1
|
Devanathan SK, Li YR, Shelton SB, Nguyen J, Tseng WC, Shah NM, Mercado M, Miller KM, Xhemalçe B. MePCE promotes homologous recombination through coordinating R-loop resolution at DNA double-stranded breaks. Cell Rep 2025; 44:115740. [PMID: 40411785 DOI: 10.1016/j.celrep.2025.115740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/26/2025] [Accepted: 05/05/2025] [Indexed: 05/26/2025] Open
Abstract
MePCE is a multifunctional protein that regulates the positive transcription elongation factor b (P-TEFb) partitioning between the nucleosol and chromatin. MePCE's role in sequestering P-TEFb in the nucleosol via the 7SK ribonuclear protein complex (RNPc) is clear, but its functions on chromatin remain obscure. We report that chromatin-associated MePCE interacts with R-loop processing and DNA repair factors. MePCE is recruited to DNA double-stranded breaks (DSBs), and MePCE depletion impairs DSB repair by homologous recombination (HR), decreases RAD51 loading, and enhances R-loop levels at AsiSI-induced DSBs at specific genomic locations. Besides decreasing specific R-loop processing factors and chromatin remodelers, MePCE depletion increases the interaction with R-loops of the other constitutive member of the 7SK RNPc, LARP7, which is degraded by BRCA1/BARD1 upon DSB. Overall, our results uncover dynamic regulation of the 7SK RNPc at DSBs during the DSB repair process and explain the recently observed synthetic lethality of MePCE and BRCA1 deficiency.
Collapse
Affiliation(s)
- Sravan K Devanathan
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Yi-Ru Li
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA; Department of Biochemistry and Winship Cancer Center, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Samantha B Shelton
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Joshuah Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA; Department of Biochemistry and Winship Cancer Center, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Wei-Che Tseng
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA; Department of Radiation Oncology and Winship Cancer Center, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, GA 30307, USA
| | - Nakul M Shah
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Marvin Mercado
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA; Department of Radiation Oncology and Winship Cancer Center, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, GA 30307, USA
| | - Blerta Xhemalçe
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA; Department of Biochemistry and Winship Cancer Center, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Debnath TK, Abell NS, Li YR, Devanathan SK, Navedo E, Xhemalçe B. NAT10 and N4-acetylcytidine restrain R-loop levels and related inflammatory responses. SCIENCE ADVANCES 2025; 11:eads6144. [PMID: 40138394 PMCID: PMC11939041 DOI: 10.1126/sciadv.ads6144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
N4-acetylcytidine (ac4C) is deposited on diverse RNAs by N-acetyltransferase 10 (NAT10), a protein with high biological relevance for aging and cancer. We performed a comprehensive survey of ac4C using metabolic labeling, sodium cyanoborohydride chemical treatment coupled to next-generation sequencing (NGS), and ac4C antibody-based cell and molecular biology techniques. Our analysis shows that NAT10-dependent ac4C-acetylation is robust in rRNA and specific tRNAs but low/spurious in mRNA. It also revealed an inflammatory signature and mutagenesis at transcriptionally active sites in NAT10-KO cells. This finding led us to explore the role of NAT10 in R-loops, which were recently linked to APOBEC3B-mediated mutagenesis. Our analysis showed that R-loops are ac4C-acetylated in a NAT10-dependent manner. Furthermore, NAT10 restrains the levels of R-loops at a subset of differentially expressed genes in a catalytic activity-dependent manner. Together with cellular biology data showing ac4C-modified RNA in endosomal structures, we propose that increased levels of ac4C-unmodified RNAs, likely derived from R-loops, in endosomal structures induce inflammatory responses.
