1
|
Herrera-Calderon AC, Leal L, Suárez-Bautista JD, Manotas-Viloria HS, Muñoz-García A, Franco D, Arenas NE, Vanegas J. Metagenomic and genomic analysis of heavy metal-tolerant and -resistant bacteria in resource islands in a semi-arid zone of the Colombian Caribbean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5596-5609. [PMID: 38127234 PMCID: PMC10799150 DOI: 10.1007/s11356-023-30253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/29/2023] [Indexed: 12/23/2023]
Abstract
Bacteria from resource islands can adapt to different extreme conditions in semi-arid regions. We aimed to determine the potential resistance and tolerance to heavy metals from the bacterial community under the canopy of three resource islands in a semi-arid zone of the Colombian Caribbean. Total DNA was extracted from soil and through a metagenomics approach, we identified genes related to heavy metal tolerance and resistance under the influence of drought and humidity conditions, as well as the presence or absence of vegetation. We characterized the genomes of bacterial isolates cultivated in the presence of four heavy metals. The abundances of genes related to heavy metal resistance and tolerance were favored by soil moisture and the presence of vegetation. We observed a high abundance of resistance genes (60.4%) for Cu, Zn, and Ni, while 39.6% represented tolerance. These genes positively correlated with clay and silt content, and negatively correlated with sand content. Resistance and tolerance were associated with detoxification mechanisms involving oxidoreductase enzymes, metalloproteases, and hydrolases, as well as transmembrane proteins involved in metal transport such as efflux pumps and ion transmembrane transporters. The Bacillus velezensis C3-3 and Cytobacillus gottheilii T106 isolates showed resistance to 5 mM of Cd, Co, Mn, and Ni through detoxification genes associated with ABC pumps, metal transport proteins, ion antiporter proteins, and import systems, among others. Overall, these findings highlight the potential of bacteria from resource islands in bioremediation processes of soils contaminated with heavy metals.
Collapse
Affiliation(s)
| | - Leslie Leal
- Department of Biological and Environmental Sciences, Universidad Jorge Tadeo Lozano, Bogotá, Colombia
| | | | | | | | - Diego Franco
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Nelson Enrique Arenas
- Faculty of Sciences, Department of Biology, Universidad Antonio Nariño, Bogotá, Colombia
| | - Javier Vanegas
- Faculty of Sciences, Department of Biology, Universidad Antonio Nariño, Bogotá, Colombia.
| |
Collapse
|
2
|
Abstract
TonB-dependent transporters (TBDTs) are present in all gram-negative bacteria and mediate energy-dependent uptake of molecules that are too scarce or large to be taken up efficiently by outer membrane (OM) diffusion channels. This process requires energy that is derived from the proton motive force and delivered to TBDTs by the TonB-ExbBD motor complex in the inner membrane. Together with the need to preserve the OM permeability barrier, this has led to an extremely complex and fascinating transport mechanism for which the fundamentals, despite decades of research, are still unclear. In this review, we describe our current understanding of the transport mechanism of TBDTs, their potential role in the delivery of novel antibiotics, and the important contributions made by TBDT-associated (lipo)proteins.
Collapse
Affiliation(s)
- Augustinas Silale
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; ,
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; ,
| |
Collapse
|
3
|
A genetic platform to investigate the functions of bacterial drug efflux pumps. Nat Chem Biol 2022; 18:1399-1409. [PMID: 36065018 DOI: 10.1038/s41589-022-01119-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Efflux pumps are a serious challenge for the development of antibacterial agents. Overcoming efflux requires an in-depth understanding of efflux pump functions, specificities and the development of inhibitors. However, the complexities of efflux networks have limited such studies. To address these challenges, we generated Efflux KnockOut-35 (EKO-35), a highly susceptible Escherichia coli strain lacking 35 efflux pumps. We demonstrate the use of this strain by constructing an efflux platform comprising EKO-35 strains individually producing efflux pumps forming tripartite complexes with TolC. This platform was profiled against a curated diverse compound collection, which enabled us to define physicochemical properties that contribute to transport. We also show the E. coli drug efflux network is conditionally essential for growth, and that the platform can be used to investigate efflux pump inhibitor specificities and efflux pump interplay. We believe EKO-35 and the efflux platform will have widespread application for the study of drug efflux.
