and 100 IS) was collected from Qatar Biobank. Orthogonal partial least square analysis was performed to assess the extent of separation between individuals from the 2 groups based on measured metabolites. Classical linear models were used to identify the metabolic signature of IR, followed by elastic-net-regularized generalized linear model (GLMNET) and receiver operating characteristic (ROC) analysis to determine top metabolites associated with IR. RESULTS Compared to lean/overweight participants with IS, those with IR showed increased androgenic steroids, including androsterone glucuronide, in addition to various microbiota byproducts, such as the phenylalanine derivative carboxyethylphenylalanine. On the other hand, participants with IS had elevated levels of long-chain fatty acids. A ROC analysis suggested better discriminatory performance using 20 metabolites selected by GLMNET in comparison to the classical clinical traits (area under curve: 0.93 vs 0.73, respectively). CONCLUSION Our data confirm the multifactorial mechanism of IR with a diverse spectrum of emerging potential biomarkers, including steroids, long-chain fatty acids, and microbiota metabolites. Further studies are warranted to validate these markers for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ilhame Diboun
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | | - Hend Al-Jaber
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Omar Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | |
Collapse
|
20
|
Yee SW, Buitrago D, Stecula A, Ngo HX, Chien HC, Zou L, Koleske ML, Giacomini KM. Deorphaning a solute carrier 22 family member, SLC22A15, through functional genomic studies. FASEB J 2020; 34:15734-15752. [PMID: 33124720 DOI: 10.1096/fj.202001497r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
The human solute carrier 22A (SLC22A) family consists of 23 members, representing one of the largest families in the human SLC superfamily. Despite their pharmacological and physiological importance in the absorption and disposition of a range of solutes, eight SLC22A family members remain classified as orphans. In this study, we used a multifaceted approach to identify ligands of orphan SLC22A15. Ligands of SLC22A15 were proposed based on phylogenetic analysis and comparative modeling. The putative ligands were then confirmed by metabolomic screening and uptake assays in SLC22A15 transfected HEK293 cells. Metabolomic studies and transporter assays revealed that SLC22A15 prefers zwitterionic compounds over cations and anions. We identified eight zwitterions, including ergothioneine, carnitine, carnosine, gabapentin, as well as four cations, including MPP+ , thiamine, and cimetidine, as substrates of SLC22A15. Carnosine was a specific substrate of SLC22A15 among the transporters in the SLC22A family. SLC22A15 transport of several substrates was sodium-dependent and exhibited a higher Km for ergothioneine, carnitine, and carnosine compared to previously identified transporters for these ligands. This is the first study to characterize the function of SLC22A15. Our studies demonstrate that SLC22A15 may play an important role in determining the systemic and tissue levels of ergothioneine, carnosine, and other zwitterions.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Dina Buitrago
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Adrian Stecula
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Huy X Ngo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ling Zou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Megan L Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Mochizuki T, Mizuno T, Maeda K, Kusuhara H. Current progress in identifying endogenous biomarker candidates for drug transporter phenotyping and their potential application to drug development. Drug Metab Pharmacokinet 2020; 37:100358. [PMID: 33461054 DOI: 10.1016/j.dmpk.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 01/23/2023]
Abstract
Drug transporters play important roles in the elimination of various compounds from the blood. Genetic variation and drug-drug interactions underlie the pharmacokinetic differences for the substrates of drug transporters. Some endogenous substrates of drug transporters have emerged as biomarkers to assess differences in drug transporter activity-not only in animals, but also in humans. Metabolomic analysis is a promising approach for identifying such endogenous substrates through their metabolites. The appropriateness of metabolites is supported by studies in vitro and in vivo, both in animals and through pharmacogenomic or drug-drug interaction studies in humans. This review summarizes current progress in identifying such endogenous biomarkers and applying them to drug transporter phenotyping.
Collapse
Affiliation(s)
- Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan.
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan.