Collapse
Affiliation(s)
- Turja K. Debnath
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Nathan S. Abell
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Yi-Ru Li
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
- Winship Cancer Center and Department of Biochemistry, Emory University School of Medicine, Wayne O Rollins Research Center, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Sravan K. Devanathan
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
- Winship Cancer Center and Department of Biochemistry, Emory University School of Medicine, Wayne O Rollins Research Center, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Enrique Navedo
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
- Winship Cancer Center and Department of Biochemistry, Emory University School of Medicine, Wayne O Rollins Research Center, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Blerta Xhemalçe
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
- Winship Cancer Center and Department of Biochemistry, Emory University School of Medicine, Wayne O Rollins Research Center, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Zhang B, Pan Y, Li Z, Hu K. tRNA-derived small RNAs: their role in the mechanisms, biomarkers, and therapeutic strategies of colorectal cancer. J Transl Med 2025; 23:51. [PMID: 39806419 PMCID: PMC11727791 DOI: 10.1186/s12967-025-06109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy and the second leading cause of cancer-related mortality worldwide, with an increasing shift towards younger age of onset. In recent years, there has been increasing recognition of the significance of tRNA-derived small RNAs (tsRNAs), encompassing tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs). Their involvement in regulating translation, gene expression, reverse transcription, and epigenetics has gradually come to light. Emerging research has revealed dysregulation of tsRNAs in CRC, implicating their role in CRC initiation and progression, and highlighting their potential in early diagnosis, prognosis, and therapeutic strategies. Although the clinical application of tsRNAs is still in its early stages, recent findings highlight a close relationship between the biogenesis and function of tsRNAs, tRNA chemical modifications, and the tumor immune microenvironment (TIME). Additionally, similar to other small RNAs, tsRNAs can be effectively delivered via nanoparticles (NPs). Consequently, future research should focus on elucidating the clinical significance of tsRNAs concerning base modifications, TIME regulation, cancer immunotherapy, and NPs delivery systems to facilitate their clinical translation.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yanru Pan
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Zhe Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
| |
Collapse
|
4
|
Jia H, Zhang L. tRNA-derived small RNAs in disease immunity. Theranostics 2025; 15:245-257. [PMID: 39744232 PMCID: PMC11667222 DOI: 10.7150/thno.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
Recently, members of a unique species of non-coding RNA, known as transfer RNA-derived small RNAs (tsRNAs) have been reported to serve multiple molecular functions, including in cells that mediate immunity. Because of their low molecular weights, tsRNAs were previously difficult to detect and were thus overlooked, until now. In this review, we delve into the biogenesis of tsRNAs and their diverse biological functions, ranging from transcriptional regulation to modulation of mRNA translation. We highlight the current evidence demonstrating their involvement in the immune response, as well as how tsRNAs modulate immunity to influence tumor growth and spread, autoimmune disease pathology and infection by pathogens. We surmise that tsRNAs are likely informative as diagnostic markers of cellular homeostasis and disease, and that therapeutic targeting of tsRNAs could be beneficial for a range of human diseases. Improved knowledge on the functions for tsRNAs in the mammalian immune system will enable us to leverage tsRNAs for their effective clinical use as treatments for human health challenges.
Collapse
Affiliation(s)
- Hongyuan Jia
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Linling Zhang
- Department of Respiratory and Critical Care, Chengdu Third People's Hospital, Chengdu, China
| |
Collapse
|
5
|
Gong L, Hu Y, Pan L, Cheng Y. tRNA-derived small RNAs (tsRNAs): establishing their dominance in the regulation of human cancer. Front Genet 2024; 15:1466213. [PMID: 39659673 PMCID: PMC11628509 DOI: 10.3389/fgene.2024.1466213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
The main function of transfer RNAs (tRNAs) is to carry amino acids into the ribosome and synthesize proteins under the guidance of messenger RNAs (mRNAs). In addition to this, it has been observed that tRNAs undergo precise cleavage at specific loci, giving rise to an extensive array of distinct small RNAs, termed tRNA-derived small RNAs (tsRNAs). Existing studies have shown that tsRNAs are widely present across various organisms and comprehensively regulate gene expression, aberrant expression of tsRNAs is inextricably linked to tumorigenesis and development, thus, a systematic understanding of tsRNAs is necessary. This review aims to comprehensively delineate the genesis and expression patterns of tsRNAs, elucidate their diverse functions and emphasize their prospective clinical application as biomarkers and targets for therapy. It is noteworthy that we innovatively address the roles played by tsRNAs in human cancers at the level of the hallmarks of tumorigenesis proposed by Hanahan in anticipation of a broad understanding of tsRNAs and to guide the treatment of tumors.
Collapse
Affiliation(s)
- Li Gong
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Yajie Hu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Ling Pan
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Godang NL, Nguyen AD, DeMeis JD, Paudel SS, Campbell NJ, Barnes KJ, Jeon K, Roussell AS, Gregson KA, Borchert GM. tRNA, yRNA, and rRNA fragment excisions do not involve canonical microRNA biogenesis machinery. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001332. [PMID: 39634108 PMCID: PMC11615671 DOI: 10.17912/micropub.biology.001332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The excision of specific tRNA-derived small RNAs (tsRNAs), yRNA-derived small RNAs (ysRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) is now well established. Several reports have suggested many of these fragments function much like traditional microRNAs (miRNAs). That said, whereas the expressions of the majority of appreciably expressed miRNAs in HCT116 colon cancer cells are significantly decreased in individual knockouts (KOs) of DROSHA, DGCR8, XPO5, and DICER, on average, only 3.5% of tsRNA, ysRNA, and rsRNA expressions are impaired. Conversely, tsRNA, ysRNA, and rsRNA expressions are significantly increased in each of these KOs as compared to WT. As such, although DICER has been suggested to be involved with the expression of specific tsRNAs, ysRNAs, and rsRNAs, our study finds no evidence supporting the involvement of any of these canonical miRNA biogenesis enzymes in their expressions.