Collapse
|
4
|
Hantke K, Friz S. The TonB dependent uptake of pyrroloquinoline‐quinone (PQQ) and secretion of gluconate by
Escherichia coli
K‐12. Mol Microbiol 2022; 118:417-425. [DOI: 10.1111/mmi.14975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Klaus Hantke
- University of Tübingen, IMIT Institute Tübingen Germany
| | - Simon Friz
- University of Tübingen, IMIT Institute Tübingen Germany
| |
Collapse
|
5
|
Garrido C, Wollman FA, Lafontaine I. The evolutionary history of peptidases involved in the processing of Organelle-Targeting Peptides. Genome Biol Evol 2022; 14:6618273. [PMID: 35758251 PMCID: PMC9291397 DOI: 10.1093/gbe/evac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Most of the proteins present in mitochondria and chloroplasts, the organelles acquired via endosymbiotic events, are encoded in the nucleus and translated into the cytosol. Most of such nuclear-encoded proteins are specifically recognized via an N-terminal-encoded targeting peptide (TP) and imported into the organelles via a translocon machinery. Once imported, the TP is degraded by a succession of cleavage steps ensured by dedicated peptidases. Here, we retrace the evolution of the families of the mitochondrial processing peptidase (MPP), stromal processing peptidase (SPP), presequence protease (PreP), and organellar oligo-peptidase (OOP) that play a central role in TP processing and degradation across the tree of life. Their bacterial distributions are widespread but patchy, revealing unsurprisingly complex history of lateral transfers among bacteria. We provide evidence for the eukaryotic acquisition of MPP, OOP, and PreP by lateral gene transfers from bacteria at the time of the mitochondrial endosymbiosis. We show that the acquisition of SPP and of a second copy of OOP and PreP at the time of the chloroplast endosymbiosis was followed by a differential loss of one PreP paralog in photosynthetic eukaryotes. We identified some contrasting sequence conservations between bacterial and eukaryotic homologs that could reflect differences in the functional context of their peptidase activity. The close vicinity of the eukaryotic peptidases MPP and OOP to those of several bacterial pathogens, showing antimicrobial resistance, supports a scenario where such bacteria were instrumental in the establishment of the proteolytic pathway for TP degradation in organelles. The evidence for their role in the acquisition of PreP is weaker, and none is observed for SPP, although it cannot be excluded by the present study.
Collapse
Affiliation(s)
- Clotilde Garrido
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Francis André Wollman
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ingrid Lafontaine
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
6
|
Maphosa S, Moleleki LN. Isolation and Characterization of Outer Membrane Vesicles of Pectobacterium brasiliense 1692. Microorganisms 2021; 9:1918. [PMID: 34576813 PMCID: PMC8469291 DOI: 10.3390/microorganisms9091918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Pectobacterium brasiliense (Pbr) 1692 is an aggressive phytopathogen affecting a broad host range of crops and ornamental plants, including potatoes. Previous research on animal pathogens, and a few plant pathogens, revealed that Outer Membrane Vesicles (OMVs) are part of Gram-negative bacteria's (GNB) adaptive toolkit. For this reason, OMV production and subsequent release from bacteria is a conserved process. Therefore, we hypothesized that OMVs might transport proteins that play a critical role in causing soft rot disease and in the survival and fitness of Pbr1692. Here, we show that the potato pathogen, Pbr1692, releases OMVs of various morphologies in Luria Bertani media at 31 °C. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) confirmed the production of OMVs by Pbr1692 cells. Transmission Electron Microscopy showed that these exist as chain-, single-, and double-membrane morphologies. Mass spectrometry followed by Gene Ontology, Clusters of Orthologous Groups, Virulence Factor, CAZymes, Antibiotic Resistance Ontology, and Bastion6 T6SE annotations identified 129 OMV-associated proteins with diverse annotated roles, including antibiotic stress response, virulence, and competition. Pbr1692 OMVs contributed to virulence in potato tubers and elicited a hypersensitive response in Nicotiana benthamiana leaves. Furthermore, Pbr1692 OMVs demonstrated antibacterial activity against Dickeya dadantii.