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan.
| |
Collapse
|
22
|
Nies AT, Weiss S, Schaeffeler E, Hannemann A, Völker U, Wallaschofski H, Schwab M. The Membrane Transporter OAT7 (SLC22A9) Is Not a Susceptibility Factor for Osteoporosis in Europeans. Front Endocrinol (Lausanne) 2020; 11:532. [PMID: 33013684 PMCID: PMC7461822 DOI: 10.3389/fendo.2020.00532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/30/2020] [Indexed: 01/14/2023] Open
Abstract
Bone production, maintenance, and modeling are a well-balanced process involving mineralization by osteoblasts and resorption by osteoclasts. Sex steroid hormones, including their conjugated forms, contribute majorly to maintaining this balance. Recently, variants in the SLC22A9 gene have been associated with osteoporosis in Korean females. We had recently shown that SLC22A9, encoding organic anion transporter 7 (OAT7), is an uptake transporter of estrone sulfate and identified several genetic variants in Europeans leading to functional consequences in vitro. We therefore hypothesized that SLC22A9 genetic variants may contribute to the pathophysiology of osteoporosis in Europeans. To test this hypothesis, we examined the associations of SLC22A9 variants with bone quality, fractures, and bone turnover markers. We genotyped SLC22A9 variants in 5,701 (2,930 female) subjects (age range, 20-93 years) extracted from the population-based Study of Health in Pomerania (SHIP and SHIP-TREND) covered by the Illumina Infinium HumanExome BeadChip version v1.0 (Exome Chip). Descriptive data (e.g., history of fractures), ultrasonography of the calcaneus, as well as serum concentrations of carboxy-terminal telopeptide of type I collagen, amino-terminal propeptide of type I procollagen, and vitamin D were determined. Comprehensive statistical analyses revealed no association between low-frequency and rare SLC22A9 variants and bone quality, fractures, and bone turnover markers. Our results indicate that single genetic SLC22A9 variants do not have a major impact on osteoporosis risk prediction in Europeans, yet findings need to be replicated in larger-scale studies.
Collapse
Affiliation(s)
- Anne T. Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and University of Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Anke Hannemann
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and University of Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Meixner E, Goldmann U, Sedlyarov V, Scorzoni S, Rebsamen M, Girardi E, Superti‐Furga G. A substrate-based ontology for human solute carriers. Mol Syst Biol 2020; 16:e9652. [PMID: 32697042 PMCID: PMC7374931 DOI: 10.15252/msb.20209652] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/09/2022] Open
Abstract
Solute carriers (SLCs) are the largest family of transmembrane transporters in the human genome with more than 400 members. Despite the fact that SLCs mediate critical biological functions and several are important pharmacological targets, a large proportion of them is poorly characterized and present no assigned substrate. A major limitation to systems-level de-orphanization campaigns is the absence of a structured, language-controlled chemical annotation. Here we describe a thorough manual annotation of SLCs based on literature. The annotation of substrates, transport mechanism, coupled ions, and subcellular localization for 446 human SLCs confirmed that ~30% of these were still functionally orphan and lacked known substrates. Application of a substrate-based ontology to transcriptomic datasets identified SLC-specific responses to external perturbations, while a machine-learning approach based on the annotation allowed us to identify potential substrates for several orphan SLCs. The annotation is available at https://opendata.cemm.at/gsflab/slcontology/. Given the increasing availability of large biological datasets and the growing interest in transporters, we expect that the effort presented here will be critical to provide novel insights into the functions of SLCs.