Collapse
Affiliation(s)
- Noel L Godang
- Pharmacology, University of South Alabama College of Medicine, Mobile, AL
| | - Anita D Nguyen
- Pharmacology, University of South Alabama College of Medicine, Mobile, AL
| | - Jeffrey D DeMeis
- Pharmacology, University of South Alabama College of Medicine, Mobile, AL
| | - Sunita S Paudel
- Pharmacology, University of South Alabama College of Medicine, Mobile, AL
| | - Nick J Campbell
- Computer Science, University of South Alabama School of Computing, Mobile, AL
| | | | | | | | | | - Glen M Borchert
- Pharmacology, University of South Alabama College of Medicine, Mobile, AL
| |
Collapse
|
7
|
Liang Y, Ji D, Ying X, Ma R, Ji W. tsRNA modifications: An emerging layer of biological regulation in disease. J Adv Res 2024:S2090-1232(24)00401-6. [PMID: 39260796 DOI: 10.1016/j.jare.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Transfer RNA (tRNA)-derived small RNA (tsRNA) represents an important and increasingly valued type of small non-coding RNA (sncRNA). The investigation of tRNA and tsRNA modification crosswalks has not only provided novel insights into the information and functions of tsRNA, but has also expanded the diversity and complexity of the tsRNA biological regulation network. AIM OF REVIEW Comparing with other sncRNAs, tsRNA biogenesis show obvious correlation with RNA modifications from mature tRNA and harbor various tRNA modifications. In this review, we aim to present the current aspect of tsRNA modifications and that modified tsRNA shape different regulatory mechanisms in physiological and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW Strategies for studying tsRNA mechanisms include its specific generation and functional effects induced by sequence/RNA modification/secondary structure. tsRNAs could harbor more than one tRNA modifications such as 5-methylcytosine (m5C), N1-methyladenosine (m1A), pseudouridine (Ψ) and N7-methylguanosine (m7G). This review consolidates the current knowledge of tRNA modification regulating tsRNA biogenesis, outlines the functional roles of various modified tsRNA and highlights their specific contributions in various disease pathogenesis. Therefore, the improvement of tsRNA modification detection technology and the introduction of experimental methods of tsRNA modification are conducive to further broadening the understanding of tsRNA function at the level of RNA modification.
Collapse
Affiliation(s)
- Yaomin Liang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Ding Ji
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510220, PR China
| | - Xiaoling Ying
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510220, PR China
| | - Renqiang Ma
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510220, PR China.
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
8
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Muthukumar S, Li CT, Liu RJ, Bellodi C. Roles and regulation of tRNA-derived small RNAs in animals. Nat Rev Mol Cell Biol 2024; 25:359-378. [PMID: 38182846 DOI: 10.1038/s41580-023-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
A growing class of small RNAs, known as tRNA-derived RNAs (tdRs), tRNA-derived small RNAs or tRNA-derived fragments, have long been considered mere intermediates of tRNA degradation. These small RNAs have recently been implicated in an evolutionarily conserved repertoire of biological processes. In this Review, we discuss the biogenesis and molecular functions of tdRs in mammals, including tdR-mediated gene regulation in cell metabolism, immune responses, transgenerational inheritance, development and cancer. We also discuss the accumulation of tRNA-derived stress-induced RNAs as a distinct adaptive cellular response to pathophysiological conditions. Furthermore, we highlight new conceptual advances linking RNA modifications with tdR activities and discuss challenges in studying tdR biology in health and disease.
Collapse
Affiliation(s)
- Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Ipas H, Gouws EB, Abell NS, Chiou PC, Devanathan SK, Hervé S, Lee S, Mercado M, Reinsborough C, Halabelian L, Arrowsmith CH, Xhemalçe B. ChemRAP uncovers specific mRNA translation regulation via RNA 5' phospho-methylation. EMBO Rep 2024; 25:1570-1588. [PMID: 38263329 PMCID: PMC10933402 DOI: 10.1038/s44319-024-00059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
5'-end modifications play key roles in determining RNA fates. Phospho-methylation is a noncanonical cap occurring on either 5'-PPP or 5'-P ends. We used ChemRAP, in which affinity purification of cellular proteins with chemically synthesized modified RNAs is coupled to quantitative proteomics, to identify 5'-Pme "readers". We show that 5'-Pme is directly recognized by EPRS, the central subunit of the multisynthetase complex (MSC), through its linker domain, which has previously been involved in key noncanonical EPRS and MSC functions. We further determine that the 5'-Pme writer BCDIN3D regulates the binding of EPRS to specific mRNAs, either at coding regions rich in MSC codons, or around start codons. In the case of LRPPRC (leucine-rich pentatricopeptide repeat containing), a nuclear-encoded mitochondrial protein associated with the French Canadian Leigh syndrome, BCDIN3D deficiency abolishes binding of EPRS around its mRNA start codon, increases its translation but ultimately results in LRPPRC mislocalization. Overall, our results suggest that BCDIN3D may regulate the translation of specific mRNA via RNA-5'-Pme.