Collapse
Affiliation(s)
- Silindile Maphosa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lunnon Road, Pretoria 0028, South Africa;
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lunnon Road, Pretoria 0028, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lunnon Road, Pretoria 0028, South Africa;
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lunnon Road, Pretoria 0028, South Africa
| |
Collapse
|
7
|
|
8
|
Li YP, Fekih IB, Fru EC, Moraleda-Munoz A, Li X, Rosen BP, Yoshinaga M, Rensing C. Antimicrobial Activity of Metals and Metalloids. Annu Rev Microbiol 2021; 75:175-197. [PMID: 34343021 DOI: 10.1146/annurev-micro-032921-123231] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Competition shapes evolution. Toxic metals and metalloids have exerted selective pressure on life since the rise of the first organisms on the Earth, which has led to the evolution and acquisition of resistance mechanisms against them, as well as mechanisms to weaponize them. Microorganisms exploit antimicrobial metals and metalloids to gain competitive advantage over other members of microbial communities. This exerts a strong selective pressure that drives evolution of resistance. This review describes, with a focus on arsenic and copper, how microorganisms exploit metals and metalloids for predation and how metal- and metalloid-dependent predation may have been a driving force for evolution of microbial resistance against metals and metalloids. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| | - Ernest Chi Fru
- Centre for Geobiology and Geochemistry, School of Earth and Ocean Sciences, Cardiff University, CF10 3AT Cardiff, United Kingdom
| | - Aurelio Moraleda-Munoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada 18071, Spain
| | - Xuanji Li
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| |
Collapse
|
9
|
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SAA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D. Highly accurate protein structure prediction for the human proteome. Nature 2021; 596:590-596. [PMID: 34293799 PMCID: PMC8387240 DOI: 10.1038/s41586-021-03828-1] [Citation(s) in RCA: 1738] [Impact Index Per Article: 434.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Protein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of effort, 17% of the total residues in human protein sequences are covered by an experimentally determined structure1. Here we markedly expand the structural coverage of the proteome by applying the state-of-the-art machine learning method, AlphaFold2, at a scale that covers almost the entire human proteome (98.5% of human proteins). The resulting dataset covers 58% of residues with a confident prediction, of which a subset (36% of all residues) have very high confidence. We introduce several metrics developed by building on the AlphaFold model and use them to interpret the dataset, identifying strong multi-domain predictions as well as regions that are likely to be disordered. Finally, we provide some case studies to illustrate how high-quality predictions could be used to generate biological hypotheses. We are making our predictions freely available to the community and anticipate that routine large-scale and high-accuracy structure prediction will become an important tool that will allow new questions to be addressed from a structural perspective.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Gerard J Kleywegt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | | | | | | |
Collapse
|
10
|
Liu X, Meng L, Wang X, Yang Y, Zhonghu BAI. Effect of Clp protease from Corynebacterium glutamicum on heterologous protein expression. Protein Expr Purif 2021; 189:105928. [PMID: 34217803 DOI: 10.1016/j.pep.2021.105928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
The protease present in a host may reduce the yield and biological activity of heterologous proteins. In this study, we used protease overexpression and deletion strategies to examine the effect of the Clp protease system in Corynebacterium glutamicum on the recombinant protein and to produce a highly efficient heterologous protein expression host. In this study, we identified seven genes in the Clp protease family in Corynebacterium glutamicum ATCC 13032 through bioinformatics analysis, and studied their effects on the enhanced green fluorescent protein (EGFP) reporter protein. The fluorescence intensity of the knockout strain was significantly higher, and the effect of the clpS deletion strain was the most obvious. To verify the universal effect of the lack of clpS, the excellent industrial strain C. glutamicum 1.15647 was transformed to form recombinant 15647-ΔclpS. Based on the results, 15647-ΔclpS had a more significant effect on improving protein expression. Furthermore, recombinant human teriparatide (rhPTH) and variable domain of heavy chain of heavy-chain antibody (VHH) were selected to verify the universal applicability of the knockout strain for expressing heterologous proteins. Accordingly, we found that protease deficiency could increase the production of heterologous proteins. Finally, through a large-scale fermentation, the 15647-ΔclpS strain was used to produce VHH. Its yield was approximately 530 mg/L, which was 65% higher than that of WT-15647. In this study, a host that could effectively increase heterologous protein expression was successfully obtained.