Collapse
Affiliation(s)
- Eva Meixner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Stefania Scorzoni
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
24
|
Engelhart DC, Azad P, Ali S, Granados JC, Haddad GG, Nigam SK. Drosophila SLC22 Orthologs Related to OATs, OCTs, and OCTNs Regulate Development and Responsiveness to Oxidative Stress. Int J Mol Sci 2020; 21:E2002. [PMID: 32183456 PMCID: PMC7139749 DOI: 10.3390/ijms21062002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
The SLC22 family of transporters is widely expressed, evolutionarily conserved, and plays a major role in regulating homeostasis by transporting small organic molecules such as metabolites, signaling molecules, and antioxidants. Analysis of transporters in fruit flies provides a simple yet orthologous platform to study the endogenous function of drug transporters in vivo. Evolutionary analysis of Drosophila melanogaster putative SLC22 orthologs reveals that, while many of the 25 SLC22 fruit fly orthologs do not fall within previously established SLC22 subclades, at least four members appear orthologous to mammalian SLC22 members (SLC22A16:CG6356, SLC22A15:CG7458, CG7442 and SLC22A18:CG3168). We functionally evaluated the role of SLC22 transporters in Drosophila melanogaster by knocking down 14 of these genes. Three putative SLC22 ortholog knockdowns-CG3168, CG6356, and CG7442/SLC22A-did not undergo eclosion and were lethal at the pupa stage, indicating the developmental importance of these genes. Additionally, knocking down four SLC22 members increased resistance to oxidative stress via paraquat testing (CG4630: p < 0.05, CG6006: p < 0.05, CG6126: p < 0.01 and CG16727: p < 0.05). Consistent with recent evidence that SLC22 is central to a Remote Sensing and Signaling Network (RSSN) involved in signaling and metabolism, these phenotypes support a key role for SLC22 in handling reactive oxygen species.
Collapse
Affiliation(s)
- Darcy C. Engelhart
- Department of Biology, University of California San Diego, San Diego, CA 92093, USA;
| | - Priti Azad
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (P.A.); (S.A.); (G.G.H.)
| | - Suwayda Ali
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (P.A.); (S.A.); (G.G.H.)
| | - Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA;
| | - Gabriel G. Haddad
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (P.A.); (S.A.); (G.G.H.)
| | - Sanjay K. Nigam
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (P.A.); (S.A.); (G.G.H.)
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
25
|
Engelhart DC, Granados JC, Shi D, Saier MH, Baker ME, Abagyan R, Nigam SK. Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs. Int J Mol Sci 2020; 21:E1791. [PMID: 32150922 PMCID: PMC7084758 DOI: 10.3390/ijms21051791] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
The SLC22 family of OATs, OCTs, and OCTNs is emerging as a central hub of endogenous physiology. Despite often being referred to as "drug" transporters, they facilitate the movement of metabolites and key signaling molecules. An in-depth reanalysis supports a reassignment of these proteins into eight functional subgroups, with four new subgroups arising from the previously defined OAT subclade: OATS1 (SLC22A6, SLC22A8, and SLC22A20), OATS2 (SLC22A7), OATS3 (SLC22A11, SLC22A12, and Slc22a22), and OATS4 (SLC22A9, SLC22A10, SLC22A24, and SLC22A25). We propose merging the OCTN (SLC22A4, SLC22A5, and Slc22a21) and OCT-related (SLC22A15 and SLC22A16) subclades into the OCTN/OCTN-related subgroup. Using data from GWAS, in vivo models, and in vitro assays, we developed an SLC22 transporter-metabolite network and similar subgroup networks, which suggest how multiple SLC22 transporters with mono-, oligo-, and multi-specific substrate specificity interact to regulate metabolites. Subgroup associations include: OATS1 with signaling molecules, uremic toxins, and odorants, OATS2 with cyclic nucleotides, OATS3 with uric acid, OATS4 with conjugated sex hormones, particularly etiocholanolone glucuronide, OCT with neurotransmitters, and OCTN/OCTN-related with ergothioneine and carnitine derivatives. Our data suggest that the SLC22 family can work among itself, as well as with other ADME genes, to optimize levels of numerous metabolites and signaling molecules, involved in organ crosstalk and inter-organismal communication, as proposed by the remote sensing and signaling theory.
Collapse
Affiliation(s)
- Darcy C. Engelhart
- Department of Biology, University of California San Diego, San Diego, CA 92093, USA;
| | - Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA;
| | - Da Shi
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA; (D.S.); (R.A.)
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California San Diego, San Diego, CA 92093, USA;
| | - Michael E. Baker
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
| | - Ruben Abagyan
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA; (D.S.); (R.A.)
| | - Sanjay K. Nigam
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|