Collapse
Affiliation(s)
- Hélène Ipas
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Ellen B Gouws
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Nathan S Abell
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Po-Chin Chiou
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Sravan K Devanathan
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Solène Hervé
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Sidae Lee
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Marvin Mercado
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Calder Reinsborough
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Levon Halabelian
- Structural Genomics Consortium, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Blerta Xhemalçe
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA.
| |
Collapse
|
11
|
Zhang Y, Gu X, Li Y, Huang Y, Ju S. Multiple regulatory roles of the transfer RNA-derived small RNAs in cancers. Genes Dis 2024; 11:597-613. [PMID: 37692525 PMCID: PMC10491922 DOI: 10.1016/j.gendis.2023.02.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 09/12/2023] Open
Abstract
With the development of sequencing technology, transfer RNA (tRNA)-derived small RNAs (tsRNAs) have received extensive attention as a new type of small noncoding RNAs. Based on the differences in the cleavage sites of nucleases on tRNAs, tsRNAs can be divided into two categories, tRNA halves (tiRNAs) and tRNA-derived fragments (tRFs), each with specific subcellular localizations. Additionally, the biogenesis of tsRNAs is tissue-specific and can be regulated by tRNA modifications. In this review, we first elaborated on the classification and biogenesis of tsRNAs. After summarizing the latest mechanisms of tsRNAs, including transcriptional gene silencing, post-transcriptional gene silencing, nascent RNA silencing, translation regulation, rRNA regulation, and reverse transcription regulation, we explored the representative biological functions of tsRNAs in tumors. Furthermore, this review summarized the clinical value of tsRNAs in cancers, thus providing theoretical support for their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
12
|
Yin R, Lu H, Cao Y, Zhang J, Liu G, Guo Q, Kai X, Zhao J, Wei Y. The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis. Curr Med Chem 2024; 31:5779-5804. [PMID: 37807413 DOI: 10.2174/0109298673253678230920054220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3'-untranslated region(3'-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.
Collapse
Affiliation(s)
- Runting Yin
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Hongyu Lu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Geng Liu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Qian Guo
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Xinyu Kai
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Jiemin Zhao
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| |
Collapse
|
13
|
Akiyama Y, Ivanov P. tRNA-derived RNAs: Biogenesis and roles in translational control. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1805. [PMID: 37406666 PMCID: PMC10766869 DOI: 10.1002/wrna.1805] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
Transfer RNA (tRNA)-derived RNAs (tDRs) are a class of small non-coding RNAs that play important roles in different aspects of gene expression. These ubiquitous and heterogenous RNAs, which vary across different species and cell types, are proposed to regulate various biological processes. In this review, we will discuss aspects of their biogenesis, and specifically, their contribution into translational control. We will summarize diverse roles of tDRs and the molecular mechanisms underlying their functions in the regulation of protein synthesis and their impact on related events such as stress-induced translational reprogramming. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
15
|
Fu M, Gu J, Wang M, Zhang J, Chen Y, Jiang P, Zhu T, Zhang X. Emerging roles of tRNA-derived fragments in cancer. Mol Cancer 2023; 22:30. [PMID: 36782290 PMCID: PMC9926655 DOI: 10.1186/s12943-023-01739-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
tRNA-derived fragments (tRFs) are an emerging category of small non-coding RNAs that are generated from cleavage of mature tRNAs or tRNA precursors. The advance in high-throughput sequencing has contributed to the identification of increasing number of tRFs with critical functions in distinct physiological and pathophysiological processes. tRFs can regulate cell viability, differentiation, and homeostasis through multiple mechanisms and are thus considered as critical regulators of human diseases including cancer. In addition, increasing evidence suggest the extracellular tRFs may be utilized as promising diagnostic and prognostic biomarkers for cancer liquid biopsy. In this review, we focus on the biogenesis, classification and modification of tRFs, and summarize the multifaceted functions of tRFs with an emphasis on the current research status and perspectives of tRFs in cancer.
