1
|
Huang X, Feng X, Yan YH, Xu D, Wang K, Zhu C, Dong MQ, Huang X, Guang S, Chen X. Compartmentalized localization of perinuclear proteins within germ granules in C. elegans. Dev Cell 2025; 60:1251-1270.e3. [PMID: 39742661 DOI: 10.1016/j.devcel.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/26/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
Germ granules, or nuage, are RNA-rich condensates that are often docked on the cytoplasmic surface of germline nuclei. C. elegans perinuclear germ granules are composed of multiple subcompartments, including P granules, Mutator foci, Z granules, SIMR foci, P -bodies, and E granules. Although many perinuclear proteins have been identified, their precise localization within the subcompartments of the germ granule is still unclear. Here, we systematically labeled perinuclear proteins with fluorescent tags via CRISPR-Cas9 technology. Using this nematode strain library, we identified a series of proteins localized in Z or E granules and extended the characterization of the D granule. Finally, we found that the LOTUS domain protein MIP-1/EGGD-1 regulated the multiphase organization of the germ granule. Overall, our work identified the germ-granule architecture and redefined the compartmental localization of perinuclear proteins. Additionally, the library of genetically modified nematode strains will facilitate research on C. elegans germ granules.
Collapse
Affiliation(s)
- Xiaona Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
2
|
Zhang Z, Xu A, Bai Y, Chen Y, Cates K, Kerr C, Bermudez A, Susanto TT, Wysong K, García Marqués FJ, Nolan GP, Pitteri S, Barna M. A subcellular map of translational machinery composition and regulation at the single-molecule level. Science 2025; 387:eadn2623. [PMID: 40048539 DOI: 10.1126/science.adn2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/09/2024] [Accepted: 12/16/2024] [Indexed: 04/23/2025]
Abstract
Millions of ribosomes are packed within mammalian cells, yet we lack tools to visualize them in toto and characterize their subcellular composition. In this study, we present ribosome expansion microscopy (RiboExM) to visualize individual ribosomes and an optogenetic proximity-labeling technique (ALIBi) to probe their composition. We generated a super-resolution ribosomal map, revealing subcellular translational hotspots and enrichment of 60S subunits near polysomes at the endoplasmic reticulum (ER). We found that Lsg1 tethers 60S to the ER and regulates translation of select proteins. Additionally, we discovered ribosome heterogeneity at mitochondria guiding translation of metabolism-related transcripts. Lastly, we visualized ribosomes in neurons, revealing a dynamic switch between monosomes and polysomes in neuronal translation. Together, these approaches enable exploration of ribosomal localization and composition at unprecedented resolution.
Collapse
Affiliation(s)
- Zijian Zhang
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Adele Xu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Yunhao Bai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Kitra Cates
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Craig Kerr
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Abel Bermudez
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Kelsie Wysong
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Sharon Pitteri
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive Conservation of Intron Number and Other Genetic Elements Revealed by a Chromosome-level Genome Assembly of the Hyper-polymorphic Nematode Caenorhabditis brenneri. Genome Biol Evol 2025; 17:evaf037. [PMID: 40037811 PMCID: PMC11925023 DOI: 10.1093/gbe/evaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
With within-species genetic diversity estimates that span the gamut of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and, notably, across Metazoa. Here, we present a high-quality, gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat-rich arms. A comparison of C. brenneri with other nematodes from the "Elegans" group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation of orthogroup size, indicative of high rates of gene turnover, consistent with previous studies. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. A comparison of gene structures revealed a strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
4
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive conservation of intron number and other genetic elements revealed by a chromosome-level genomic assembly of the hyper-polymorphic nematode Caenorhabditis brenneri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600681. [PMID: 38979286 PMCID: PMC11230420 DOI: 10.1101/2024.06.25.600681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
With within-species genetic diversity estimates that span the gambit of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and metazoan phyla. Here, we present a high-quality gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat rich peripheral parts. Comparison of C. brenneri with other nematodes from the 'Elegans' group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation iof orthogroup sizes, indicative of high rates of gene turnover. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. Comparison of gene structures revealed strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
5
|
Crawford MW, Posch G, Cattin-Ortolá J, Topalidou I, Ailion M. Mutations in the NXF-1:NXT-1 mRNA export complex affect gene-expression driven by the hsp-16.41 promoter. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000918. [PMID: 37583452 PMCID: PMC10423990 DOI: 10.17912/micropub.biology.000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023]
Abstract
The NXF-1 : NXT-1 heterodimer is essential for the nuclear export of mRNA. Here we describe three new alleles of nxf-1 and one allele of nxt-1 isolated from a forward genetic screen. These mutations cause no apparent phenotype under normal growth conditions, but partially suppress the lethality caused by heat-shock induced expression of the PEEL-1 toxin from P hsp-16.41 :: peel-1 . There is also decreased expression of P hsp-16.41 ::eGFP in an nxf-1 mutant. We propose that NXF-1 : NXT-1 influences the expression of heat-shock activated genes due to a role in the recruitment of the hsp-16.41 promoter to the nuclear pore complex during heat-shock.