Collapse
Affiliation(s)
- Xiuxia Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Lihong Meng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xinyue Wang
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - B A I Zhonghu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
11
|
Jung D, Park S, Ruffini J, Dussault F, Dufour S, Ronholm J. Comparative genomic analysis of Escherichia coli isolates from cases of bovine clinical mastitis identifies nine specific pathotype marker genes. Microb Genom 2021; 7:000597. [PMID: 34227932 PMCID: PMC8477405 DOI: 10.1099/mgen.0.000597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli is a major causative agent of environmental bovine mastitis and this disease causes significant economic losses for the dairy industry. There is still debate in the literature as to whether mammary pathogenic E. coli (MPEC) is indeed a unique E. coli pathotype, or whether this infection is merely an opportunistic infection caused by any E. coli isolate being displaced from the bovine gastrointestinal tract to the environment and, then, into the udder. In this study, we conducted a thorough genomic analysis of 113 novel MPEC isolates from clinical mastitis cases and 100 bovine commensal E. coli isolates. A phylogenomic analysis indicated that MPEC and commensal E. coli isolates formed clades based on common sequence types and O antigens, but did not cluster based on mammary pathogenicity. A comparative genomic analysis of MPEC and commensal isolates led to the identification of nine genes that were part of either the core or the soft-core MPEC genome, but were not found in any bovine commensal isolates. These apparent MPEC marker genes were genes involved with nutrient intake and metabolism [adeQ, adenine permease; nifJ, pyruvate-flavodoxin oxidoreductase; and yhjX, putative major facilitator superfamily (MFS)-type transporter], included fitness and virulence factors commonly seen in uropathogenic E. coli (pqqL, zinc metallopeptidase, and fdeC, intimin-like adhesin, respectively), and putative proteins [yfiE, uncharacterized helix-turn-helix-type transcriptional activator; ygjI, putative inner membrane transporter; and ygjJ, putative periplasmic protein]. Further characterization of these highly conserved MPEC genes may be critical to understanding the pathobiology of MPEC.
Collapse
Affiliation(s)
- Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Janina Ruffini
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | | | - Simon Dufour
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec J2S 2M2, Canada
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec J2S 2M2, Canada
| |
Collapse
|
12
|
Grinter R, Lithgow T. The crystal structure of the TonB-dependent transporter YncD reveals a positively charged substrate-binding site. Acta Crystallogr D Struct Biol 2020; 76:484-495. [PMID: 32355044 PMCID: PMC7193533 DOI: 10.1107/s2059798320004398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/31/2020] [Indexed: 11/10/2022] Open
Abstract
The outer membrane of Gram-negative bacteria is highly impermeable to hydrophilic molecules of larger than 600 Da, protecting these bacteria from toxins present in the environment. In order to transport nutrients across this impermeable membrane, Gram-negative bacteria utilize a diverse family of outer-membrane proteins called TonB-dependent transporters. The majority of the members of this family transport iron-containing substrates. However, it is becoming increasingly clear that TonB-dependent transporters target chemically diverse substrates. In this work, the structure and phylogenetic distribution of the TonB-dependent transporter YncD are investigated. It is shown that while YncD is present in some enteropathogens, including Escherichia coli and Salmonella spp., it is also widespread in Gammaproteobacteria and Betaproteobacteria of environmental origin. The structure of YncD was determined, showing that despite a distant evolutionary relationship, it shares structural features with the ferric citrate transporter FecA, including a compact positively charged substrate-binding site. Despite these shared features, it is shown that YncD does not contribute to the growth of E. coli in pure culture under iron-limiting conditions or with ferric citrate as an iron source. Previous studies of transcriptional regulation in E. coli show that YncD is not induced under iron-limiting conditions and is unresponsive to the ferric uptake regulator (Fur). These observations, combined with the data presented here, suggest that YncD is not responsible for the transport of an iron-containing substrate.
Collapse
Affiliation(s)
- Rhys Grinter
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|