Collapse
Affiliation(s)
- Min Fu
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China ,grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jianmei Gu
- grid.260483.b0000 0000 9530 8833Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226361 Jiangsu China
| | - Maoye Wang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jiahui Zhang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yanke Chen
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Pengcheng Jiang
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, Jiangsu, China.
| | - Xu Zhang
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
16
|
Lei HT, Wang ZH, Li B, Sun Y, Mei SQ, Yang JH, Qu LH, Zheng LL. tModBase: deciphering the landscape of tRNA modifications and their dynamic changes from epitranscriptome data. Nucleic Acids Res 2022; 51:D315-D327. [PMID: 36408909 PMCID: PMC9825477 DOI: 10.1093/nar/gkac1087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
tRNA molecules contain dense, abundant modifications that affect tRNA structure, stability, mRNA decoding and tsRNA formation. tRNA modifications and related enzymes are responsive to environmental cues and are associated with a range of physiological and pathological processes. However, there is a lack of resources that can be used to mine and analyse these dynamically changing tRNA modifications. In this study, we established tModBase (https://www.tmodbase.com/) for deciphering the landscape of tRNA modification profiles from epitranscriptome data. We analysed 103 datasets generated with second- and third-generation sequencing technologies and illustrated the misincorporation and termination signals of tRNA modification sites in ten species. We thus systematically demonstrate the modification profiles across different tissues/cell lines and summarize the characteristics of tRNA-associated human diseases. By integrating transcriptome data from 32 cancers, we developed novel tools for analysing the relationships between tRNA modifications and RNA modification enzymes, the expression of 1442 tRNA-derived small RNAs (tsRNAs), and 654 DNA variations. Our database will provide new insights into the features of tRNA modifications and the biological pathways in which they participate.
Collapse
Affiliation(s)
- Hao-Tian Lei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zhang-Hao Wang
- Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yang Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Shi-Qiang Mei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian-Hua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ling-Ling Zheng
- To whom correspondence should be addressed. Tel: +86 20 84112399; Fax: +86 20 84036551;
| |
Collapse
|
17
|
Su Z, Monshaugen I, Wilson B, Wang F, Klungland A, Ougland R, Dutta A. TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nat Commun 2022; 13:2165. [PMID: 35444240 PMCID: PMC9021294 DOI: 10.1038/s41467-022-29790-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
RNA modifications are important regulatory elements of RNA functions. However, most genome-wide mapping of RNA modifications has focused on messenger RNAs and transfer RNAs, but such datasets have been lacking for small RNAs. Here we mapped N1-methyladenosine (m1A) in the cellular small RNA space. Benchmarked with synthetic m1A RNAs, our workflow identified specific groups of m1A-containing small RNAs, which are otherwise disproportionally under-represented. In particular, 22-nucleotides long 3' tRNA-fragments are highly enriched for TRMT6/61A-dependent m1A located within the seed region. TRMT6/61A-dependent m1A negatively affects gene silencing by tRF-3s. In urothelial carcinoma of the bladder, where TRMT6/61A is over-expressed, higher m1A modification on tRFs is detected, correlated with a dysregulation of tRF targetome. Lastly, TRMT6/61A regulates tRF-3 targets involved in unfolded protein response. Together, our results reveal a mechanism of regulating gene expression via base modification of small RNA.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Genetics, University of Alabama, Birmingham, AL, 35233, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22901, USA
| | - Ida Monshaugen
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, 1346, Gjettum, Norway
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22901, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22901, USA
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. 10 Box 1066 Blindern, 0316, Oslo, Norway
| | - Rune Ougland
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, 1346, Gjettum, Norway.
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL, 35233, USA.
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22901, USA.
| |
Collapse
|
18
|
Wilson B, Dutta A. Function and Therapeutic Implications of tRNA Derived Small RNAs. Front Mol Biosci 2022; 9:888424. [PMID: 35495621 PMCID: PMC9043108 DOI: 10.3389/fmolb.2022.888424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
tRNA derived small RNAs are mainly composed of tRNA fragments (tRFs) and tRNA halves (tiRs). Several functions have been attributed to tRFs and tiRs since their initial characterizations, spanning all aspects of regulation of the Central Dogma: from nascent RNA silencing, to post-transcriptional gene silencing, and finally, to translational regulation. The length distribution, sequence diversity, and multifaceted functions of tRFs and tiRs positions them as attractive new models for small RNA therapeutics. In this review, we will discuss the principles of tRF biogenesis and function in order to highlight their therapeutic potential.