Collapse
Affiliation(s)
| | - Galen Posch
- Department of Biochemistry, University of Washington, Seattle, WA USA
| | | | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, WA USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA USA
| |
Collapse
|
6
|
Kishner M, Habaz L, Meshnik L, Meidan TD, Polonsky A, Ben-Zvi A. Gonadotropin-releasing hormone-like receptor 2 inversely regulates somatic proteostasis and reproduction in Caenorhabditis elegans. Front Cell Dev Biol 2022; 10:951199. [PMID: 36105349 PMCID: PMC9465036 DOI: 10.3389/fcell.2022.951199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The quality control machinery regulates the cellular proteome to ensure proper protein homeostasis (proteostasis). In Caenorhabditis elegans, quality control networks are downregulated cell-nonautonomously by the gonadal longevity pathway or metabolic signaling at the onset of reproduction. However, how signals are mediated between the gonad and the somatic tissues is not known. Gonadotropin-releasing hormone (GnRH)-like signaling functions in the interplay between development and reproduction and have conserved roles in regulating reproduction, metabolism, and stress. We, therefore, asked whether GnRH-like signaling is involved in proteostasis collapse at the onset of reproduction. Here, we examine whether C. elegans orthologues of GnRH receptors modulate heat shock survival. We find that gnrr-2 is required for proteostasis remodeling in different somatic tissues during the transition to adulthood. We show that gnrr-2 likely functions in neurons downstream of the gonad in the gonadal-longevity pathway and modulate the somatic regulation of transcription factors HSF-1, DAF-16, and PQM-1. In parallel, gnrr-2 modulates egg-laying rates, vitellogenin production, and thus reproductive capacity. Taken together, our data suggest that gnrr-2 plays a GnRH-associated role, mediating the cross-talk between the reproduction system and the soma in the decision to commit to reproduction.
Collapse
|
7
|
Miwa T, Ohtani K, Inoue K, Sakamoto H. The germ cell-specific TAP-like protein NXF-2 forms a novel granular structure and is required for tra-2 3'UTR-dependent mRNA export in Caenorhabditis elegans. Genes Cells 2022; 27:621-628. [PMID: 35950937 DOI: 10.1111/gtc.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
TAP is a general mRNA export receptor and is highly conserved among eukaryotes. The nematode Caenorhabditis elegans has another TAP-like protein, NXF-2, but little is known about its function. In this study, we show that NXF-2 is specifically expressed in germ cells and forms a novel granular structure that is different from that of P granules and that NXF-2 granules are anchored to the nuclear periphery in the mitotic region of the hermaphrodite gonad. In contrast, NXF-2 granules are released within the whole cytoplasm in the meiotic region, where the feminization gene tra-2 starts to function. Both inhibition of XPO-1 (an ortholog of the export receptor CRM1) and mutation of the nuclear export signal of NXF-2 caused the release of NXF-2 granules from the nuclear periphery, indicating that anchoring of NXF-2 granules depends on XPO-1 function. Moreover, inhibition of NXF-2 resulted in a substantial nuclear accumulation of the reporter mRNA carrying the tra-2 3'UTR. These results suggest that, together with XPO-1, NXF-2 exports and anchors tra-2 mRNA to the nuclear periphery to avoid precocious translation until the germ cells reach the meiotic region, thereby contributing to the regulation of tra-2 mRNA expression. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Takashi Miwa
- Biology, Kobe University Graduate School of Science Faculty of Science, Grad. Sch. Sci. Tech.1-1 Rokkodai, Nada-ku, Kobe Hyogo, Japan
| | - Keigo Ohtani
- Biology, Kobe University Graduate School of Science Faculty of Science, Grad. Sch. Sci. Tech.1-1 Rokkodai, Nada-ku, Kobe Hyogo, Japan
| | - Kunio Inoue
- Biology, Kobe University Graduate School of Science Faculty of Science, Grad. Sch. Sci. Tech.1-1 Rokkodai, Nada-ku, Kobe Hyogo, Japan
| | - Hiroshi Sakamoto
- Biology, Kobe University Graduate School of Science Faculty of Science, Grad. Sch. Sci. Tech.1-1 Rokkodai, Nada-ku, Kobe Hyogo, Japan
| |
Collapse
|