Collapse
Affiliation(s)
- Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL, United States
| |
Collapse
|
19
|
Sebestyén E, Nagy Á, Marosvári D, Rajnai H, Kajtár B, Deák B, Matolcsy A, Brandner S, Storhoff J, Chen N, Bagó AG, Bödör C, Reiniger L. Distinct miRNA Expression Signatures of Primary and Secondary Central Nervous System Lymphomas. J Mol Diagn 2021; 24:224-240. [DOI: 10.1016/j.jmoldx.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
|
20
|
Chen Q, Zhang X, Shi J, Yan M, Zhou T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem Sci 2021; 46:790-804. [PMID: 34053843 PMCID: PMC8448906 DOI: 10.1016/j.tibs.2021.05.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are among the most ancient small RNAs in all domains of life and are generated by the cleavage of tRNAs. Emerging studies have begun to reveal the versatile roles of tsRNAs in fundamental biological processes, including gene silencing, ribosome biogenesis, retrotransposition, and epigenetic inheritance, which are rooted in tsRNA sequence conservation, RNA modifications, and protein-binding abilities. We summarize the mechanisms of tsRNA biogenesis and the impact of RNA modifications, and propose how thinking of tsRNA functionality from an evolutionary perspective urges the expansion of tsRNA research into a wider spectrum, including cross-tissue/cross-species regulation and harnessing of the 'tsRNA code' for precision medicine.
Collapse
Affiliation(s)
- Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| | - Xudong Zhang
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Menghong Yan
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
21
|
Devanathan SK, Debnath TK, Xhemalçe B. Facile detection of RNA phospho-methylation in cells and tissues. Methods Enzymol 2021; 658:49-72. [PMID: 34517959 DOI: 10.1016/bs.mie.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNAs from various cells and tissues are modified in nearly 200 chemically distinct ways. These modifications can be deposited either on the 5' or 3' ends, or internally on the nucleobases or sugar backbone. 5'-end modifications are crucial for protecting RNAs from untimely degradation/processing, regulating their cellular functions, or discriminating endogenous RNAs from pathogenic RNAs. 5'-end phospho-methylation is a remarkable RNA modification that is enzymatically deposited either on the γ-phosphate of nascent triphosphorylated RNAs by human BCDIN3/MePCE, or on the α-phosphate of processed monophosphorylated RNAs by human BCDIN3D. These 5'-phospho-methyltransferases are part of the BIN3 family of O-methyltransferases conserved from S. pombe to humans and play important cellular and biological roles, many of which await further elucidation. Here, we quickly recapitulate historical methods for the detection of 5'-end phospho-methyl modifications, and focus more specifically on a method that can be used to detect and quantify α-monophosphate methylation from as low as 10-100ng of total RNA from cells or tissues. This method is important for deciphering the roles of BCDIN3D and its homologs across species, as well as serves as starting point for the development of new methods for detection of 5'-end modifications.
Collapse
Affiliation(s)
- Sravan K Devanathan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Turja K Debnath
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Blerta Xhemalçe
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
22
|
Liu Z, Kim HK, Xu J, Jing Y, Kay MA. The 3'tsRNAs are aminoacylated: Implications for their biogenesis. PLoS Genet 2021; 17:e1009675. [PMID: 34324497 PMCID: PMC8354468 DOI: 10.1371/journal.pgen.1009675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/10/2021] [Accepted: 06/20/2021] [Indexed: 12/03/2022] Open
Abstract
Emerging evidence indicates that tRNA-derived small RNAs (tsRNAs) are involved in fine-tuning gene expression and become dysregulated in various cancers. We recently showed that the 22nt LeuCAG3´tsRNA from the 3´ end of tRNALeu is required for efficient translation of a ribosomal protein mRNA and ribosome biogenesis. Inactivation of this 3´tsRNA induced apoptosis in rapidly dividing cells and suppressed the growth of a patient-derived orthotopic hepatocellular carcinoma in mice. The mechanism involved in the generation of the 3´tsRNAs remains elusive and it is unclear if the 3´-ends of 3´tsRNAs are aminoacylated. Here we report an enzymatic method utilizing exonuclease T to determine the 3´charging status of tRNAs and tsRNAs. Our results showed that the LeuCAG3´tsRNA, and two other 3´tsRNAs are fully aminoacylated. When the leucyl-tRNA synthetase (LARS1) was inhibited, there was no change in the total tRNALeu concentration but a reduction in both the charged tRNALeu and LeuCAG3´tsRNA, suggesting the 3´tsRNAs are fully charged and originated solely from the charged mature tRNA. Altering LARS1 expression or the expression of various tRNALeu mutants were also shown to affect the generation of the LeuCAG3´tsRNA further suggesting they are created in a highly regulated process. The fact that the 3´tsRNAs are aminoacylated and their production is regulated provides additional insights into their importance in post-transcriptional gene regulation that includes coordinating the production of the protein synthetic machinery.
Collapse
Affiliation(s)
- Ziwei Liu
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, Califormia, United States of America
| | - Hak Kyun Kim
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, Califormia, United States of America
| | - Jianpeng Xu
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, Califormia, United States of America
| | - Yuqing Jing
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, Califormia, United States of America
| | - Mark A. Kay
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, Califormia, United States of America
| |
Collapse
|
23
|
BCDIN3D RNA methyltransferase stimulates Aldolase C expression and glycolysis through let-7 microRNA in breast cancer cells. Oncogene 2021; 40:2395-2406. [PMID: 33664453 PMCID: PMC8026734 DOI: 10.1038/s41388-021-01702-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
Type II diabetes (T2D) and specific cancers share many risk factors, however, the molecular mechanisms underlying these connections are often not well-understood. BCDIN3D is an RNA modifying enzyme that methylates specific precursor microRNAs and tRNAHis. In addition to breast cancer, BCDIN3D may also be linked to metabolism, as its gene locus is associated with obesity and T2D. In order to uncover metabolic pathways regulated by BCDIN3D in cancer, we performed an unbiased analysis of the metabolome, transcriptome, and proteome of breast cancer cells depleted for BCDIN3D. Intersection of these analyses showed that BCDIN3D-depleted cells have increased levels of Fructose 1,6 Bisphosphate (F1,6-BP), the last six-carbon glycolytic intermediate accompanied by reduced glycolytic capacity. We further show that elevated F1,6-BP is due to downregulation of Aldolase C (ALDOC), an enzyme that cleaves F1,6-BP mainly in the brain, but whose high expression/amplification is associated with poor prognosis in breast cancer. BCDIN3D regulates ALDOC through a non-canonical mechanism involving the crucial let-7 microRNA family and its target site on the 3'UTR of ALDOC. Overall, our results reveal an important connection between BCDIN3D, let-7 and glycolysis that may be relevant to breast cancer, obesity, and T2D.
Collapse
|
24
|
Abstract
Post-synthesis modification of biomolecules is an efficient way of regulating and optimizing their functions. The human epitranscriptome includes a variety of more than 100 modifications known to exist in all RNA subtypes. Modifications of non-coding RNAs are particularly interesting since they can directly affect their structure, stability, interaction and function. Indeed, non-coding RNAs such as tRNA and rRNA are the most modified RNA species in eukaryotic cells. In the last 20 years, new functions of non-coding RNAs have been discovered and their involvement in human disease, including cancer, became clear. In this review, we will present the evidence connecting modifications of different non-coding RNA subtypes and their role in cancer.
Collapse
Affiliation(s)
| | | | - Luca Pandolfini
- Corresponding authors: Isaia Barbieri, University of Cambridge, Department of pathology, Division of cellular and molecular pathology, Addenbrooke's hospital, Lab block, level 3 Box 231, CB2 0QQ, Cambridge, UK. Tel.: +44 (0)1223 333917; E-mail: , Luca Pandolfini, Istituto Italiano di Tecnologia, via Enrico Melen 83, Building B, 16152 Genova, Italy. Tel.: +39 010 2897623; E-mail:
| | - Isaia Barbieri
- Corresponding authors: Isaia Barbieri, University of Cambridge, Department of pathology, Division of cellular and molecular pathology, Addenbrooke's hospital, Lab block, level 3 Box 231, CB2 0QQ, Cambridge, UK. Tel.: +44 (0)1223 333917; E-mail: , Luca Pandolfini, Istituto Italiano di Tecnologia, via Enrico Melen 83, Building B, 16152 Genova, Italy. Tel.: +39 010 2897623; E-mail:
| |
Collapse
|
25
|
Debnath TK, Xhemalçe B. Deciphering RNA modifications at base resolution: from chemistry to biology. Brief Funct Genomics 2021; 20:77-85. [PMID: 33454749 DOI: 10.1093/bfgp/elaa024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023] Open
Abstract
Nearly 200 distinct chemical modifications of RNAs have been discovered to date. Their analysis via direct methods has been possible in abundant RNA species, such as ribosomal, transfer or viral RNA, since several decades. However, their analysis in less abundant RNAs species, especially cellular messenger RNAs, was rendered possible only recently with the advent of high throughput sequencing techniques. Given the growing biomedical interest of the proteins that write, erase and read RNA modifications, ingenious new methods to enrich and identify RNA modifications at base resolution have been implemented, and more efforts are underway to render them more quantitative. Here, we review several crucial modification-specific (bio)chemical approaches and discuss their advantages and shortcomings for exploring the epitranscriptome.
Collapse
Affiliation(s)
- Turja K Debnath
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712 Austin TX, USA
| | - Blerta Xhemalçe
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712 Austin TX, USA
| |
Collapse
|
26
|
Abstract
As one of the most abundant and conserved RNA species, transfer RNAs (tRNAs) are well known for their role in reading the codons on messenger RNAs and translating them into proteins. In this review, we discuss the noncanonical functions of tRNAs. These include tRNAs as precursors to novel small RNA molecules derived from tRNAs, also called tRNA-derived fragments, that are abundant across species and have diverse functions in different biological processes, including regulating protein translation, Argonaute-dependent gene silencing, and more. Furthermore, the role of tRNAs in biosynthesis and other regulatory pathways, including nutrient sensing, splicing, transcription, retroelement regulation, immune response, and apoptosis, is reviewed. Genome organization and sequence variation of tRNA genes are also discussed in light of their noncanonical functions. Lastly, we discuss the recent applications of tRNAs in genome editing and microbiome sequencing.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| |
Collapse
|
27
|
Yao J, Wu DC, Nottingham RM, Lambowitz AM. Identification of protein-protected mRNA fragments and structured excised intron RNAs in human plasma by TGIRT-seq peak calling. eLife 2020; 9:e60743. [PMID: 32876046 PMCID: PMC7518892 DOI: 10.7554/elife.60743] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Human plasma contains > 40,000 different coding and non-coding RNAs that are potential biomarkers for human diseases. Here, we used thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) combined with peak calling to simultaneously profile all RNA biotypes in apheresis-prepared human plasma pooled from healthy individuals. Extending previous TGIRT-seq analysis, we found that human plasma contains largely fragmented mRNAs from > 19,000 protein-coding genes, abundant full-length, mature tRNAs and other structured small non-coding RNAs, and less abundant tRNA fragments and mature and pre-miRNAs. Many of the mRNA fragments identified by peak calling correspond to annotated protein-binding sites and/or have stable predicted secondary structures that could afford protection from plasma nucleases. Peak calling also identified novel repeat RNAs, miRNA-sized RNAs, and putatively structured intron RNAs of potential biological, evolutionary, and biomarker significance, including a family of full-length excised intron RNAs, subsets of which correspond to mirtron pre-miRNAs or agotrons.
Collapse
Affiliation(s)
- Jun Yao
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of TexasAustinUnited States
| | - Douglas C Wu
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of TexasAustinUnited States
| | - Ryan M Nottingham
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of TexasAustinUnited States
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of TexasAustinUnited States
| |
Collapse
|
28
|
Cullen H, Schorn AJ. Endogenous Retroviruses Walk a Fine Line between Priming and Silencing. Viruses 2020; 12:v12080792. [PMID: 32718022 PMCID: PMC7472051 DOI: 10.3390/v12080792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
Endogenous retroviruses (ERVs) in mammals are closely related to infectious retroviruses and utilize host tRNAs as a primer for reverse transcription and replication, a hallmark of long terminal repeat (LTR) retroelements. Their dependency on tRNA makes these elements vulnerable to targeting by small RNAs derived from the 3′-end of mature tRNAs (3′-tRFs), which are highly expressed during epigenetic reprogramming and potentially protect many tissues in eukaryotes. Here, we review some key functions of ERV reprogramming during mouse and human development and discuss how small RNA-mediated silencing maintains genome stability when ERVs are temporarily released from heterochromatin repression. In particular, we take a closer look at the tRNA primer binding sites (PBS) of two highly active ERV families in mice and their sequence variation that is shaped by the conflict of successful tRNA priming for replication versus evasion of silencing by 3′-tRFs.
Collapse
|
29
|
Stavast CJ, Erkeland SJ. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells 2019; 8:cells8111465. [PMID: 31752361 PMCID: PMC6912820 DOI: 10.3390/cells8111465] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression. As miRNAs are frequently deregulated in many human diseases, including cancer and immunological disorders, it is important to understand their biological functions. Typically, miRNA-encoding genes are transcribed by RNA Polymerase II and generate primary transcripts that are processed by RNase III-endonucleases DROSHA and DICER into small RNAs of approximately 21 nucleotides. All miRNAs are loaded into Argonaute proteins in the RNA-induced silencing complex (RISC) and act as post-transcriptional regulators by binding to the 3'- untranslated region (UTR) of mRNAs. This seed-dependent miRNA binding inhibits the translation and/or promotes the degradation of mRNA targets. Surprisingly, recent data presents evidence for a target-mediated decay mechanism that controls the level of specific miRNAs. In addition, several non-canonical miRNA-containing genes have been recently described and unexpected functions of miRNAs have been identified. For instance, several miRNAs are located in the nucleus, where they are involved in the transcriptional activation or silencing of target genes. These epigenetic modifiers are recruited by RISC and guided by miRNAs to specific loci in the genome. Here, we will review non-canonical aspects of miRNA biology, including novel regulators of miRNA expression and functions of miRNAs in the nucleus.
Collapse
|